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Abstract. We survey a number of related advances that have taken place
over the last decade in the field of singularities, normal forms, ODEs, etc,
as well as the analytic tools for tackling these problems, namely : resumma-
tion, resurgence, transseries, analysable functions. One such advance – the
notion of well-behaved convolution average – has led to a simplification of
the celebrated finiteness theorem for limit-cycles. Another one has clarified
the (continuous) prenormalisation and (discontinuous) normalisation of lo-
cal objects. Yet another – the notion of twisted resurgence monomials – has
yielded a truly general method for canonical-explicit object synthesis (ie con-
structing local objects with prescribed analytic invariants). A fourth advance
has shed new light on the classical KAM theorem about the survival of invari-
ant tori. Lastly, a fifth development, which is arguably the most promising
of all – the introduction of the new Lie algebra ARI – has led to a far-going
elucidation of the arithmetics of MZV or “multiple zeta values”. – Part of
the results surveyed in this paper are joint work with F. Menous or B. Vallet,
and mention is made of independent contributions by J. van der Hoeven.
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GENERAL CHAPTER-BY-CHAPTER OVERVIEW.

1. The Finiteness Theorem for limit-cycles and its resummation-
theoretic proof twelve years on : review; simplification; aftermath.
The proof in question, which relied on a constructive correspondence between
a formal object (the transseries F̃ ) and its geometric counterpart (the return
map F ), has been significantly simplified, owing to the discovery of special
convolution-respecting averages (in joint work with F.Menous). At the same
time, the general theory of Transseries and Analysable Functions has grown
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and matured considerably, thanks mainly to the work of an Orsay-based
mathematician, J. van der Hoeven. We shall attempt to cover some of the
most exciting novelties in this fast-developing field.

2. Normal and Prenormal Forms.
After reviewing the main classical results about normal forms, we shall in-
troduce an altogether new type of prenormalisation (developed jointly with
B.Vallet) and explain what it is good for.

3. Canonical Object Synthesis.
We shall construct a new class of special functions that make possible a uni-
fied treatment of the reverse classification problem : finding ‘canonical’ local
objects (differential systems, vector fields, diffeomorphisms, etc) with pre-
scribed invariants (formal or holomorphic); studying their iso-monodromic,
or iso-Stokes, iso-Galois, etc, deformations.

4. An unexpected development in KAM theory: the non-existence
of Super-multiple Small Denominators.
Supermultiple Small Denominators or SSD for short (ie diophantine small
denominators with an abnormally high multiplicity) were thought to be a
central difficulty in KAM theory, and elaborate strategies had been evolved
to account for their somewhat mysterious ‘mutual compensation’. But in
1994 it was discovered (jointly with B.Vallet) that, contrary to appearances,
these much-dreaded SSD simply do not exist – they are a mirage conjured
up by awkwardly conducted calculations. This startling claim, which at first
was met with considerable skepticism, has now been fully vindicated. We
shall explain the why and wherefore of this ‘non-existence’, and show what
simplifications it brings to KAM theory, Floquet theory, etc.

5. A Tale of Three Structures.
We shall try to present the outlines of an overarching structure which unifies
three separate theories that prima facie would seem to be worlds apart :
(i) the Lie algebra ARI (which includes as sub-cases the Ihara braid algebra
and the so-called renormalisation algebra)
(ii) the analysis of ‘parametric divergence’ (an important type of divergence
frequently encountered in physics)
(iii) the arithmetics of the Multiple Zeta Values or MZV : these constants
tend to pop up everywhere (in Holomorphic Dynamics, Number Theory,
Feynman Diagrams, Galois Theory, Knot Theory. . . ) and have remained a
focus of intense activity for more than a decade, but the main MZV-related
conjectures stubbornly defied proving – that is, until the recent introduction
of ARI.
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1 Lesson One: The finiteness theorem for limit-

cycles and its resummation-theoretic proof

twelve years on : review; simplification; af-

termath.

1.1 Overall scheme.

The finiteness theorem for limit cycles of analytic planar vector fields

X = P (x, y) ∂x +Q(x, y) ∂y (x, y ∈ R) (1)

states that on compact subsets of the plane any such field has at most a fi-
nite number of limit-cycles, ie isolated periodic trajectories. In particular, a
polynomial vector field has at most a finite number N(X) of limit-cycles in
the whole plane.

By itself, the theorem doesn’t solve Hilbert’s celebrated 16th problem : it
doesn’t tell us what this number N(X) is. It doesn’t even settle the issue of
whether this number is bounded for polynomials of a given degree d. At the
moment, the question is still pending – even for degree 2 – although in that
case a (positive) answer appears to be close at hand.

Way back in the 1920s, Dulac gave a proof of the finiteness theorem, which
alas was flawed and yet went unchallenged for more than fifty years. Even-
tually, two modern proofs appeared at the close of 1980s – one [Il1],[Il2] due
to Yu. S. Ilyashenko, geometric in spirit and non-constructive in nature; and
another one [E6],[E7] by myself. That latter proof relied on recent advances
in resummation theory and fitted into a general program of “constructive
formalisation” of local geometry, which stands on its own (it predated the
current infatuation with polycycles and will hopefully outlive it).

1.2 Polycycles; local transit maps; global return map.

Let C be a simple, closed curve on a real-analytic surface S. Let X be a
real-analytic vector field, defined on a neighbourhood of C and such that
C be a finite union of closed trajectories of X, with summits S1, S2, . . . , Sr
corresponding to singular points of X, and r analytic arcs Ci linking Si−1

to Si. On each Ci we fix an interior point Pi and draw an analytic curve
Γi crossing Ci at Pi at a right angle. We equip Γi with an analytic ab-
scissa xi that vanishes at Pi and assumes positive values on the inside of
the polycycle. Every interior orbit of X close to C intersects Γi at a point
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of abscissa xi = 1/zi (xi ∼ 0, zi ∼ +∞) and Γi+1 at a point of abscissa
xi+1 = 1/zi+1 (xi+1 ∼ 0, zi+1 ∼ +∞). By setting zi+1 = Gi(zi) we define
a self-mapping of [. . . ,+∞]. The successive Gi will be referred to as tran-
sit maps and their composition product F := Gr◦· · ·◦G2◦G1 as return map .

To sum up :

i-th transit map : Gi : zi = 1/xi 7→ zi+1 = 1/xi+1 (2)

(first) return map : F : z1 = 1/x1 7→ zr+1 = 1/xr+1 (3)

F = Gr ◦ . . . G2 ◦G1 (4)

By a classical result on the reduction of planar singularities by means
of successive blow-ups (see [Sei]) it suffices to consider the case when each
summit Si is either of hyperbolic type (X has there two non-zero eigenvalues)
or semi-hyperbolic type (X has there one zero and one non-zero eigenvalue).

