Interactions entre théories algébriques et calcul scientifique

Conservatoire National des Arts et Métiers
Paris, 18 septembre 2007

Integer matrix factorization and computation of homology groups for three dimensional meshes

François Dubois

CNAM Paris and University Paris Sud, Orsay

Survey of the lecture

1) A mesh \mathcal{T} as a simplicial complex
2) Discrete vector fields
3) Chains, borders and incidence matrices
4) Homology groups $H_{p}(\mathcal{T})$
5) A first numerical algorithm for computing $H_{1}(\mathcal{T})$
6) A Smith algorithm for computing $H_{1}(\mathcal{T})$
7) Conclusion

CNAM, Paris, 18 September 2007

Consider $s_{0}, s_{1}, \ldots, s_{p} \quad p+1$ points of \mathbb{R}^{3}
that are affinely independent

$$
\begin{array}{r}
\left(s_{0}, s_{1}, \ldots, s_{p}\right) \quad p \text {-simplex generated by } s_{0}, s_{1}, \ldots, s_{p}: \\
\text { convex hull of the } p+1 \text { previous points }
\end{array}
$$

Definition of a "conforming mesh" \mathcal{T}_{h} of a three-dimensional domain Ω composed by tetrahedra
(P.G. Ciarlet, 1978)
an "element" K is a nondegenerated closed tetrahedron
$\bar{\Omega}=\bigcup_{K \in \mathcal{T}_{h}} K$
if K and L belong to $\mathcal{T}_{h}, K \cap L$ is either void, or is a vertex of K and L, or is an edge of K and L, or is a face of K and L, or $K=L$.

A mesh is defined through its "elements".
"Abstract simplicial complex" (Σ, Φ)
definition proposed by H. Cartan (1948)
A set Σ.
A family Φ of finite parts of Σ such that

$$
\text { if } s \in \Sigma \text {, then }\{s\} \in \Phi
$$

$$
\text { if } S \in \Phi \text { and } T \subset S, \text { then } T \in \Phi
$$

"Simplicial complex" for defining a conforming simplicial mesh \mathcal{T} a set Σ of "vertices"
set $\mathcal{T}^{0}=\bigcup_{s \in \Sigma}\{s\} \simeq \Sigma$ of vertices s
set \mathcal{T}^{1} of edges a
set \mathcal{T}^{2} of (triangular) faces f
set \mathcal{T}^{3} of tetrahedra (elements) t
"sommet"
"arête" "face"
"tétraèdre"

$$
\mathcal{T}=\left(\Sigma, \Phi \equiv \bigcup_{p=0}^{3} \mathcal{T}^{p}\right) \simeq \bigcup_{p=0}^{3} \mathcal{T}^{p}
$$

is an abstract simplicial complex in the sense of H. Cartan.

CNAM, Paris, 18 September 2007

Rigorous definitions (with quotient sets) proposed by J.P. Serre (1948)
a vertex has no orientation
for each $p \geq 1$ and each p-simplex $\left(s_{0}, s_{1}, \ldots, s_{p}\right)$,
make a choice of an "orientation"
for a permutation σ of $\{0,1, \ldots, p\}$
operating on the set $\left\{s_{0}, s_{1}, \ldots, s_{p}\right\}$, $\left(s_{0}, s_{1}, \ldots, s_{p}\right) \simeq\left(s_{\sigma(0)}, s_{\sigma(1)}, \ldots, s_{\sigma(p)}\right)$
if and only if the sign $\epsilon(\sigma)$ is equal to +1 .
edge

$$
a=\left(s_{0}, s_{1}\right)
$$

face $\quad f=\left(s_{0}, s_{1}, s_{3}\right)$
tetrahedron $t=\left(s_{0}, s_{1}, s_{2}, s_{3}\right)$

CNAM, Paris, 18 September 2007

Notations: $\quad s \in \mathcal{T}^{0}$ a vertex of the simplicial mesh \mathcal{T}

$$
\begin{aligned}
& a \in \mathcal{T}^{1} \text { an edge } \\
& f \in \mathcal{T}^{2} \text { a face } \\
& t \in \mathcal{T}^{3} \text { a tetrahedron }
\end{aligned}
$$

