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What are coating flows?
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Wetting UNIVERSITY OF LEEDS

" Can categorize as either natural wetting or forced wetting

—Droplet spreading — natural wetting

—Coating flows - forced wetting

" Central to wetting is the problem of the moving contact-line

three-phase gas In first part of talk
contact line gas will be neglected

liquid — modelling only
\ includes liquid

solid IETSI



Problems with continuum modelling  uNIVERSITY OF LEEDS

" Presence of a finite contact angle
causes problems

" Boundary conditions on liquid-gas
and solid-liquid interfaces are In
conflict at the contact line

" Contact line Is stationary, but
boundary is moving

= Shear stress is infinite

" Usually have to prescribe contact
angle and slip (relieve stress)
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Problems With S|Ip Models UNIVERSITY OF LEEDS
(J (J
gas gas
liquid liquid
. —_— . —p
solid solid
" ‘Rolling” motion " ‘Sliding’” motion
observed in experiments produced by most slip
= Particle on liquid-gas models
Interface passes through *® Particle on liquid-gas
contact line and onto interface never
solid-liquid interface reaches contact ImE,TSI

because Uu-0
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= Coating flows driven at high speed often have large 6,

= Slip region produces obstacle-type flow
" Pressure is singular 1E'TSI



‘Interface Formation Model’ of

Shikhmurzaev UNIVERSITY OF LEEDS

= Based on idea of relaxation of surface tension

—Interfacial tension changes smoothly from L-G to L-S

—Near contact line interfacial tensions deviate from equilibrium
values

—Force balance at contact line gives contact angle as function of flow

" The usual kinematic and impermeability conditions are
replaced with equations describing fluxes between the bulk
and the interfaces

" The stress conditions are modified to account for variable
Interfacial tensions

" Liquid velocity at the contact line is not zero — it is
determined as part of the solution. Rolling motion preserved.

" Dynamic contact angle is obtained from solution IETSI



‘Interface Formation Model’ of

Shikhmurzaev UNIVERSITY OF LEEDS

" Model has been used successfully for Stokes flows
—Lukyanov & Shikhmurzaev (2007) Phys. Rev. E 75, 051604

—considered a microfluidic curtain coater

—observed variation of 6, with a number of flow parameters

—used a combined finite element-boundary integral element method

" Navier-Stokes finite element

solutions for the full-scale E— e
. —D — g —b
curtain coater are now e =
: > = .
possible. —— e S -
: : TS —————=2 =
" But, air-entrainment L= = T, — P
predictions are not possible. \ﬂ:: e
M e




Diffuse interface models UNIVERSITY OF LEEDS

" Supported by molecular dynamics simulations, a diffuse
interface for the liquid-gas, solid-liquid and solid-gas is
more amenable to varying interfacial density.

" Diffuse Interfaces can rupture and so could help to predict
the important aspect of wetting failure, i.e. air-entrainment.

" Several multiphase lattice Boltzmann (LB) approaches exist.

" Wetting line tests for an LB method are:
— 1. Forced wetting with failure
— 2. Wetting line hysteresis

— 3. Natural wetting (spreading/sticking) [agreement with experiments]



Multiphase Model UNIVERSITY OF LEEDS

Based on work of He, Chen & Zhang (1999)

Use mean-field approximation for intermolecular attractions,
and include an exclusion volume effect to...

Rework force term in Boltzmann equation into a surface
tension force

Use non-ideal equation of state to achieve phase
separation

Introduce an index function, ¢ to track the interface
between two phases 0 Hliquid

Results in a diffuse interface model

* Index function, and fluid density, changes gas
smoothly but rapidly between phases




Finite-density Multiphase Lattice

Boltzmann Equations UNIVERSITY OF LEEDS

" Following He, Chen and Zhang, two LB equations with
forcing are derived for f. and g,, the moments of which

give the macroscopic properties; mass and momentum
densities, and pressure respectively as

= Z f l.(xa, t) (@ tracks densityzindex function)
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Finite-density Multiphase Lattice

Boltzmann Equations UNIVERSITY OF LEEDS

" Model is for a liquid and its gas. Values of the index
function for liquid, @,, and gas, @ are obtained from the

EoS and Maxwell's equal area construct.

" The liguid and gas values of ¢ can be used to account for
the different fluid properties between the phases, that is

plo|=ps+ f;ﬁi(m—pg)

" The same is true for the viscosity, p.