Actually, from the point of view of formalisation, three types of summits
have to be distinguished :

Type I : (λ′, λ′′) with λ := −λ′/λ′′ ∈ R+ −Q+ (5)

Type II : (λ′, λ′′) with λ := −λ′/λ′′ ∈ Q+ (6)

Type III : (λ′, 0) or (0, λ′′) with λ′, λ′′ ∈ R+ (7)

For summits of type I or II (resp III) the transit maps G have formal
counterparts G̃ which are either power series or elementary transseries (made
up of two elementary series H̃ and K̃ at most) and of the form :

Type I : G̃(z) = c zλ {1 +
∑

σ∈N+λN

cσ z
−σ}

= K̃ ◦ Pλ ◦ H̃ (8)

Type II : G̃(z) = c zλ{1 +
∑

m/σ≤const

cσ,m z−σ(log z)m} (9)

Type III+ : G̃(z) = eλz.{c0 +
∑

m≥0,n≥0

cm,n e
−λmzz−n}

= K̃ ◦ exp ◦H̃ (10)

Type III− : G̃(z) = (log z) . {c0 +
∑

m≥0,n≥0

cm,n z
−m(log z)−n}

= H̃ ◦ log ◦K̃ (11)
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Only for summits of type I with a diophantine eigenvalue ratio λ are the
formal transit maps G̃ guaranteed to be convergent. In all other cases they are
generically divergent, but with a quite specific type of divergence : seriable
for type I with Liouvillian λ and resurgent for types II and III. But they
are always resummable under the standard Borel-Laplace procedure relative
to a single “critical time class” {z?}1:

Type I and II : critical time class {z?} = {log z}
Type III+ : critical time class {z?} = {zp}
Type III− : critical time class {z?} = {log z}

1.3 The philosophy of ”complete formalisation”.

The methodological ideal – not only in this, but in a host of other problems –
is to replace a local geometric object F (say, a function germ) by a formal one
F̃ (say, a series or transseries – the tilda signals formalness) without any loss
of information (F should be constructively recoverable from its idealisation
F̃ ) and in such a way that all manipulations performed on F (differentia-
tion, integration, composition, etc) should translate into purely formal – and
therefore “mechanical”, entirely perspicuous, and far simpler – operations on
F̃ . Graphically :

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Formal objects biconstructive passage Functions germs

F̃ ←→ F

{+,×, ∂, ◦,≺} ←→ {+,×, ∂, ◦,≺}
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1defined up to ordinary equivalence ∼
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Here is a table that suggests the four levels of increasing difficulty that can
be encountered in this process of biconstructive formalisation :

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
convergent straightforward Weierstrass element defined in
power series summation a full neighbourhood of ∞

F̃ (z) =
∑
anz

−n 7−→ F (z)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
divergent, monocritical Borel -Laplace analytic germ defined in

power series summation a sectorial neighbourhood of +∞

F̃ (z) =
∑
anz

−n 7−→ F (z) asymptotic to F̃ (z)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
divergent, polycritical accelero - analytic germ defined in

power series summation a sectorial neighbourhood of +∞

F̃ (z) =
∑
anz

−n 7−→ F (z) asymptotic to F̃ (z)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
divergent, polycritical accelero - analysable germ defined in

transseries synthesis a tapering neighbourhood of +∞

F̃ (z) =
∑
aσAσ(z) 7−→ F (z) transasymptotic to F̃ (z)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1.4 Transseries and analysable germs: some heuris-
tics.

On the formal side, since we demand complete closure under the direct
and reverse operations +,×, ◦, ∂z, we should be prepared to tackle not only
creatures like :

z
inversion−→ z−1 integration−→ log z

iteration−→ logn z := log◦n(z)

↑ inte
gration.

↓ recipro
cation.

↓ recipro
cation.

1 exp z
iteration−→ expn z := exp◦n(z)

but also hugely generalised “series” assembled from such elements. In other
words, we should expect having to deal with “transseries” consisting of well-
ordered sums of “transmonomials”, with a natural transfinite indexation on
Cantor’s interval [0, ωω[. But let’s be a wee bit more specific.
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(i)“well-orderedness” means that any two transmonomials should be com-
parable (as large or small infinitesimals) and that each subtransseries H̃
obtained by truncating a given transseries F̃ should start with a “first” or
“dominant” transmonomial Ã0. This in turn is indispensible to ensure mul-
tiplicative invertibility:

H̃ = a0 Ã0 + K̃ → H̃−1 =
∑
n≥1

(−1)n−1

an0

K̃n−1

Ã0
n (a0 ∈ R?)

(ii) transseries will consist of an asymptotic part, with indexation on [0, ω[,
that can be derived elementarily from the corresponding germ , and a trans-
asymptotic part, with indexation on [ω, ωω[, whose geometric interpretation
is going be more elusive, presupposing as it does a prior resummation of the
asymptotic part.

(iii) the transmonomials themselves are “atomic” in the sense that they can-
not be split into sums of simpler objects, but that does not prevent them
from possessing a highly intricate arborescent substructure nor from often
carrying a (countable) infinity of coefficients.

On the analysis side, we should be prepared to encounter omnipresent di-
vergence, of a severe but resummable sort. Why so ? Neither multiplication,
nor composition, nor inversion, nor reciprocation, nor differentiation can of
themselves cause divergence, though they may aggravate it. The primary
source of divergence is integration, and of course the solving of functional
equations (ODEs, PDEs, difference equations, etc). Indeed, even quite sim-
ple transmonomials have divergent indefinite integral. For instance :∫

ezzσdz → ez
∑
m≥0

am z
1+σ−m (σ ∈ R

.
− N)

This actually holds true for most other transmonomials, including elementary
ones2 like:

eP (z) zα , zα (log z)β , eP (z) zα
i=r∏
i=1

(logi z)βi , etc

In fact the only exceptions are zσ , ea z zn , (log z)n (n ∈ N).

2elementary in the sense of carrying only a finite number of parameters or “internal
coefficients”
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Thus, integration will produce divergence at every step, while the other
operations, which on their own cannot generate divergence, must be counted
upon to make it more severe when they encounter it in their way. Indeed, if
A,B,C be (large) transmonomials from different Archimedean scales3, their
indefinite integrals will generically exhibit monocritical divergence 4, but any
operation that superposes or intermingles them, like (

∫
A+

∫
B +

∫
C)n or

logn(
∫
A+

∫
B+

∫
C) , will produce polycritical transseries or, more baffling

still, polycritical transmonomials, like expn(
∫
A +

∫
B +

∫
C) for n large

enough.

1.5 The algebra R[[[z]]] of transseries.

We shall use the following suggestive notations :

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
infinitely large infinitely small unspecified

transmonomials u t ut

of exponential depth m mu mt mut

transseries uu tt utut

of exponential depth m muu mtt mutut
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

After naming our objects, let us proceed with their inductive definition.

Alogarithmic transmonomials and transseries of depth 0:
Alogarithmic transmonomials of exponentiality 0 are ordinary monomials and
alogarithmic transseries of exponentiality 0 are ordinary series

0 u (z) = zσ 0 t (z) = z−σ (σ > 0)
0uu(z) =

∑
cαz

σα 0tt(z) =
∑
cαz

−σα (σα > 0)

with the finite generation axiom :

0uu = finite sum ; 0tt in some R[[z−σ1 , . . . , z−σr ]]

and the natural order.

Alogarithmic transmonomials and transseries of depth m ≥ 1:
An alogarithmic transmonomial of exponentiality m is any expression :

m u (z) = zσ exp(uu(z)) or m t (z) = zσ exp(−uu(z))

3meaning that their logarithms are non-equivalent
4
∫
A,
∫
B,
∫
C are going to be resurgent and resummable, each with a single critical

time class (or more, if A,B,C already carry internal divergence).
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with σ ∈ R and a uu of the form :

uu = m−1uu+m−2 uu+ · · ·+1 uu+0 uu > 0 (formally)

The (total) order on such transmonomials is defined inductively by :

{ ut1 < ut2 } ⇔ { ut1/ut2 = t3 }

A homogeneous alogarithmic transseries mutut of exponentiality m is any ex-
pression of the form :

uu =
∑

cα
muα or tt =

∑
cα

mtα

with a possibly transfinite, order-reflecting indexation α, but with the finite
generation axiom :

muu/mu0 and mtt in some R[[t1, . . . ,tr]]

Lastly, a general alogarithmic transseries utut is any finite sum of homoge-
neous transseries.

