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Smith Factorization (Smith, 1860)

Theorem
Let n be an integer and A be an invertible n × n matrix
with polynomial entries aij(λ)1≤i,j≤n with resp. to λ.
=⇒ ∃ polynomial matrices E , D, F with

A = EDF

I det(E), det(F ) are constants.
I D is a diagonal matrix.

Remarks:
I D is uniquely determined up to a reordering and

multiplication of each entry by a constant.
I The inverses of E and F have also polynomial

entries.
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Computing the Smith factorization

D is uniquely defined by the formula defined as follows.
Let 1 ≤ k ≤ n,

I Sk is the set of all the submatrices of order k × k
extracted from A.

I Detk = {Det(Bk )\Bk ∈ Sk}
I LDk is the largest common divisor of the set of

polynomials Detk .

Then,

Dkk (λ) =
LDk (λ)

LDk−1(λ)
, 1 ≤ k ≤ n (1)

(by convention, LD0 = 1). In practice, the factorization
can be computed “by hand” similarly to a Gauss
factorization OR one can use the Maple routine called
Smith .
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How to Use the Smith factorization

Suppose A(∂x , ∂y ) is a partial differential operator and we
need to solve the following system of PDEs:

A(U) = b

The Fourier transform with respect to y , Â(∂x , k) is a
polynomial matrix wrt to ∂x . Let Â = EDF .
Let V = F (U), then it remains to solve the uncoupled
scalar equations:

D(V ) = E−1b

The Smith factorization provides the possibility to analyze
different aspects of the resolution of the PDEs by
reducing them to equivalent scalar systems:
Preconditionning aspects of domain decomposition
methods
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Stokes Equations

−ν4u +∇p + cu = f in Ω

∇ · u = 0 in Ω

I Simple model for incompressible flows
I Domain Ω ⊂ Rd , d = 2, 3
I Source term f ∈ [L2(Ω)]d , viscosity ν > 0,

reaction c ≥ 0
I Stokes operator Sd(v , q) := (−ν4v + cv +∇q,∇· v )
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Existing Algorithms and Exactness

Existing Algorithms for the Stokes Equations

Neumann-Neumann AINSWORTH, SHERWIN (’99)
type LE TALLEC, PATRA (’97)

PAVARINO, WIDLUND (’02)
FETI LI (’05)
BDDC LI, WIDLUND (’06)
others QUARTERONI (’89),

BRAMBLE, PASCIAK (’90)

Problem:
In opposite to the scalar case all these methods are not
exact in the case of two subdomains consisting of the two
half planes.
A method is called exact, if the preconditioned operator
simplifies to the identity.
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Main Idea

I Neumann-Neumann preconditioners are exact for
many scalar equations like Laplace or Helmholz
equations. (cf. ACHDOU ET AL. (’00) for the
advection-diffusion equations)

I We use the Smith Factorization as a general tool to
reduce the system to a set of uncoupled scalar
equations.

I Starting with an exact algorithm for the
corresponding scalar problems we derive a method
for the Stokes equations which preserves this
property.

I Same procedure can be applied to the Oseen
eqations.
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Application to the 2D Stokes Equations

I Consider the whole plain: Ω = R2

I Fourier transform in y -direction (vertical) with dual
variable k

=⇒ Stokes equations are equivalent to

Ŝ2(û , p̂) = ĝ

with û = (û, v̂), ĝ = (f̂1, f̂2, 0)T and

Ŝ2(û , p̂) =

 −ν(∂xx − k2) + c 0 ∂x

0 −ν(∂xx − k2) + c ik
∂x ik 0

 û
v̂
p̂


Idea: Interpret Ŝ2 as matrix with polynomial entries in ∂x
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Smith Fact. for the 2D Stokes Equations

Ŝ2 = Ê2D̂2F̂2

with

D̂2 =

 1 0 0
0 1 0
0 0 (∂xx − k2)L̂2

 , F̂2 =

 νk2 + c νik∂x ∂x

0 L̂2 ik
0 1 0



Ê2 = ˆT−1
2

 ikL̂2 ν∂xxx −ν∂x

0 T̂2 0
ik∂x −∂xx 1


I T2 is a differential operator in y -direction with symbol

ik(νk2 + c)

I L̂2 := ν(−∂xx + k2) + c is the Fourier transform of
L2 := −ν∆ + c.
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Reformulation of the Stokes Problem
I Let (ŵ , p̂) satisfy the Stokes equations

Ŝ2(ŵ , p̂) = Ê2D̂2F̂2(ŵ , p̂) = ĝ in R2.

I Multiplying with Ê2
−1

yields

D̂2F̂2(ŵ , p̂) = Ê2
−1

ĝ in R2.

I Defining û := F̂2(ŵ , p̂) we obtain

û1 = (E−1
2 ĝ)1

û2 = (E−1
2 ĝ)2

(∂xx − k2)L̂2û3 = (E−1
2 ĝ)3

.