Basis functions of discrete spaces

$$
\begin{aligned}
& \varphi_{s}^{0} \in H_{\mathcal{T}}^{1}(\Omega) \quad \text { scalar valued, affine in each tetrahedron } \\
& \varphi_{a}^{1} \in H_{\mathcal{T}}(\text { curl }, \Omega) \quad \text { vector valued, } \\
& \text { in each tetrahedron, } \varphi_{a}^{1} \in \mathrm{NR} \quad \text { Nédélec-Rao } \\
& \mathrm{NR} \equiv\left\{\mathbb{R}^{3} \ni x \longmapsto \alpha+\beta \times x \in \mathbb{R}^{3}\right\}, \alpha, \beta \in \mathbb{R}^{3} \\
& \varphi_{f}^{2} \in H_{\mathcal{T}}(\text { div }, \Omega) \quad \text { vector valued, } \\
& \text { in each tetrahedron, } \varphi_{f}^{2} \in \text { RTN Raviart-Thomas-Nédélec } \\
& \mathrm{RTN} \equiv\left\{\mathbb{R}^{3} \ni x \longmapsto \alpha+\beta x \in \mathbb{R}^{3}\right\}, \alpha \in \mathbb{R}^{3}, \beta \in \mathbb{R} \\
& \varphi_{t}^{3} \in L_{\mathcal{T}}^{2}(\Omega) \quad \text { scalar valued, constant in each tetrahedron }
\end{aligned}
$$

CNAM, Paris, 18 September 2007

Degrees of freedom nodal value $\quad \varphi_{s}^{0}(\sigma)=\delta_{s, \sigma}, \quad \forall s, \sigma \in \mathcal{T}^{0}$ circulation $\quad \int_{\alpha} \varphi_{a}^{1} \bullet \tau_{\alpha} \mathrm{d} \gamma=\delta_{a, \alpha}, \quad \forall a, \alpha \in \mathcal{T}^{1}$
flux

$$
\int_{g} \varphi_{f}^{2} \bullet n_{g} \mathrm{~d} \sigma=\delta_{f, g}, \quad \forall f, g \in \mathcal{T}^{2}
$$

mean value $\quad \int_{K} \varphi_{t}^{3} \mathrm{~d} x=\delta_{t, K}, \quad \forall t, K \in \mathcal{T}^{3}$

CNAM, Paris, 18 September 2007
p-chain: a formal sum of the type $\quad \gamma=\sum_{\alpha \in \mathcal{T}^{p}} n_{\alpha} \alpha, \quad n_{\alpha} \in \mathbb{Z}$

$$
C_{p}(\mathcal{T}): \text { space of } p \text {-chains }=<\mathcal{T}^{p}>
$$

Border of a simplex $\left(s_{0}, s_{1}, \ldots, s_{p}\right), p \geq 1$.

$$
\partial\left(s_{0}, s_{1}, \ldots, s_{p}\right)=\sum_{j=0}^{p}(-1)^{j}\left(s_{0}, s_{1}, \ldots s_{j-1}, s_{j+1}, \ldots, s_{p}\right)
$$

Examples

$$
\begin{array}{lr}
\partial s=0, & s \in \mathcal{T}^{0} \\
\partial\left(s_{0}, s_{1}\right)=-s_{0}+s_{1}, & \left(s_{0}, s_{1}\right) \in \mathcal{T}^{1} \\
\partial\left(s_{0}, s_{1}, s_{2}\right)=\left(s_{1}, s_{2}\right)-\left(s_{0}, s_{2}\right)+\left(s_{0}, s_{1}\right), & \left(s_{0}, s_{1}, s_{2}\right) \in \mathcal{T}^{2} \\
\partial\left(s_{0}, s_{1}, s_{2}, s_{3}\right)=\left(s_{1}, s_{2}, s_{3}\right)-\left(s_{0}, s_{2}, s_{3}\right)+\left(s_{0}, s_{1}, s_{3}\right) \\
& -\left(s_{0}, s_{1}, s_{2}\right),
\end{array}
$$

By linearity, the border defines a linear operator

$$
\partial_{p}: C_{p}(\mathcal{T}) \longrightarrow C_{p-1}(\mathcal{T})
$$

Write the operator ∂ in the basis of simplicies.
$s \in \mathcal{T}^{0}$ a vertex of the mesh $\partial_{0} s=0$.
$a \in \mathcal{T}^{1}$ an edge of the mesh $\quad \partial_{1} a \equiv \sum_{s \in \mathcal{T}^{0}} G_{a s} s \in C_{0}(\mathcal{T})$

$$
\begin{aligned}
\text { if } a \equiv\left(s_{0}, s_{1}\right), G_{a s_{1}} & =+1, G_{a s_{0}}=-1 \\
\text { and } G_{a s} & =0 \text { for } s \neq s_{0}, s_{1}
\end{aligned}
$$