Unique additive decomposition:
It is of the form :

utut = uu+ const+ tt
= muu+ · · ·+1 uu+0 uu+ const+0 tt+1 tt+ · · ·+n tt
=

∑
0≤α<ω0<ωω

cα utα

and can be obtained by repeated application of the “pull-down”:

exp(uu+ const+ tt) = econst.(expuu).(1 +
∑
n≥1

1

n!
ttn)

under which all infinitesimals are expelled or “pulled down” from the expo-
nentials, wherever (at whichever height) they may be found.

General transmonomials and transseries of depth m > −∞ :
They are obtained by postcomposing alogarithmic transmonomials or transsseries
by some finite iterate logn := log◦n of the logarithm. General transseries
clearly inherit the unique additive expansion of their alogarithmic models.

12



Example of general transseries:

utut =

(larger) +
∑

a. ee
e3 z

P
c

P
b e−d z zn .z−n

(large) +
∑

f . ee
z2

P
g e−mz z−n (log z)p .z−n

3

(small) +
∑

h. e−z
2

.emz.z−m

(smaller) +
∑

k. e−mz
3

.z−p.(log z)q

1.6 The algebra R{{{z}}} of analysable germs.

To define the notion of analysable germ, which is the geometric counterpart
of a (resummable) transseries, we require four main ingredients :
(1) the notion of resurgent function and alien derivation
(2) the so-called acceleration transforms, which in some sense generalise the
classical Laplace transform
(3) the notion of cohesive function and cohesive continuation, which consid-
erably extends that of analytic function and analytic continuation
(4) the notion of well-behaved average, which makes it possible to turn mul-
tiform functions on R+ into uniform ones, in a way that is both agreeable to
the convolution product and the acceleration transforms.

All these notions shall be briefly recalled in the next paras (and in some-
what greater detail in the Appendix §6), but in order to convince ourselves of
their necessity, and to show roughly where they fit into our scheme of things,
we shall venture right away a (very sketchy) definition of analysability.

A real function germ ϕ(z) at +∞ is said to be analysable if it can be
obtained from some transseries ϕ̃(z) under a process known as accelero-
summation, which involves a finite number of integral transforms (Borel,
then several accelerations, then Laplace) and a finite number of critical time
classes {zi} = {hi(z)}, with link-up functions hi(z) that are themselves re-
quired to be analysable, with their own finitely many secondary critical times
{zi,j} = {hi,j(z)}, and so on, leading to a finite critical tree {zi1,i2,...,ir}.

Moreover, we may and often do demand (though this is by no means
necessary) stability under alien differentiation: in other words, we may and

13



often do ask that all alien derivatives ∆∆{zis}ωs . . .∆∆
{zi2}
ω2 ∆∆

{zi1}
ω1 ϕ(z) be themselves

analysable.

Here is a pictorial representation of this process of accelero-summation,
relative to a sequence of r critical times :

z1 ≺ z2 ≺ z3 ≺ · · · ≺ zr−1 ≺ zr (zi ≡ hi(z) � 1)

Laplace

ϕ̃r(zr) zr • ←− • ζr
�
ϕr (ζr)

↓ ↑ acceleration

ϕ(z) z • • ζr−1

�
ϕr−1 (ζr−1)

↑ acceleration

. . . . . . . . .

↑ acceleration

ϕ̃(z) z • • ζ2

�
ϕ2 (ζ2)

↓ ↑ acceleration

ϕ̃1(z1) z1 • −→ • ζ1

�
ϕ1 (ζ1)

Borel

Each acceleration ϕ̂i(ζi) 7→ ϕ̂i+1(ζi+1) is actually three steps in one.

In step 1, the acceleration transform turns a uniform function ϕ̂i(ζi) defined
on the whole of R+ into a function germ ϕ̂i+1(ζi+1) defined at +0.

In step 2, the germ in question in extended, by analytic or cohesive continu-
ation, into a global but multiform function, defined over the whole of R+.

In step 3, under a suitable process of averaging, this multiform ϕ̂i+1(ζi+1) is
turned once again into a uniform function defined on the whole of R+ , thus
paving the way for the next three-stepped acceleration process.

Pictorially :

14



s s s s uniform ζi+1-axis

Step 3 ↑ uniformisation (under a well−behaved average)

ramified ζi+1-axiss ss ssss
rrrrrrrr

Step 2 ↑ continuation ( analytic or cohesive)

germ of ζi+1-axiss s
Step 1 ↑ acceleration

s s s s s uniform ζi-axis

1.7 Resurgent functions and alien derivations.

The algebra of real resurgent fonctions (this is the one that is relevant to the
construction of the trigebra of analysable germs) consists of all (analytic or
cohesive) function germs at +0 that possess an endless (analytic or cohesive,
but usually ramified) forward continuation over the whole of R+. They are
subject to the convolution product, and there acts upon them an incredibly
rich system of alien derivations.

More precisely, locally at 0, resurgent functions may be thought of as

microfunctions: they are pairs
�
ϕ (ζ) = { ϕ̌(ζ) , ϕ̂(ζ) } consisting of a major

ϕ̌ defined upto a regular germ, and of a minor ϕ̂, which is the “variation” of
the major : see §6.2. The minor is exactly defined , but does not encapsulate

the whole information about
�
ϕ, except in the important case of “integrable

resurgent functions”. For these the convolution product is defined by

(ϕ̂1 ? ϕ̂2)(ζ) :=

∫ ζ

0

ϕ̂1(ζ1) ϕ̂2(ζ − ζ1) dζ1 (12)

for ζ close to +0 and by analytic or cohesive continuation in the large. The

convolution for general germs
�
ϕ is defined in §6.2.

What really matters, however, is not the local or microfunction aspect,

but the global properties of resurgent functions
�
ϕ, which come from their hav-

ing endlessly continuable, but usually highly ramified minors ϕ̂. This a source
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of many fascinating developments, chief amongst which is the existence of
a system {∆ω , ω ∈ R+} of so-called alien derivations5, which measure the
singularities of the minor ϕ̂ over the points ω and which, together, freely
generate an infinite dimensional Lie algebra with a non-countable basis –
despite their acting on functions of one single variable !

1.8 Basic transforms : Borel, Laplace, Acceleration.

The Borel transform :
It turns germs with subexponential growth at ∞ in the z-plane into germs
at +0 in the ζ-plane :

ϕ(z) 7−→ ϕ̂(ζ) :=
1

2πi

∫ c+i∞

c−i∞
ϕ(z) ezζ dz (13)

The Laplace transform :
It reverses the Borel transform and turns uniform functions on R+ with (at
most) exponential growth into germs at ∞ in the z-plane or half-plane.

ϕ̂(ζ) 7−→ ϕ(z) :=

∫ +∞

+0

ϕ̂(ζ) e−zζ dζ (14)

The acceleration transform :
It turns global, uniform functions that are defined on a ζ1-axis and do not ex-
ceed a certain critical growth regime (the so-called accelerable growth, which
depends on the acceleration but is always strictly faster-than-exponential)
into germs that are defined at the origin of a ζ2-axis.