" Can be applied with MRT (see Premnath and Abraham
(2007))



Wetting UNIVERSITY OF LEEDS

Use the approach of Iwahara et al. (2003)
Define a surface affinity — a normalised surface density

aszu, where {@=(¢,+@.)/2(
¢L_ ¢
A planar interface has the profile (Rowlinson & Widom 1982)

#(2)=0—>(6,~9)tanh| —

0
o)
The liquid-gas surface tension is therefore

7¢)2dzzz<¢L_¢G)2 fl_l(l—az)da

GLG:Kfio 3 s

.K<¢L_¢G)2
‘3 ET5]
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Wetting UNIVERSITY OF LEEDS

Similar expressions for the solid-liguid and solid-vapour
surface tensions substituted into Young’s equation give

cosf=ay(3—a3)l?2

Static contact angle can be specified via the surface affinity

Index-function density at boundary given by

o=+ (¢, —Plas, {(P=—(P,+¢;), —l=ag=1i



Test Problem 1

(Forced wetting to failure) UNIVERSITY OF LEEDS

S " Two-phase cavity
D " Solid walls
D
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Test Problem 1 O
(Forced wetting to failure) UNIVERSITY OF LEEDS

Static Case — Interface Shape

Where is the contact ‘line’?
Which is ‘the’ contact angle?




Test Problem 1
(Forced wetting to failure)

Static Case — Contact Angle
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UNIVERSITY OF LEEDS

Angle of interface

matches imposed angle
at roughly 7 lattice units
away from the boundary

Just outside the diffuse
three-phase contact
region

Use this as the point to
measure variation in
contact angle



Test Problem 1
(Forced wetting to failure) UNIVERSITY OF LEEDS
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distance from solid wall - IETSI



Test Problem 1 O
(Forced wetting to failure) UNIVERSITY OF LEEDS

Dynamic Case — Contact Angle

u=1.5x10"°  u=2x10"




Test Problem 1

(Forced wetting to failure) UNIVERSITY OF LEEDS

Contact Angle Versus Speed
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Test Problem 1

(Forced wetting to failure) UNIVERSITY OF LEEDS

Dynamic Case — Young Equation

0.8

0.6

0.4

0.2

0 10 20 30 :
_ distance from solid wall ! ETSI



Test Problem 1

(Forced wetting to failure)

Dynamic Case — Surface Tension
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Test Problem 1

(Forced wetting to failure) UNIVERSITY OF LEEDS

Dynamic Case — Surface Energy
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Test Problem 1

(Forced wetting to failure)

Dynamic Case — Surface Energy
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Test Problem 1

(Forced wetting to failure)
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Test Problem 2
(Wetting line hysteresis) UNIVERSITY OF LEEDS

uniform wettability sinusoidally varying wettability

contact angle
hysteresis




cantact angle

Test Problem 2

(Wetting line hysteresis)

UNIVERSITY OF LEEDS
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Test Problem 3

(Natural wetting spreading/sticking)  UNIVERsITY OF LEEDS

" Flow of a droplet down
an incline with a
sinusoidally varying
wettability of
wavelength A

" Varying A for fixed
Interface thickness

" Droplet is pinned for
certain values

Davies, Summers & Wilson (2006)
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A Tale of Two Length Scales UNIVERSITY OF LEEDS

= What is the effect of interface thickness for Periodic

wetting of non-uniform surfaces?

— interface thickness versus characteristic size of
non-uniformity

" Interface thickness is always ~4 or 5 lattice Body
units...can scale up problem force
" Use two lattices — one twice the size of the
other (i.e. twice as dense)
— need to adjust relaxation time and surface
tension parameter to match physical scales on
each lattice a=a.(y)

" Use sinusoidal/alternating surface affinity periodic zETSI



Motion of slug centre
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Motion of slug centre

uniform
alternating patches

sinusoidal
uniform
alternating patches

sinusoidal
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Current Limitations / Challenges UNIVERSITY OF LEEDS

" Density ratio limited

— several models now available addressing this issue, though wetting
Is still an issue for many

" |ssues with the surface tension and surface energies.

— Calculations of surface tension/energy via the thermodynamic
(Cahn) approach is for static conditions, can we define a
“mechanical” approach for the dynamic situation.

" Wetting models for moving rough boundaries needed

— interface thickness a key factor



Conclusions UNIVERSITY OF LEEDS

" Able to capture gualitatively many wetting phenomena
(static contact angle, forced wetting to failure, contact line
hysteresis and natural wetting to the point of sticking on a
non-uniform surface)

" Simple model and algorithm — only one wetting parameter

" Care needed in understanding effect of interface thickness
(as this will dictate the length scale?)

" Work needed to make quantitatively accurate (is the
thermodynamic description of surface energy sufficient?)