I Using û3 = (F̂2(ŵ , p̂))3 = ŵ2 and the inverse Fourier
transform F−1

y we get

4L2w2 = F−1
y (Ê−1

2 ĝ3).
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Remarks

I Multiplying with Ê−1
2 corresponds to a differentiation

in x-direction.
I The Stokes problem can be mainly characterized by

the fourth-order operator 4(−ν4+ c).
I The Stream function formulation yields the same

differential operator in the 2D case.
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Main Idea for Deriving DD Methods

I Deriving an efficient dd method for the scalar
fourth-order problem.

I We consider a special geometry and express the
domain decomposition method in terms of the
Stokes problem.

I With the help of the Stokes equations the higher
order interface conditions can be rewritten as lower
order conditions.

I As a result we obtain a dd method for the 2D Stokes
equations for this geometry.

I Generalize this algorithm to arbitrary domains.
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Special Geometry

I Ω = R2

I Ω1 = {(x , y) ∈ R2 | x < 0 }
I Ω2 = {(x , y) ∈ R2 | x > 0 }
I Γ = {(x , y) ∈ R2 | x = 0 }
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Efficient algorithm for the scalar problem
I Initial guess with

L2u1,0
2 = L2u2,0

2 , u1,0
2 = u2,0

2 on Γ

I Correction step (i = 1, 2)

4L2v i,n
2 = 0 in Ωi

∂

∂n i
L2v i,n

2 = −1
2

(
∂

∂n1
L2u1,n−1

2 +
∂

∂n2
L2u2,n−1

2

)
on Γ.

ν
∂v i,n

2

∂n i
= −1

2
ν

(
∂u1,n−1

2

∂n1
+

∂u2,n−1
2

∂n2

)
on Γ.

I Update step (i = 1, 2)

4L2ui,n
2 = F−1

y (Ê−1
2 ĝ3) in Ωi

L2ui,n
2 = L2u1,n−1

2 +
1
2

(
L2v1,n

2 + L2v2,n
2

)
on Γ

ui,n
2 = ui,n−1

2 +
1
2

(v1,n
2 + v2,n

2 ) on Γ.
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Convergence

Theorem
Let Ω = R2 be decomposed into
Ω1 = {(x , y) ∈ R2 | x < 0 }, Ω2 = {(x , y) ∈ R2 | x > 0 }.

I The scalar algorithm converges in at most two steps.

Remarks:
I Very natural interface conditions
I For the model case the algorithm possesses perfect

convergence properties.
I The domain decomposition method of the Stokes

equations will inherit these properties.
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Next Steps

1. Rewrite the algorithm in terms of the Stokes
equations (for the special geometry), use for
example ∂xu1 = −∂yu2 for the velocity (u1, u2).

2. Generalize it to arbitrary decompositions
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Arbitrary decomposition

I Non-overlapping decomposition {Ωi}N
i=1 of Ω, i.e.

Ω =
N⋃

i=1

Ωi , Ωi ∩ Ωj = ∅, i 6= j

I Interface Γij = ∂Ωi ∩ ∂Ωj , Γ =
⋃

Γij

I Stress on the interface

σ(u , p) := ν
∂u
∂n

− pn

I We use the notation un for the normal and uτ for the
tangential part of the velocity u . We also split the
stress σ in σn and στ .
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Equivalent Algorithm for Stokes

I Initial guess ((u0
i , p0

i ))N
i=0 with

u0
i,τ i

= u0
j,τ j

, σn i
(u0

i , p0
i ) = −σn j

(u0
j , p0

j ) on Γij

I Correction step

S2(ũ
n+1
i , p̃n+1

i ) = 0 in Ωi

ũn+1
i,n i

= −1
2
(un

i,n i
+ un

j,n j
) on Γij

στ i (ũ
n+1
i , p̃n+1

i )

= −1
2
(στ i (ũ

n
i , p̃n

i ) + στ j (ũ
n
j , p̃n

j )) on Γij
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Equivalent Algorithm for Stokes

I Update step

S2(u
n+1
i , pn+1

i ) = f in Ωi

un+1
i,τ i

= un
i,τ i

+
1
2
(ũn+1

i,τ i
+ ũn+1

j,τ i
) on Γij

σn i
(un+1

i , pn+1
i ) = σn i

(un
i , pn

i )

+
1
2
(σn i

(ũn+1
i , p̃n+1

i )− σn j
(ũn+1

j , p̃n+1
j )) on Γij .

Remarks:
I The algorithm is very similar to the

Neumann-Neumann method.
I In the case of Ω1 = {(x , y) ∈ R2 | x < 0 },

Ω2 = {(x , y) ∈ R2 | x > 0 } we obtain convergence in
two steps.
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Extension to the Stokes Equations in 3D

I Fourier transform (with dual variables k and η)

Ŝ3 =

 L̂3 0 0 ∂x

0 L̂3 0 ik
0 0 L̂3 iη
∂x ik iη 0


where L̂3 := ν(−∂xx + k2 + η2) + c is the Fourier
transform of L3 := −ν∆ + c.