The acceleration of index F = F1,2 = o(z) transmutes under Borel-
Laplace the variable change ϕ1 7→ ϕ2 := ϕ1 ◦ F1,2 , with the “slower time”
expressed in terms of the “faster time” : z1 = F1,2(z2) and z1 ≺ z2

Borel

ϕ2(z2) 7−→ ϕ̂2(ζ2)

variable change ↑ ↑ acceleration

ϕ1(z1) 7−→ ϕ̂1(ζ1)

Borel

It is an integral transform similar in form to the Laplace transform :

ϕ̂1(ζ1) 7−→ ϕ̂2(ζ2) :=

∫ +∞

+0

CF (ζ2, ζ1) ϕ̂1(ζ1) dζ (15)

5because they are indeed derivations, relative to the convolution product.
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but with a kernel

CF (ζ2, ζ1) :=
1

2πi

∫ c+i∞

c−i∞
e z2ζ2−z1ζ1 dζ1 with z1 = F (z2) ≺ z2 (16)

that has always strictly faster-than-exponential decrease when ζ1 →∞ with
fixed ζ2 > 0. This explains why all acceleration operators have larger domains
of definition than the Laplace transform.

Moreover, for F fixed, the closer ζ2 is to 0, the faster that rate of ζ1-
decrease. This explains why accelerations usually yield only germs rather
than (directly) global functions.

Lastly, and somewhat paradoxically, when F gets closer and closer to
the identity (ie when the gap between the two times becomes less), the ker-
nel’s rate of decrease as ζ1 → +∞ becomes fiercer. When log z1 ≺ log z2, ie
when the two critical times are not too close, the corresponding acceleration
always yields analytic 6 germs ϕ̂2(ζ2), irrespective of the nature of the ac-
celerand ϕ̂1(ζ1). However, for very close, logarithmically equivalent times (ie
log z1 ∼ log z2), the domain of definition of the corresponding acceleleration
operator increases hugely, while the accelerates ϕ̂2(ζ2) usually cease to be
analytic and become merely cohesive – again, irrespective of the nature of
the accelerands ϕ̂1(ζ1).

Algebra morphisms :
– Borel turns multiplication into convolution.
– Accelerations respect convolution.
– Laplace turns convolution into multiplication.
Thus, each step of the accelero-summation process is an algebra morphism –
which is absolutely essential, because we want the process to apply not just
to linear, but also and above all to non-linear situations. In other words, if we
calculate (by purely formal manipulations – inductive coefficient identifica-
tion and the like) a formal transserial solution ϕ̃ to some non-linear problem
(say, a differential equation E), we don’t want to merely “resum” ϕ̃. We also
insist on getting a sum ϕ that actually verifies the original equation E. This
compels us to work with algebra morphisms only.

1.9 Cohesive functions and cohesive continuation.

Analytic functions on a closed real interval I are characterised by the exis-
tence of uniform bounds on their derivatives:

|f (n)(t)| ≤ c0 c
n
1 n

n (∀n ∈ N , ∀t ∈ I) (17)

6analytic, that is, right of 0, on some internal ]0, . . . ], but not necessarily at 0 itself.
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with constants c0, c1 which of course depend on f .

Similarly, the classical quasianalytic Denjoy classes αDEN of finite order
α ∈ N are characterised by the uniform bounds :

|f (n)(t)| ≤ c0 (c1/ log ′1+α(n))n ⇐⇒ (18)

|f (n)(t)| ≤ c0 (c1.n. log n log2 n . . . logα n)n (19)

But these classes are insufficient for our purposes. We also require “Denjoy
classes” of transfinite order α < ωω, defined by the same type of bounds :

|f (n)(t)| ≤ c0 (c1/ log ′1+α n)n (20)

but relatively to suitably defined transfinite iterates logα of the logarithm.

The importance of the algebra COHES of cohesive fonctions :

COHES =
⋃
α<ωω

αDEN = lim
α→ωω

αDEN (21)

comes :

(1) from the property of unique continuation, also known as quasianalyticity :
a cohesive function defined on an interval J vanishes on the whole of J as
soon as it vanishes on a given subinterval I ⊂ J (this is I-quasianalyticity)
or as soon as all its derivatives vanish at some point t ∈ J (this is D-
quasianalyticity).

(2) from its being vaster than the finite Denjoy classes: thus important func-
tions like ϕ(t) :=

∑
n≥1

1
expn(t)

are in ωDEN but in no finite nDEN .

(3) from its stability : whereas the union of all quasianalytic Carleman classes
is not quasianalytic, COHES is closed under +,×, ∂ etc

(4) from its close connection with the theory of acceleration: indeed, weak
accelerates7 are cohesive and, conversely, any cohesive function is a weak ac-
celerate.

To fully appreciate the significance of the last point, let us recall that the
whole process of recovering an analysable function ϕ from its transseries ϕ̃
resolves into a succession of accelerations, each one of which decomposes into

7ie weak means that log z1 ∼ log z2
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three substeps:

(1) the first substep turns a global, uniform function on R+ into a germ at
the origin.

(2) the providential fact that this germ is either analytic or cohesive makes
the second substep – unique forward continuation – possible and yields a
global, but usually multiform function8 over R+

(3) the last substep consists in averaging this multiform function to make it
uniform, so that it may be subjected to the next acceleration9. But serious
difficulties lie in wait here, which we must now address.

1.10 The problem of uniformisation.

1.10.1 The notion of “convolution-respecting average”.

ω1 ω2 ω3s s s uniform function (m.ϕ̂)(ζ)

↑ ↑ ↑

s ss ssss
−
+

−−
−+
+−
++

multiform function ϕ̂(ζ)

A uniformising average m : ϕ̂ 7→ m.ϕ̂ is defined by a system of weights

m
( ε1
ω1

,...,
,...,

εr
ωr

)
subject to the self-consistency relations :∑

εi ∈{+,−}

m
( ε1
ω1

,...,
,...,

εi
ωi

,...,
,...,

εr
ωr

)
= m

( ε1
ω1

,...,
,...,

εi+1
ωi+ωi+1

,...,
,...,

εr
ωr

) ∀i (22)

and its action is as follows :

(m.ϕ̂)(ζ) :=
∑
εi=±

m
( ε1
ω1

,...,
,...,

εr
ωr

)
ϕ̂

( ε1
ω1

,...,
,...,

εr
ωr

)
(ζ) (23)

with ϕ̂
( ε1
ω1

,...,
,...,

εr
ωr

)
denoting the determination of ϕ̂ on the branch of address

(ε1, . . . , εr) over the interval ζ ∈ ]ω1 + . . . ωr , ω1 + . . . ωr+1[ between two
consecutive singularities.

8Strange though it may seem, cohesive functions, despite their being defined only on
the real axis and nowhere else, may possess cohesive singularities and these may, in some
non-obvious but precise and constructive sense, be “by-passed”, either to the right or to
the left, just like analytic singularities, thus giving rise to two different determinations
beyond the singularity. See [E7],[E11].

9or to the Laplace transform, if we are at the very end of the resummation process.
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To be really useful in the present context of accelero-summation, a uni-
formising average must fulfill three main conditions :

(C1) It must respect convolution10 , ie m.(ϕ̂1 ? ϕ̂2) = (m.ϕ̂1) ? (m.ϕ̂2)

(C2) It must respect realness, ie m.ϕ̂(ζ), as a global function, must be real
whenever ϕ̂(ζ), as a germ at +0, is real.