$f \in \mathcal{T}^{2}$ a face of the mesh $\quad \partial_{2} f \equiv \sum_{a \in \mathcal{T}^{1}} R_{f a} a \in C_{1}(\mathcal{T})$
$R_{f a}$ is not null only for the three edges that compose ∂f

$$
\begin{aligned}
& t \in \mathcal{T}^{3} \text { a tetrahedron of the mesh } \\
& \partial_{3} t \equiv \sum_{f \in \mathcal{T}^{1}} D_{t f} f \in C_{2}(\mathcal{T})
\end{aligned}
$$

$D_{t f}$ is not null only for the four faces that compose ∂t

CNAM, Paris, 18 September 2007

The matrix of ∂_{1} in the basis of simplices is equal to G^{t}

$$
\begin{aligned}
& \partial_{2} \\
& \partial_{3}
\end{aligned}
$$

$$
D^{\mathrm{t}}
$$

Beautiful property (A. Bossavit, 1986).

$$
\begin{aligned}
& \nabla \varphi_{s}^{0}=\sum_{a \in \mathcal{T}^{1}} G_{a s} \varphi_{a}^{1} \\
& \operatorname{curl} \varphi_{s}^{1}=\sum_{f \in \mathcal{T}^{2}} R_{f a} \varphi_{f}^{2} \\
& \operatorname{div} \varphi_{f}^{2}=\sum_{t \in \mathcal{T}^{3}} D_{t f} \varphi_{t}^{3}
\end{aligned}
$$

The matrix of ∇ operator relatively to the φ_{α}^{p} basis is equal to G for curl operator, we recover matrix R for div operator, we obtain matrix D.
The derivation is the adjoint of the border operator ∂

CNAM, Paris, 18 September 2007

The derivation is the adjoint of the border operator $\partial: \quad \mathrm{d}=\partial^{*}$

	∂_{4}		$\begin{gathered} D^{\mathrm{t}} \\ \partial_{3} \end{gathered}$		$\begin{gathered} R^{\mathrm{t}} \\ \partial_{2} \end{gathered}$		G^{t} ∂_{1}		$\begin{aligned} & 0 \\ & \partial_{0} \end{aligned}$
0	\longrightarrow	$C_{3}(\mathcal{T})$	\longrightarrow	$C_{2}(\mathcal{T})$	\longrightarrow	$C_{1}(\mathcal{T})$	\longrightarrow	$C_{0}(\mathcal{T})$	\longrightarrow
\mathcal{T}^{4}		\mathcal{T}^{3}		\mathcal{T}^{2}		\mathcal{T}^{1}		\mathcal{T}^{0}	
	\longleftarrow	$L^{2}(\mathcal{T})$	-	$\mathcal{T}^{(}$(div, Ω		$H_{\mathcal{T}}($ curl,$\Omega)$		$H_{\mathcal{T}}^{1}(\Omega)$	\longleftarrow
	0		div		curl		∇		0
	0		D		R		G		0

Fondamental property:
$\partial_{p} \circ \partial_{p+1} \equiv 0$.
proof by linearity; exercice for a simplex.
Well known fact:

$$
\text { div } \circ \text { curl } \equiv 0, \quad \operatorname{curl} \circ \nabla \equiv 0
$$

CNAM, Paris, 18 September 2007

Classical spaces:
$Z_{p}(\mathcal{T})$ space of closed p-chains,

$$
\begin{array}{r}
\text { id est } p \text {-chains } \gamma \text { such that } \partial \gamma=0 \\
Z_{p}(\mathcal{T})=\operatorname{ker} \partial_{p}
\end{array}
$$

$B_{p}(\mathcal{T})$ space of border p-chains, p-chains γ such that $\exists \beta \in C_{p+1}(\mathcal{T}), \quad \gamma=\partial \beta$ $B_{p}(\mathcal{T})=\operatorname{Im} \partial_{p+1}$
Of course, $B_{p}(\mathcal{T}) \subset Z_{p}(\mathcal{T})$
Define the p^{o} homology group $H_{p}(\mathcal{T})$
as the quotient of $Z_{p}(\mathcal{T})$ modulo $B_{p}(\mathcal{T})$: $H_{p}(\mathcal{T}) \equiv Z_{p}(\mathcal{T}) / B_{p}(\mathcal{T})$.
$H_{0}(\mathcal{T}) \simeq \mathbb{Z}$ number of connected components of Ω
$H_{1}(\mathcal{T}) \simeq \mathbb{Z}$ number of nontrivial circuits in Ω
$H_{2}(\mathcal{T}) \simeq \mathbb{Z}$ number of connected components of $\partial \Omega$
classical!

