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Introduction

The purpose of this test-case is to check the ability of an Euler solver to compute a slow
pressurization of a closed cavity filled with a non-reactive gas.

1 The dimensional problem

We consider the 2D rectangular cavity of figure 1 (H = L = 10 m). We suppose that it is initially
filled with a calorically perfect gas such as air (y = 1.4, R = 288 J/kg/K) at rest and in uniform
conditions, with initial temperature 77 = 300 K and initial pressure P; = 1 bar = 10° Pa. We
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Figure 1: Rectangular cavity initially filled with air at rest. On the bottom part we have hot
air injection.

inject the same gas from the bottom part of the cavity. The cavity wall is supposed to be
impermeable and adiabatic. The injected flow temperature is Ty = 600 K; the mass flux mpy
is constant along the injection surface (I = 2 m). Numerical experiments are performed by
considering two values of the mass flow rate . We consider iy = 1.0 kg/m?/s. The flow is
subsonic and in low Mach number regime. Indeed, the order of magnitude of the flow velocity
in the vessel is the same as in the injection region:
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Since the injection pressure is larger than Pj, it is

and it is about 1.7 m/s; the sound speed is initially about v/yRT; = 350 m/s in the containment
and 500 m/s at the injection, i.e. much bigger that the flow speed.
We compute the solution at t = 6, 12, 18 s.

2 Non-dimensional problem

For the sake of simplicity, let us consider the 1D Euler equations (non-dimensional 2D or 3D
Euler equations can be obtained in the same way).
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subjected to the Equations of State (EOS)
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We consider as independent reference values z*, p*, P* and we define
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If we define the generic non-dimensional variable ¢’ = ¢/¢*, then we can rewrite the 1D Euler
equations in their non-dimensional form
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We chose as reference values

z¥=1l=2m

P; 10° kg kg

* = = —_— ) 1.157—
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It follows that the reference velocity, internal energy, temperature and time are given by
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We can now compute the non-dimensional inputs of our problem:

'=1,H=1L'=5

Pl=1T =1

T =2

miy = 2,046 1077
p*w*

We compute the solution at ¢ = 881.7, 1763., 2645..
Before concluding, we emphasize that

e m'y << 1 is linked to the fact there is a big difference between the speed of sound
and the injection velocity. Moreover we have a characteristic time which is linked to the
propagation of the acoustic waves (i.e. t*) and a characteristic time which is linked to the
injection of the mass into the cavity (much bigger than the “acoustic” one). Then we
compute the solution at ¢’ >> 1.

e In the imput of this problem the temperature appears. The temperature is not an usual
unknown of the Euler Equations. However the problem can be easily reformulated by
replacing the temperature by the internal energy, since they are linked by the relationship
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3 Conservation properties

The conservation laws allow us to compute the average density and average pressure variations
as function of time. Indeed the total mass variation in the containment is given by
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As far as the total energy is concerned, at low Mach number regime we have
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and the total energy flux is given by
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Then, the average pressure is about
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