(C3) It must respect lateral growth, that is to say, m.ϕ̂(ζ) must not grow
significantly faster than the two lateral determinations (right or left) of ϕ̂(ζ)
along the positive real axis.

Such averages will be declared “well-behaved”.

C1 is essential to get algebra morphisms.
C2 is natural and, in many instances, indispensible.
C3 ensures the convergence of the acceleration (or Laplace) integrals.

C2’s translation in terms of weights is straightforward : the weights should
change into their complex conjugates when all signs εi are changed (if real,
the weights should remain unchanged). As for C1 and C3 we shall see in
a moment what they imply in terms of weights. But right now we must
comment, however briefly, on this vexed issue of “lateral growth”.

1.10.2 Central difficulty : faster-than-lateral growth.

As pointed out, accelero-summation yields at every step i a function ϕ̂i(ζi)
which has precisely the right rate of growth, ie the one that makes the next
acceleration (or Laplace) possible. But this applies only to singularity-free
axes or, on singularity-carrying axes, to the two lateral determinations.11

Most other determinations of ϕ̂i(ζi), especially the ones that correspond to
oft-crossing paths, tend to display slightly faster-than-lateral growth.

For instance, if the lateral growth of ϕ̂(ζ) is exponential (this is the growth
that permits Laplace), the other determinations generally admit no better
uniform bounds than |ϕ̂(ζ)| ≤ γ0 eγ1|ζ|| log ζ| (so that they cannot be sub-
jected to Laplace). Therefore, unless we resort to carefully honed averages

10observe that we are dealing here with two slightly different interpretations of the
convolution product : in m.(ϕ̂1 ? ϕ̂2) we convolute two function germs near the origin,
then use analytic (or cohesive) forward continuation to get a global ramified function, and
lastly we uniformise it by means of m , whereas in (m.ϕ̂1) ? (m.ϕ̂2) we directly convolute
two global, uniform functions.

11and that too even if we take care of choosing in the critical time class {zi} a suitably
slow time zi , which precaution has the effect of smoothing the singularities of ϕ̂i(ζi).
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m, the averaged function m.ϕ̂(ζ) itself is going to display this slightly super-
exponential growth.

This nuisance of faster-than-lateral growth is extremely common, generic
almost. In the Dulac problem, it affects nearly all transit maps Gi attached
to summits of type III.

In order to show just how prevalent and inescapable the phenomenon of
faster-than-lateral growth is, let us adduce the simplest conceivable instance
of its occurence :

Ã(z) :=
∑
n≥1

n! z−n (24)

Â(ζ) :=
∑
n≥0

ζn = 1/(1− ζ) (25)

B̃(z) :=
∑
n≥1

An(z) = A(z)/(1− A(z)) (26)

B̂(ζ) :=
∑
n≥1

Â?n(ζ) (27)

The divergent series Ã(z) verifies the Euler equation (1 + ∂z)Ã(z) = z−1 and
its Borel transform Â(ζ), with its single pole at ζ = 1, is a most elementary
resurgent function. Yet a simple Möbius transform turns Ã(z) into a series
B̃(z), also solution of a first-order differential equation, but with a Borel
transform B̂(ζ) that has singularities at every point ζ = n ∈ N, with simple
poles as leading terms and logarithmic singularities as corrections :

B̂(ζ) = +R
ε1,...,εn−1,?
B .(ζ − n)−1 (simple pole)

+Reg
ε1,...,εn−1,?
1 (ζ − n). log(ζ − n) (logarithmic singularity)

+Reg
ε1,...,εn−1,?
0 (ζ − n) (regular part)

u ~ yy ttttA?
A−?

A+?

A−−?

A−+?

A+−?

A++?

This even provides us with a discretised model of the phenomenon of faster-
than-lateral growth. Indeed, the residues R

ε1,...,εn−1,?
B of address {εi} are cal-

culable by a simple induction (see [E12]) which readily shows that they verify
no better bounds than

|Rε1,...,εn−1,?
B | ≤ c0 c

n
1 n! (28)
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Therefore, although B̂ has exponential growth (at most) on each singularity-
free axis arg(ζ) = θ 6= 0, on paths that criss-cross with the axis arg(ζ) = 0
(especially for constantly alternating εi’s) it admits no better bounds than
|B̂(ζ)| ≤ γ0 e

γ1|ζ|| log ζ|.

1.10.3 Criteria for well-behaved convolution averages.

To any uniformising average m we may attach the moulds12 :

remω1,...,ωr := (−1)r m
( +
ω1

,...,
,...,

+
ωr

)
( “right-lateral mould” ) (29)

lemω1,...,ωr := (−1)r m
( −
ω1

,...,
,...,

−
ωr

)
( “left-lateral mould” ) (30)

Due to the self-consistency relations, both the right- and left-lateral moulds

encapsulate all the information about the entire weight system {m( ε1
ω1

,...,
,...,

εr
ωr

)},
and each one can be deduced from the other in a simple manner.

The three following conditions are equivalent:
(a) the uniformising average m respects convolution 13

(b) its right-lateral mould rem• is symmetrel 14

(c) its left-lateral mould lem• is symmetrel

The two following conditions are equivalent:
(a) the uniformising average m respects realness 15

(b) its moulds rem• and lem• are complex conjugate

The five following conditions are equivalent:
(d) the uniformising average m respects lateral growth 16

(e) we have universal bounds | remω≺≺ | ≤ C1 (D1)r(ω
≺≺ )

(f) we have universal bounds | remω�� | ≤ C2 (D2)r(ω
�� )

(g) we have universal bounds | lemω≺≺ | ≤ C3 (D3)r(ω
≺≺ )

(h) we have universal bounds | lemω�� | ≤ C4 (D4)r(ω
�� )

for some constants Ci, Di.

Here M•≺≺ (resp M•�� ) denotes the forward (resp backward) contracting
arborification of the mould M•, whose definition is as follows :

Mω≺≺ :=
∑

ω1>>ω≺≺

Mω1

; Mω�� :=
∑

ω2>>ω��

Mω2

(31)

12see §6.1
13this is condition C1
14see §6.1
15this is condition C2
16this is condition C3
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The symbol ω≺≺ (resp ω�� ) denotes any sequence {ωi} with an arborescent
(resp anti-arborescent) order on it, ie an order such that each element ωi
has at most one predecessor ωi− (resp one successor ωi+ ), whereas the sums
on the right-hand side extend to all totally ordered sequences ω1 (resp ω2)
that can be obtained from ω≺≺ (resp ω�� ) with the possible contraction
ωi, . . . , ωj 7→ ωi + · · · + ωj of several consecutive elements. For some details
see §6.1 and for more details go to [E5][E12][EV3].

1.10.4 Examples of well-behaved averages.

For any fixed τ ≥ 0, consider the multiplicative semigroup {τgω(•) , ω > 0}
and its Fourier transform, the convolution semigroup {τfω(•) , ω > 0} :

τgω(y) := exp(−ω |y|τ ) (y ∈ R) (32)

τfω(x) :=
1

2π

∫
R

τgω(y) eixy dy (x ∈ R) (33)

τgω1(y) τgω2(y) ≡ τgω1+ω2(y) (34)

(τfω1 ∗ τfω2)(x) :=

∫ +∞

−∞

τfω1(x1) τfω2(x− x1)dx1 ≡ τfω1+ω2(x) (35)

Each function τfω may be viewed as representing the probability distri-
bution at the time t = ω, on the vertical axis ω + iR, of a particle starting
from the origin of C at t = 0, moving along R+ at uniform horizontal speed,
and diffusing randomly in the vertical direction.