CNAM, Paris, 18 SEptember 2007

Matricial point of view:

$$
\text { we have } R G=0 . \quad \text { Then } G^{\mathrm{t}} R^{\mathrm{t}}=0
$$

and $\quad \operatorname{Im} R^{\mathrm{t}} \subset \operatorname{ker} G^{\mathrm{t}}$
we search a decomposuiton of the space $\operatorname{ker} G^{\mathrm{t}}$ under the form

$$
\operatorname{ker} G^{\mathrm{t}}=\operatorname{Im} R^{\mathrm{t}} \oplus \widetilde{H}_{1}(\mathcal{T})
$$

Idea proposed by F. Rapetti, FD, A. Bossavit (2002): try to factorize the matrix R^{t} with a " $Q R$ like" algorithm id est find three matrices
Q (invertible over \mathbb{Z})
U (upper triangular with integer coefficients)
P (invertible over \mathbb{Z})

$$
\text { such that } \quad R^{\mathrm{t}}=Q U P
$$

Multiply R^{t} on the left by simple "two by two like" matrices Q_{j} in order to force a triangular form.
idea of Givens rotations for factorization of a general matrix A under the form $A=Q U$ with Q orthogonal and R upper triangular
replace the condition of orthogonality for Q
by the fact that Q is invertible over \mathbb{Z}.
better: suppose $\operatorname{det} Q=1$ (for this lecture \ldots.)

CNAM, Paris, 18 September 2007

Use $\rho_{i j}(\epsilon) \equiv\left(\begin{array}{cccccccc}1 & 0 & \ldots & & & & \ldots & 0 \\ 0 & 1 & 0 & \ldots & & & \ldots & 0 \\ \vdots & \ldots & 1 & \ldots & & & & \vdots \\ & & \ldots & 0 & \ldots & \epsilon & \ldots & \\ & & \ldots & 0 & 1 & 0 & \ldots & \\ & & \ldots & -\epsilon & \ldots & 0 & \ldots & \vdots \\ \vdots & \ldots & & & \ldots & 0 & 1 & 0 \\ 0 & \ldots & & & & \ldots & 0 & 1\end{array}\right)$
with $\quad \epsilon^{2} \equiv 1$
id est $\quad \rho_{i j}(\epsilon) \equiv\left(\begin{array}{cc}0 & \epsilon \\ -\epsilon & 0\end{array}\right), \quad$ for lines $i<j$ and identity elsewhere

$$
\text { to "exchange" lines number } i \text { and } j: \quad \rho_{i j}(\epsilon) \bullet\binom{0}{\epsilon}=\binom{1}{0}
$$

local Givens rotation of angle $-\epsilon \frac{\pi}{2}$.
CNAM, Paris, 18 September 2007

Use $\theta_{i j}(\epsilon, \varphi) \equiv\left(\begin{array}{cccccccc}1 & 0 & \ldots & & & & \ldots & 0 \\ 0 & 1 & 0 & \ldots & & & \ldots & 0 \\ \vdots & \ldots & 1 & \ldots & & & & \vdots \\ & & \ldots & \epsilon & \ldots & 0 & \ldots & \\ & & \ldots & 0 & 1 & 0 & \ldots & \\ & & \ldots & -\varphi & \ldots & \epsilon & \ldots & \vdots \\ \vdots & \ldots & & & \ldots & 0 & 1 & 0 \\ 0 & \ldots & & & & \ldots & 0 & 1\end{array}\right)$
id est $\quad \theta_{i j}(\epsilon, \varphi) \equiv\left(\begin{array}{cc}\epsilon & 0 \\ -\varphi & \epsilon\end{array}\right), \quad$ identity elsewhere \quad with $\epsilon^{2} \equiv \varphi^{2} \equiv 1$
to "kill" non null values at column i and line $j>i$:

$$
\theta_{i j}(\epsilon, \varphi) \cdot\binom{\epsilon}{\varphi}=\binom{1}{0}
$$

generalized transvection

CNAM, Paris, 18 September 2007

CNAM, Paris, 18 September 2007

$$
G=\left(\begin{array}{cccc}
-1 & 1 & 0 & 0 \\
-1 & 1 & 0 & 0 \\
0 & 0 & -1 & 1 \\
0 & 0 & -1 & 1 \\
-1 & 0 & 1 & 0 \\
-1 & 0 & 1 & 0 \\
0 & -1 & 0 & 1 \\
0 & -1 & 0 & 1
\end{array}\right)
$$

face 1: edges $1,7,-4,-5$, face 3: edges $1,8,-4,-6, \quad$ face 4 : edges $2,8,-3,-6$.

$$
R=\left(\begin{array}{cccccccc}
1 & 0 & 0 & -1 & -1 & 0 & 1 & 0 \\
0 & 1 & -1 & 0 & -1 & 0 & 1 & 0 \\
1 & 0 & 0 & -1 & 0 & -1 & 0 & 1 \\
0 & 1 & -1 & 0 & 0 & -1 & 0 & 1
\end{array}\right)
$$