I Diagonal matrix of the Smith factorization

D̂3 =

 1 0 0 0
0 1 0 0
0 0 L̂3 0
0 0 0 (∂xx − k2 − η2)L̂3


I Thus the 3D-Stokes problem is determined by L3

and 4L3
I After similar computations we obtain exactly the

same algorithm.
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Extension to the Oseen Equations in 2D
Oseen equations
(Linearized Navier-Stokes equations){

−ν∆u + b · ∇u + cu +∇p = f in Ω
∇ · u = 0 in Ω.

I Oseen operator

O2(u , p) = (−ν∆u + b · ∇u + cu +∇p,∇ · u)T

I Diagonal matrix of the Smith Factorization is the
Fourier transform of

DO2 =

 1 0 0
0 1 0
0 0 LO

2 ∆


with LO2 u = −ν∆u + b · ∇u + cu.
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Algorithm for the 2D Oseen equations

I Correction step

O2(ũ
n+1
i , p̃n+1

i ) = 0 in Ωi

στ i (ũ
n+1
i , p̃n+1

i )− 1
2

(b · n i)ũ
n+1
i,τi

=

−1
2

(στ i (u
n
i , pn

i ) + στ j (u
n
j , pn

j )) on Γij

(−ν∂τ iτ i + (b · τ i)∂τ i + c)ũn+1
i,n i

− 1
2

(b · n i)∂τ i ũ
n+1
i,τ i

= γn
ij , Γij

with γn
ij := −1

2
(−ν∂τ iτ i + (b · τ i)∂τ i + c)

(
un

i,n i
+ un

j,n j

)
.

I Update step
O2(un+1

i , pn+1
i ) = f in Ωi

un+1
i,τ i

= un
i,τ i

+
1
2

(ũn+1
i,τ i

+ ũn+1
j,τ j

) on Γij

σn i
(un+1

i , pn+1
i ) = σn i

(un
i , pn

i ) + δn+1
ij on Γij

with δn+1
ij =

1
2

(σn i
(ũn+1

i , p̃n+1
i )− σn j

(ũn+1
j , p̃n+1

j )).
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Numerical Tests

Consider a rectangle Ω := (0, 4)× (0, 1):

−ν4u + cu +∇p = f in Ω
∇ · u = 0 in Ω

and suitable boundary conditions for ν = 1,
c = 10−5, 100, 102.

Reference Solution:

u(x , y) =

(
sin3(πx) sin2(πy) cos(πy)

− sin2(πx) sin3(πy) cos(πx)

)
,

p = x2 + y2

Discretization:
Finite Volume discretization with staggered grids and
pressure stabilization, different mesh sizes h.
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Two-subdomain case

Different reaction

regular decomposition: 2× 1 subdomains
mesh size: h = 1/96
Stopping criterion: Reduction of the error by 10−6

c newit nnit newGMRES nnGMRES

102 2 15 1 6
1 2 15 1 6
10−3 2 15 1 6
10−5 2 15 1 6
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Two-subdomain case

Different mesh sizes

regular decomposition: 2× 1 subdomains
reaction: c = 10−5

Stopping criterion: Reduction of the error by 10−6

h newit nnit newGMRES nnGMRES

1/24 2 14 1 6
1/48 2 15 1 6
1/96 2 15 1 6
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Stripwise decomposition - regular case

regular decomposition: N × 1 subdomains
mesh size: h = 1/96
Stopping criterion: Reduction of the error by 10−6

reaction c = 10−5:
N newit nnit newGMRES nnGMRES

2 2 15 1 6
4 - - 8 -
6 - - 15 -
8 - - 21 -

reaction c = 102:
N newit nnit newGMRES nnGMRES

2 2 15 1 6
4 35 - 5 9
6 - - 7 15
8 - - 10 21
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Stripwise decomposition - non-regular case

decomposition: 4× 1 subdomains
width of subdomain Ωi : li
mesh size: h = 1/96
Stopping criterion: Reduction of the error by 10−6

c N itNew itNN acNew acNN

10−5 [16, 32, 16, 32] - - 9 -
[16, 48, 16, 16] - - 10 -
[48, 16, 16, 16] - - 12 -

100 [16, 32, 16, 32] - - 8 14
[16, 48, 16, 16] - - 10 13
[48, 16, 16, 16] - - 12 17

102 [16, 32, 16, 32] 74 - 5 12
[16, 48, 16, 16] - - 6 11
[48, 16, 16, 16] - - 6 14
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General case

regular decomposition: N × N subdomains
mesh size: h = 1/96
Stopping criterion: Reduction of the error by 10−6

c N × N itNew itNN acNew acNN

10−5 2x2 - - 9 13
3x3 - - 28 -
4x4 - - 40 -

100 2x2 - - 9 13
3x3 - - 30 28
4x4 - - 39 39

102 2x2 61 - 7 11
3x3 - - 22 21
4x4 - - 27 27
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Summary and Outlook

Summary
I Introduction of a new domain decomposition for the

2D and 3D Stokes problem.
I We could prove perfect convergence for a model

problem.
I Theoretical results could be validated numerically.
I Extension to the Oseen case. Convergence of the

algorithm is theoretically independent of the
Reynolds number.

Outlook
I Analyzing the general case.
I Introduction of suitable coarse spaces.
I Analyzing and performing numerical tests for the

Oseen equations.
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