We may then define τm
( ε1
ω1

,...,
,...,

εr
ωr

)
as the probability of our particle’s suc-

cessively crossing ω1 + iRε1 , ω1 + ω2 + iRε2 , . . . , ω1 + ω2 + . . . ωr + iRεr .

-�
�@�

�Q�C
C
C
C�Q�

�
�
�@�T

T
Q�C

C
C
C�Q�

�SS�Q��
��
�
� Qt t

t
t

t t
t

-�
ω1

-�
ω2

-�
ω3

-�
ω4

-�
ω5

-�
ω6

0

ε1=+ ε2=− ε3=+ ε4=− ε5=− ε6=+

Since these numbers τm
( ε1
ω1

,...,
,...,

εr
ωr

)
verify the self-consistency relations (22),

they may be regarded as weights defining a uniformising average τm. That
average clearly respects realness (condition C2) but also, less obviously, con-
volution and lateral growth (condition C1 and C3). It is therefore well-
behaved. Moreover, since the two parameters τ and ω essentially coalesce
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into one 17, τm has the added distinction of being scale-invariant, ie invariant
under a simultaneous, uniform dilation of all gaps ωi.

1.10.5 Limit-cases: the “standard” and ‘organic” averages.

For τ → +∞ the average τm tends to the so-called standard (or median, or
uniform) average, with weights :

m
( ε1
ω1

,...,
,...,

εr
ωr

)
:=

(2p)! (2q)!

4p+q (p+ q)! p! q!

p := nb of +

q := nb of −
(36)

that do not depend on the gaps ωi but only on the number p, q of ± signs in
the sequence {εi}. It is actually the only convolution- and realness-respecting
average with that property, but its simplicity is deceptive, since it does not
respect lateral growth.

For τ → +0 the average τm tends to the so-called organic average, 18

whose weights are given by the following induction :

m
( ε1
ω1

,...,
,...,

εr
ωr

)
:= m

( ε1
ω1

,...,
,...,

εr−1
ωr−1

)
.
(

1− 1

2

ωr
ω1 + · · ·+ ωr

)
if εr−1 = εr (37)

m
( ε1
ω1

,...,
,...,

εr
ωr

)
:= m

( ε1
ω1

,...,
,...,

εr−1
ωr−1

)
.
1

2

ωr
ω1 + · · ·+ ωr

if εr−1 6= εr (38)

and which, unlike the standard average, is well-behaved. A closer investiga-
tion reveals that it is, in some precise sense, the simplest of all such averages.

1.11 Application to Dulac’s transit maps Gi.

Let us now return to Dulac’s problem and examine what simplifications the
recourse to well-behaved averages brings about. For all three types of summit
Si the formal maps G̃i may be divergent, but they are always resummable
under the general resummation scheme of §1.6, with at most one critical time
class for each summit 19. Summits of type I or II (hyperbolic) offer no spe-
cial difficulty, but those of type III (semi-hyperbolic) do, because for them
the formal map is not a bona fide asymptotic series (with only one order of
infinitesimals) but a strict transseries that mixes several orders of infinites-
imals – in the present instance only two, namely powers and exponentials,
or powers and logarithms. Indeed, depending on the transit direction (either

17indeed τfω(x) ≡ ω−1/τ τf1(x/ω1/τ )
18don’t ask why it is dubbed “organic”: it had to be given some name !
19so resummation here reduces to a simple Borel-Laplace shuttle.
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expanding or contracting) at a given type III summit, any formalisation G̃i

of Gi that encodes all the information needed to recover Gi , must necessarily
be of the form :

Type III+ (expanding) : G̃i := K̃i ◦ exp ◦ Ũ?
i

Type III− (contracting) : G̃i := ?Ũi ◦ log ◦ H̃i

with ordinary formal power series (of z−1) at both ends and an exponential
or logarithm as mid factor. In the standard transseries expansion we get :

G̃i(z) =
?∑

0≤α<ω

ci,α(z) Ai,α(z) +
??∑

ω≤α<ω2

ci,α(z) Ai,α(z) (39)

ie we have a combination of an asymptotic part
∑? with finite ordinals

α as indices, and a transfinite part
∑?? with transfinite indices α. As a

consequence, the very definition of the formal map G̃i becomes a non-trivial
affair, and involves three distinct steps, which we shall detail, for definiteness,
in the expanding case (Type III+) :

Step one : we calculate the formal map Ũ?
i as the asymptotic part of the

geometric map log ◦Gi. This formal map Ũ?
i turns out to be the normalising

map of an identity-tangent, unitary map20 Ui, which is none other than the
holonomy map of the field X at Si. Therefore the Borel transform of Ũ?

i is
convergent, with singularities over Z.

Step two : we resum Ũ?
i to a true map germ U?

i by Borel-Laplace, relative
to some convolution-preserving average m of our choosing, but sticking with
the same m for all summits.

Step three : we calculate K̃i as the asymptotic part of the germ Gi ◦ ?Ui ◦
log, where ?Ui is of course the germ reciprocal to U?

i .

1.12 Application to Dulac’s return map F .

If we now turn to the global Dulac problem, ie to the investigation of the
return map F and its formalisation F̃ :

F̃ := G̃r ◦ . . . G̃2 ◦ G̃1 (z) =
∑

0≤α<γ<ωω
cαAα(z) (40)

(cα scalar, Aα(z) transmonomial) we find that this latitude in the choice of
the convolution-respecting average m can lead to three different methods :

20ie a map of the form z 7→ Ui(z) = z(1 +
∑
ai,nz

−n) with Ūi ◦ Ui = id

25



crude ; smarter ; smartest.

First method (crude) : with the lateral average.
We may select the trivial right- or left-lateral average (either). Then of course
we have no problem preserving lateral growth, but we are saddled with sums
U?
i that carry imaginary parts. The other factor, namely K̃i , will be conver-

gent. Both K̃i and its trivial sum Ki will have their own imaginary parts,
which will cancel out the imaginary parts in U?

i , so that the composition
product Ki ◦ exp ◦U?

i will indeed yield the real germ Gi.
Still, the procedure introduces imaginary parts in the (strictly) trans-

asymptotic coefficients cα of the transseries F̃ and, even worse, inside some
of its transmonomials Ã – namely “upstairs”, inside the towers of piled-up
exponentials. This is a severe drawback for two reasons. First, imaginary
parts are personae non gratae in the formalisation of an inherently real object
such as F . Second, the imaginary numbers tucked away upstairs inside the
exponential towers might create oscillations in the sums Aα of some of the
transmonomials and so in F (z) − z itself. By a careful inductive reasoning,
we can show that this in fact is not the case, because the imaginary parts sit-
ting upstairs are always neutralised by larger infinitesimals which are purely
real. Nonetheless, the presence of imaginary parts is an aesthetic irritant and
a practical nuisance. It robs the non-oscillation of F (z) − z of the intuitive
obviousness which it ought to possess, and which is restored with the second
and third methods.