CNAM, Paris, 18 September 2007

$$
\begin{aligned}
Q_{1} \bullet R^{\mathrm{t}} & =\left(\begin{array}{cccccccc}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right) \bullet\left(\begin{array}{cccc}
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 \\
0 & -1 & 0 & -1 \\
-1 & 0 & -1 & 0 \\
-1 & -1 & 0 & 0 \\
0 & 0 & -1 & -1 \\
1 & 1 & 0 & 0 \\
0 & 0 & 1 & 1
\end{array}\right) \\
& =\left(\begin{array}{cccc}
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 \\
0 & -1 & 0 & -1 \\
0 & 0 & 0 & 0 \\
-1 & -1 & 0 & 0 \\
0 & 0 & -1 & -1 \\
1 & 1 & 0 & 0 \\
0 & 0 & 1 & 1
\end{array}\right) \equiv R_{1}^{\mathrm{t}}
\end{aligned}
$$

CNAM, Paris, 18 September 2007

$$
\begin{aligned}
Q_{2} \bullet R_{1}^{\mathrm{t}} & =\left(\begin{array}{llllllll}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right) \bullet\left(\begin{array}{cccc}
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 \\
0 & -1 & 0 & -1 \\
0 & 0 & 0 & 0 \\
-1 & -1 & 0 & 0 \\
0 & 0 & -1 & -1 \\
1 & 1 & 0 & 0 \\
0 & 0 & 1 & 1
\end{array}\right) \\
& =\left(\begin{array}{cccc}
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 \\
0 & -1 & 0 & -1 \\
0 & 0 & 0 & 0 \\
0 & -1 & 1 & 0 \\
0 & 0 & -1 & -1 \\
1 & 1 & 0 & 0 \\
0 & 0 & 1 & 1
\end{array}\right) \equiv R_{2}^{\mathrm{t}}
\end{aligned}
$$

CNAM, Paris, 18 September 2007

$$
\begin{aligned}
Q_{3} \bullet R_{2}^{\mathrm{t}} & =\left(\begin{array}{cccccccc}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
-1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right) \bullet\left(\begin{array}{cccc}
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 \\
0 & -1 & 0 & -1 \\
0 & 0 & 0 & 0 \\
0 & -1 & 1 & 0 \\
0 & 0 & -1 & -1 \\
1 & 1 & 0 & 0 \\
0 & 0 & 1 & 1
\end{array}\right) \\
& =\left(\begin{array}{cccc}
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 \\
0 & -1 & 0 & -1 \\
0 & 0 & 0 & 0 \\
0 & -1 & 1 & 0 \\
0 & 0 & -1 & -1 \\
0 & 1 & -1 & 0 \\
0 & 0 & 1 & 1
\end{array}\right) \equiv R_{3}^{\mathrm{t}}
\end{aligned}
$$

CNAM, Paris, 18 September 2007

$$
\begin{aligned}
Q_{4} \bullet R_{3}^{\mathrm{t}} & =\left(\begin{array}{cccccccc}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right) \bullet\left(\begin{array}{cccc}
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 \\
0 & -1 & 0 & -1 \\
0 & 0 & 0 & 0 \\
0 & -1 & 1 & 0 \\
0 & 0 & -1 & -1 \\
0 & 1 & -1 & 0 \\
0 & 0 & 1 & 1
\end{array}\right) \\
& =\left(\begin{array}{ccccc}
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & -1 & 1 & 0 \\
0 & 0 & -1 & -1 \\
0 & 1 & -1 & 0 \\
0 & 0 & 1 & 1
\end{array}\right) \equiv R_{4}^{\mathrm{t}}
\end{aligned}
$$

CNAM, Paris, 18 September 2007

$$
\begin{aligned}
Q_{5} \bullet R_{4}^{\mathrm{t}} & =\left(\begin{array}{llllllll}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right) \bullet\left(\begin{array}{cccc}
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & -1 & 1 & 0 \\
0 & 0 & -1 & -1 \\
0 & 1 & -1 & 0 \\
0 & 0 & 1 & 1
\end{array}\right) \\
& =\left(\begin{array}{cccc}
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 \\
0 & 0 & -1 & -1 \\
0 & 1 & -1 & 0 \\
0 & 0 & 1 & 1
\end{array}\right) \equiv R_{5}^{\mathrm{t}}
\end{aligned}
$$

CNAM, Paris, 18 September 2007

$$
\begin{aligned}
Q_{6} \bullet R_{5}^{\mathrm{t}} & =\left(\begin{array}{cccccccc}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & -1 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right) \bullet\left(\begin{array}{cccc}
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 \\
0 & 0 & -1 & -1 \\
0 & 1 & -1 & 0 \\
0 & 0 & 1 & 1
\end{array}\right) \\
& =\left(\begin{array}{cccc}
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 \\
0 & 0 & -1 & -1 \\
0 & 0 & -1 & -1 \\
0 & 0 & 1 & 1
\end{array}\right) \equiv R_{6}^{\mathrm{t}}
\end{aligned}
$$

CNAM, Paris, 18 September 2007

$$
\begin{aligned}
Q_{7} \bullet R_{6}^{\mathrm{t}} & =\left(\begin{array}{cccccccc}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & -1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right) \bullet\left(\begin{array}{cccc}
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 \\
0 & 0 & -1 & -1 \\
0 & 0 & -1 & -1 \\
0 & 0 & 1 & 1
\end{array}\right) \\
& =\left(\begin{array}{cccc}
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 \\
0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & -1 & -1 \\
0 & 0 & -1 & -1 \\
0 & 0 & 1 & 1
\end{array}\right) \equiv R_{7}^{\mathrm{t}}
\end{aligned}
$$

CNAM, Paris, 18 September 2007

$$
\begin{aligned}
Q_{8} \bullet R_{7}^{\mathrm{t}} & =\left(\begin{array}{llllllll}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right) \bullet\left(\begin{array}{cccc}
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 \\
0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & -1 & -1 \\
0 & 0 & -1 & -1 \\
0 & 0 & 1 & 1
\end{array}\right) \\
& =\left(\begin{array}{cccc}
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 \\
0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & -1 & -1 \\
0 & 0 & 1 & 1
\end{array}\right) \equiv R_{8}^{\mathrm{t}}
\end{aligned}
$$

CNAM, Paris, 18 September 2007

$$
\begin{aligned}
Q_{9} \bullet R_{8}^{\mathrm{t}} & =\left(\begin{array}{llllllll}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right) \bullet\left(\begin{array}{cccc}
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 \\
0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & -1 & -1 \\
0 & 0 & 1 & 1
\end{array}\right) \\
& =\left(\begin{array}{llll}
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 \\
0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 1 & 1
\end{array}\right) \equiv R_{9}^{\mathrm{t}}
\end{aligned}
$$

CNAM, Paris, 18 September 2007

$$
\begin{aligned}
Q_{10} \bullet R_{9}^{\mathrm{t}} & =\left(\begin{array}{llllllll}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & -1 & 0 & 0 & 0 & 0 & 1
\end{array}\right) \bullet\left(\begin{array}{llll}
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 \\
0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 1 & 1
\end{array}\right) \\
& =\left(\begin{array}{llll}
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 \\
0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right) \equiv U
\end{aligned}
$$

CNAM, Paris, 18 September 2007

$$
\begin{gathered}
Q \equiv Q_{10} \bullet Q_{9} \bullet Q_{8} \bullet Q_{7} \bullet Q_{6} \bullet Q_{5} \bullet Q_{4} \bullet Q_{3} \bullet Q_{2} \bullet Q_{1} \\
Q=\left(\begin{array}{cccccccc}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 & 1 & 0 & 0 & 0 \\
1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & -1 & -1 & 0 & 0 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 \\
-1 & -1 & -0 & 0 & -1 & 0 & 0 & 1
\end{array}\right) \\
G^{\mathrm{t}} R^{\mathrm{t}}=G^{\mathrm{t}} \bullet Q^{-1} \bullet U \equiv G_{1}^{\mathrm{t}} \bullet U \\
G_{1}^{\mathrm{t}}=\left(\begin{array}{cccccccc}
0 & 0 & 0 & 0 & 0 & -1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & -1 & -1 \\
0 & 0 & 0 & -1 & 1 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & -1 & 0 & 1 & 1
\end{array}\right)
\end{gathered}
$$

CNAM, Paris, 18 September 2007

$$
G_{1}^{\mathrm{t}}=\left(\begin{array}{cccccccc}
0 & 0 & 0 & 0 & 0 & -1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & -1 & -1 \\
0 & 0 & 0 & -1 & 1 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & -1 & 0 & 1 & 1
\end{array}\right)
$$

Find the other vectors in $\operatorname{ker} G_{1}^{\mathrm{t}}$ that are not among the three firsts:

$$
c_{1}=\left(\begin{array}{llllllll}
0 & 0 & 0 & 1 & 1 & 0 & 0 & 0
\end{array}\right)^{\mathrm{t}}
$$

and $c_{2}=\left(\begin{array}{llllllll}0 & 0 & 0 & 0 & 0 & 0 & 1 & -1\end{array}\right)^{\mathrm{t}}$, clear for this case...
Then $\nu_{j}=Q^{-1} c_{j}$ satisfy $\quad G^{\mathrm{t}} \bullet \nu_{j}=0$
and are not is the range of R^{t}.