Second method (smarter) : with the standard average.
We now select the standard or median average 21. This does away with all
imaginary parts, but at the cost of introducing faster-than-lateral growth
in the uniformised or averaged Borel transform m Û?

i . This is offset, fortu-
nately, by the phenomenon of emanated resurgence which has been analysed
at great length in [E7] and which induces both divergence and resurgence
inside the factor K̃i. This time, both Ũ?

i and K̃i are real and divergent-
resurgent, and the faster-than-exponential growth cancels out in the (uni-
formised) joint Borel transform of K̃i ◦ exp ◦ Ũ?

i , so that all G̃1, . . . , G̃r and
F̃ can be exactly accelero-summed to G1, . . . , Gr and F .

There does, however, remain a slight flaw : unlike the transseries G̃i and F̃
taken as a whole, some partial sums of these transseries may not always be re-
summed exactly, but only up to arbitrarily small germ ideals. Due once again
to emanation resurgence22 these ideals can be rendered as small as 1/ expn(z)
for any given iteration order n, that is to say, smaller than any term present
in a given transseries. This is sufficient for all intents and purposes, and in

21see §1.10.5 supra. In [E.7] it was denoted by med and in [EM] by mun
22see [E7], pp 78-82
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particular more than sufficient for proving the non-oscillation of F . But the
impossibility of resumming exactly (rather than modulo smaller and smaller
ideals) certain sub-transseries of our transseries is slightly irksome. This last
remaining imperfection vanishes with the third method.

Third method (smartest) : with the organic average.
We select a well-behaved average m, like the organic average of §1.10.5 or
the diffusion-induced averages of §1.10.4 Then the formal factors K̃i will au-
tomatically be convergent, like in the first method, but also real, like in the
second method. There will be no faster-than-lateral growth to worry about,
nor any need for any compensation of any sort. And not only will all our
transseries be exactly resummable to their correct sums, but so too will all
their sub-transseries.

Let us summarise the main differences between the three methods in the
following table. There G̃#

i denotes a strict sub-transseries of G̃i, whileG#
i and

Gi stand for the corresponding sums. Whereas G#
i depends on the method,

Gi obviouly doesn’t. Lastly, when applied to sums, nearly real means real
upto an exponentially small part exp(−c0z), and almost exact means defined
up to transexponential accuracy, ie up to infinitesimals of the form 1/ expn(z)
for any finite n.
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Method I Method II Method III
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Ũ?
i real real real

divergent, resurgent divergent, resurgent divergent, resurgent

K̃i complex real real
convergent divergent, resurgent convergent

G̃i complex real real
divergent, resurgent divergent, resurgent divergent, resurgent

G̃#
i complex real real

divergent, resurgent divergent, resurgent divergent, resurgent
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
U?
i nearly real real real

exact almost exact exact

Ki nearly real real real
exact almost exact exact

Gi real real real
exact exact exact

G#
i nearly real real real

exact almost exact exact

1.13 Recapitulation. What has been gained?

Let us enumerate some of the main gains that accrue come from working
with a well-behaved average – preferably the organic average –, first in the
general theory of analysabilty, then in the particular application most rele-
vant to this Summer School : Dulac’s problem and the non-oscillation of the
return map.

Exact resummation of all sub-transseries and sub-transmonomials.
This applies not only to the ones ‘downstairs’ but also to those ‘upstairs’.

Neat representation of the tree of all “critical time classes” .
Each critical time class can now be represented by an (infinitely large) trans-
monomial A(z), which is the common leading term shared by all representa-
tives of that class.

Neat, canonical choice of slow critical times.
Namely B(z) := A(z)− A(z)/ logn(A(z)) for n large enough.
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Accelero-synthesis without parasitical divergence.
The process, which leads to the gradual actualisation of all subtransseries of
a given transseries (in each model ζi only those parts formally exponential
or subexponential in zi can be actualised), has been described in [E7],[E10].
It still applies, but now we get rid of the parasitical resurgence, since the
latter stemmed from the so-called emanation resurgence, which in turn was
a consequence of working with the median average (not well-behaved).

Decelero-analysis and the “trans-formalisation” algorithm .
This is the reverse process: going from F to F̃ . In classical asymptotics
it is essentially trivial, but in transasymptotics it ceases to be so. There
are indeed several ways, such as τ1F̃ and τ2F̃ , of formalising one and the
same analysable germ, depending on the w.-b. average we select, say τ1m or
τ2m, but there also exists an object even more general than the transseries,
namely the display (it carries the pseudo-variables attached to all critical
times, see [E13],ch.1) which contains at once, in explicit fashion, all the
information about all the possible formalisations, and also shows how to
“trans-formalise”, ie how to go from one formalisation to the other

Dulac’s problem: the all-convergent case .
In the all-convergent case (ie when all G̃i’s are convergent) we have the com-
mutative diagram:

{Gr, . . . , G2, G1}
compose−→ Gr ◦ · · · ◦G2 ◦G1 =: F

sum ↑ . . . ↑ ↑ ↑ sum

{G̃r, . . . , G̃2, G̃1}
compose−→ G̃r ◦ · · · ◦ G̃2 ◦ G̃1 =: F̃

which tranforms the formal dichotomy :

Either F̃ (z) ≡ z or F̃ (z) ≡ z + c0 ũt0(z) + õ ( ũt0(z) ) with c0 6= 0

into the geometric or ‘effective’ dichotomy :

Either F (z) ≡ z or F (z) ≡ z + c0 ut0(z) + o (ut0(z) ) with c0 6= 0

Dulac’s problem: the general case .

z1 ≺ z2 ≺ z3 ≺ · · · ≺ zr−1 ≺ zr (zi ≡ hi(z) � 1)
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Laplace

F̃r(zr) zr • ←− • ζr
�
F r (ζr)

↓ ↑ acceleration

F (z) z • • ζr−1

�
F r−1 (ζr−1)

↑ acceleration

. . . . . . . . .

↑ acceleration

F̃ (z) z • • ζ2

�
F 2 (ζ2)

↓ ↑ acceleration

F̃1(z1) z1 • −→ • ζ1

�
F 1 (ζ1)

Borel

Here, we have as many commutative diagrams as there are steps (even sub-
steps) in the accelero-summation process, but the conclusion is the same as
in the all-convergent case. We still have a formal dichotomy :

Either F̃ (z) ≡ z or F̃ (z) ≡ z + c0 ũt0(z) + õ ( ũt0(z) ) with c0 6= 0

that automatically induces a geometric or ‘effective’ one :

Either F (z) ≡ z or F (z) ≡ z + c0 ut0(z) + o (ut0(z) ) with c0 6= 0

An aside : the case when F = id .
In that case there seem to be extremely strong constraints that imply the
“pairing” of divergent summits. But results here are still far from complete.

1.14 Is the finiteness proof credible ? Q & A.

Q : Formalisation – in the present instance, replacing F by F̃ – may be highly
efficient, but does it not also bring about an impoverishment ? Does it not rob
problem-solving of all spontaneity and personal initiative, turning everything
into a drab, mechanical, mindless routine ?
A : In a sense, maybe. But that’s only part of the picture. I agree : the ex-
citement of having to grope in the dark, the attractions of trial-and-error, etc,
may get eroded, but the “beauty” and “substance” are not gone : rather, they
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have been absorbed into the apparatus on which formalisation relies. Think of
all these enchanting structures – resurgence, alien calculus, mould calculus,
accelero-summation, cohesiveness, transseries, well-behaved averages, arbori-
fication, etc etc – which ‘formalisation’ has unearthed, polished, furbished,
and brought under the clear light of day ! Can you dispute that the result
is a net gain, not only in terms of problem-cracking power, but even from a
purely aesthetic point of view ?