$$
\begin{aligned}
& \nu_{1}=\left(\begin{array}{llllllll}
0 & 0 & -1 & 1 & 0 & 0 & 0 & 0
\end{array}\right)^{\mathrm{t}} \\
& \nu_{2}=\left(\begin{array}{llllllll}
0 & 0 & 0 & 0 & 0 & 0 & 1 & -1
\end{array}\right)^{\mathrm{t}}
\end{aligned}
$$

could be worse . . .

CNAM, Paris, 18 September 2007
$\Delta=Q \bullet R^{\mathrm{t}} \cdot P$
Q invertible over \mathbb{Z} and $\operatorname{det} Q=1$
Δ diagonal with integer coefficients
P invertible over \mathbb{Z} and $\operatorname{det} P=1$
Act on lines by left multiplication
and on columns by right multiplication.
For the previous example of "mini-torus":

$$
R^{\mathrm{t}}=\left(\begin{array}{cccc}
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 \\
0 & -1 & 0 & -1 \\
-1 & 0 & -1 & 0 \\
-1 & -1 & 0 & 0 \\
0 & 0 & -1 & -1 \\
1 & 1 & 0 & 0 \\
0 & 0 & 1 & 1
\end{array}\right)
$$

CNAM, Paris, 18 September 2007

$$
\begin{aligned}
Q_{1} \bullet R^{\mathrm{t}} & =\left(\begin{array}{cccccccc}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
-1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right) \cdot\left(\begin{array}{cccc}
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 \\
0 & -1 & 0 & -1 \\
-1 & 0 & -1 & 0 \\
-1 & -1 & 0 & 0 \\
0 & 0 & -1 & -1 \\
1 & 1 & 0 & 0 \\
0 & 0 & 1 & 1
\end{array}\right) \\
& =\left(\begin{array}{cccc}
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 \\
0 & -1 & 0 & -1 \\
0 & 0 & 0 & 0 \\
0 & -1 & 1 & 0 \\
0 & 0 & -1 & -1 \\
0 & 1 & -1 & 0 \\
0 & 0 & 1 & 1
\end{array}\right) \equiv R_{1}^{\mathrm{t}}
\end{aligned}
$$

CNAM, Paris, 18 SEptember 2007

$$
\begin{aligned}
R_{1}^{\mathrm{t}} \bullet P_{1} & =\left(\begin{array}{cccc}
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 \\
0 & -1 & 0 & -1 \\
0 & 0 & 0 & 0 \\
0 & -1 & 1 & 0 \\
0 & 0 & -1 & -1 \\
0 & 1 & -1 & 0 \\
0 & 0 & 1 & 1
\end{array}\right) \bullet\left(\begin{array}{cccc}
1 & 0 & -1 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right) \\
& =\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 1 \\
0 & -1 & 0 & -1 \\
0 & 0 & 0 & 0 \\
0 & -1 & 1 & 0 \\
0 & 0 & -1 & -1 \\
0 & 1 & -1 & 0 \\
0 & 0 & 1 & 1
\end{array}\right) \equiv R_{2}^{\mathrm{t}}
\end{aligned}
$$

CNAM, Paris, 18 September 2007

$$
\begin{aligned}
Q_{2} \bullet R_{2}^{\mathrm{t}} & =\left(\begin{array}{cccccccc}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & -1 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right) \bullet\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 1 \\
0 & -1 & 0 & -1 \\
0 & 0 & 0 & 0 \\
0 & -1 & 1 & 0 \\
0 & 0 & -1 & -1 \\
0 & 1 & -1 & 0 \\
0 & 0 & 1 & 1
\end{array}\right) \\
& =\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 \\
0 & 0 & -1 & -1 \\
0 & 0 & -1 & -1 \\
0 & 0 & 1 & 1
\end{array}\right) \equiv R_{3}^{\mathrm{t}}
\end{aligned}
$$

CNAM, Paris, 18 September 2007

$$
\begin{aligned}
R_{3}^{\mathrm{t}} \bullet P_{2} & =\left(\begin{array}{lllc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 \\
0 & 0 & -1 & -1 \\
0 & 0 & -1 & -1 \\
0 & 0 & 1 & 1
\end{array}\right) \cdot\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & -1 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right) \\
& =\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 \\
0 & 0 & -1 & -1 \\
0 & 0 & -1 & -1 \\
0 & 0 & 1 & 1
\end{array}\right) \equiv R_{4}^{\mathrm{t}}
\end{aligned}
$$

CNAM, Paris, 18 September 2007

$$
\begin{aligned}
Q_{3} \bullet R_{4}^{\mathrm{t}} & =\left(\begin{array}{cccccccc}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & -1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & -1 & 0 & 0 & 1
\end{array}\right) \bullet\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 \\
0 & 0 & -1 & -1 \\
0 & 0 & -1 & -1 \\
0 & 0 & 1 & 1
\end{array}\right) \\
& =\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right) \equiv R_{5}^{\mathrm{t}}
\end{aligned}
$$

CNAM, Paris, 18 September 2007

$$
\begin{aligned}
R_{5}^{\mathrm{t}} \bullet P_{3} & =\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right) \cdot\left(\begin{array}{llcc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & -1 \\
0 & 0 & 0 & 1
\end{array}\right) \\
& =\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right) \equiv \Delta
\end{aligned}
$$

CNAM, Paris, 18 September 2007

$$
\begin{aligned}
&\left(\begin{array}{cccccccc}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 & 1 & 0 & 0 & 0 \\
1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & -1 & -1 & 0 & 0 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 \\
-1 & -1 & 0 & 0 & -1 & 0 & 0 & 1
\end{array}\right) \cdot\left(\begin{array}{cccc}
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 \\
0 & -1 & 0 & -1 \\
-1 & 0 & -1 & 0 \\
-1 & -1 & 0 & 0 \\
0 & 0 & -1 & -1 \\
1 & 1 & 0 & 0 \\
0 & 0 & 1 & 1
\end{array}\right) \cdot\left(\begin{array}{cccc}
1 & 0 & -1 & 1 \\
0 & 1 & 0 & -1 \\
0 & 0 & 1 & -1 \\
0 & 0 & 0 & 1
\end{array}\right) \\
& \equiv Q \bullet R^{\mathrm{t}} \bullet P=\Delta=\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)
\end{aligned}
$$

CNAM, Paris, 18 September 2007

Then $G^{\mathrm{t}} \bullet R^{\mathrm{t}}=G^{\mathrm{t}} \bullet Q^{-1} \bullet \Delta \bullet P^{-1}$
$G^{\mathrm{t}} \bullet Q^{-1} \equiv G_{1}^{\mathrm{t}}=\left(\begin{array}{cccccccc}0 & 0 & 0 & 0 & 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & -1 & -1 \\ 0 & 0 & 0 & -1 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & -1 & 0 & 1 & 1\end{array}\right)$
Make a "Smith ascent" instead of a (classical!) "Smith descent" in order to put the diagonal bloc at bottom right

$$
\left(\begin{array}{cccccccc}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & -1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 & -1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & -1 & 0 & 1
\end{array}\right) \equiv S \bullet G_{1}^{\mathrm{t}} \bullet T=V
$$

CNAM, Paris, 18 September 2007

$$
V=\left(\begin{array}{llllllll}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right)
$$

The columns with label 4 and 5
correspond to a basis of the space $H_{1}(\mathcal{T})$ we have $G^{\mathrm{t}} \bullet R^{\mathrm{t}}=S^{-1} \bullet V \bullet T^{-1} \bullet \Delta \bullet P^{-1}$, then

$$
\begin{aligned}
& \nu_{1}=Q^{-1} \bullet T \bullet e_{4} \\
& =\left(\begin{array}{llllllll}
0 & 0 & -1 & 1 & 0 & 0 & 0 & 0
\end{array}\right)^{\mathrm{t}} \\
& \nu_{2}=Q^{-1} \bullet T \bullet e_{5} \\
& =\left(\begin{array}{llllllll}
0 & 0 & 0 & 0 & 0 & 0 & -1 & 1
\end{array}\right)^{\mathrm{t}}
\end{aligned}
$$

much easier to determine!

CNAM, Paris, 18 September 2007

Importance of the notion of simplicial complex to understand what is inside the notion of "mesh" from a topological view point.

Fundamental link between topological objects vertices \mathcal{T}^{0}, edges \mathcal{T}^{1}, faces \mathcal{T}^{2}, tetrahedra \mathcal{T}^{3} including the associated incidence matrices and the discretization of vector and scalar fields
" $Q R$ " type factorization of integer matrices
to compute the first homology group of a simplicial mesh \mathcal{T}
Other approaches for big matrices: see J.G. Dumas (Grenoble).
Question: why when computing the Smith decomposition
of an incidence matrix, all terms in the diagonal are equal to 1 or 0 ?
Due to orientation of the mesh ?