Q : Still, you must be aware that Yu. S. Ilyashenko has come up with an
alternative proof ot the finiteness theorem, which is almost entirely geometric
in nature. It sticks to what you would call the ‘multiplicative plane’, never
bothers with the ‘Borel plane’, and makes practically no use of resummation
theory, at least not in your sense. Does it not undermine your case ? Does
it not weaken your claims about the merits of ‘formalisation’ ?
A : It does not. For one thing, there exist degrees in the accuracy of the
various descriptions of F , and non-oscillation is but one feature among many.
Then we should not forget that the return map F is a very special type of
analysable germ – namely a composition product of fairly elementary transit
maps Gi. It is a far cry from “general analysability”. Due to its idiosyncra-
cies, F may indeed yield to several alternative approaches, including purely
geometric ones. But faced with a truly generic instance of analysability, the
most that ‘geometry’ may hope to achieve, by going to the fringes of the
z-sectors of regularity, is to capture something of the lateral behaviour (right
and left of a singularity-carrying axis) in the ζ-plane (see picture), whereas
the real difficulties (faster-than-lateral growth, etc) arise precisely on oft-
crossing paths, which are completely off-limits for ‘geometry’ (it cannot even
see them). Really, I cannot even begin to imagine how ‘geometry’ could pos-
sibly duplicate such things as well-behaved derivations, w.-b. averages, w.-b.
resurgence monomials, etc, which, at some stage, become simply indispensi-
ble for getting a full grasp of analysability.
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Q : Did not a gentleman from Poland, Professor Zo la̧ndek, pass disparaging
comments on your proof, while declaring himself “convinced” by Ilyashenko’s ?
A : He did. A colleague of mine has brought Zo la̧ndek’s ten-line ‘assessment’
to my attention. What can I say ? Z. does not give the slightest indication
of having read, let alone understood, even a fraction of what he quaintly
calls the “French proof”. So please forgive me for not commenting on his
comments. But I must say I was slightly puzzled by the enthusiasm he ex-
pressed there for the “Russian proof”. So I asked my colleague what she
made of this, and she gave me a quite interesting answer : in her estimate,
what Z. did really absorb was not the complete finiteness proof as set forth
in [Il2], but the 100 page long proof in [Il1] of the special case when summits
of type III+ alternate with summits of type III− (with any number of type
I or II summits in between – they make no difference). Now, this is an
interesting, non-trivial, but still rather elementary special case. And if one
goes for comparisons, then one should compare comparable things. In my
scheme of things, that case offers few difficulties (it presents no full-blown
transmonomials, no exponential towers, no cohesive steps, no critical time
tree, and requires only elementary accelerations) and it can be dealt with
quite expeditiously ([E7], p 202 ).
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Q : Going back to the general case and its two long-winded proofs : What
trust can we repose in them ? Have they been checked from A to Z by serious
mathematicians? Is there going to be certainty/agreement any time soon ?
A : I can only speak for myself. I don’t think my book has been read and
checked, from cover to cover, by anyone really intent on verifying the proof.
But I do know that its methods have come under close scrutiny, and that
too from people who desired to apply them, including in limit situations, and
also to extend them. These methods have not been found wanting. And let
us not forget that we are speaking here about a constructive proof. Expe-
rience teaches that such proofs have a self-righting quality, a resilience all
their own. The notion that, due to some gap or mistake lurking somewhere
in the meanders of the proofs, the whole thing might suddenly collapse –
that notion, I think, can be discounted rightaway. But you asked : when will
there be general acceptance ? Well, I would imagine that it will come in due
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course, but gradually, and not as a result of someone actually checking all
the minutiae of the proof (a thankless undertaking !), but due to a growing
familiarity with, and confidence in, the methods on which it rests. Possibly,
15 or 20 years from now, analysability and all the wherewithal will have be-
come so much part of the mathematical landscape that people, when faced
with an object like the return map, will say, after a brief mental evaluation :
“Hm, hm ! This F is a composition product of clearly analysable factors
Gi. But everyone knows that composition preserves analysability. QED !” In
the meantime, however, there are bound to remain doubters alongside the
believers, and that’s how it should be !

1.15 Complement 1 : the trans-Lagrange inversion
formula.

To convey something of the flavour of the theory of transseries, let us mention
the analogue of the classical Lagrange formula for calculating the functional
inverse. Everything being formal here, we drop all tildas.

Framework. We consider mutually reciprocal transseries f, g : f ◦ g =
id with bounded logarithmic depth (only those make full transasymptotic
sense). To further simplify, we apply a “flattening” change of variables:

(f , g) 7→ (logp ◦f ◦ expq , logq ◦g ◦ expp)

with p , q large enough to ensure that f(x) = x+ o(1) , g(x) = x+ o(1).

Notations. For any transseries ϕ and any transmonomial A, let ProjA(ϕ)
denote the scalar coefficient cA ∈ R of A in the canonical expansion ϕ =∑
cAA. In particular, let Proj1(ϕ) denote the constant term in that same

expansion (it separates the infinitely large transmonomials to its left from
those infinitely small to its right.) Lastly, let ϕ′ (resp ′ϕ) denote the derivative
of ϕ (resp its indefinite integral without constant term).

Matrix elements. For any two transseries A,B and any f � 1, we set

f[A,B] := Proj1(A ◦f .B) (∈ R) (41)

In the special case when A,B (and so too 1/B ) are transmonomials, the co-
efficients f[A,1/B] may be viewed as matrix elements of the f -postcomposition
operator. Indeed we have:

A ◦ f ≡
∑
B

f[A,1/B] . B (transfinite sum)(42)

(f1 ◦ f2)[A,1/C] ≡
∑
B

f1[A,1/B] . f2[B,1/C] (finite sum) (43)

(f1, f2 transseries � 1 , A,B,C transmonomials) (44)
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The trans-Lagrange inversion formula.
Lemma : Mutually reciprocal transseries f, g, flattened so as to verify f(x) =
x + o(1) , g(x) = x + o(1), always have their matrix elements linked by the
simple involutive formula :

g[A,B] = −f[A?,B?] with A? = ′(B . log′q) , B? = A′ / log′q (45)

valid for any q larger than the logarithmic depth of A,B, f, g.

The Lagrange inversion formula. If f, g are ordinary power series :

f(x) = x (1 +
∑

an x
−n) (x ∼ +∞) (46)

g(x) = x (1 +
∑

bn x
−n) (x ∼ +∞) (47)

and if we take (A,B) to be ordinary monomials (xm, xn), we may choose
q = 1 in the above formula, and then we get :

f[xm,xn] =
m

n
g[xn,xm] (m,n ∈ Z?) (48)

which is just an unusual presentation of the classical Lagrange inversion
formula.

1.16 Complement 2 : beyond the exponential range.

The indiscernibility theorem, very roughly, asserts that from a purely asymp-
totic viewpoint there exists no canonical notion of fractional or transfinite
iteration for the maps log or exp . More precisely, for any strictly fractional
α ∈ Q+ −N or any strictly transfinite ordinal α ∈ [ω, ωω[, no purely asymp-
totic criterion at +∞, based on the behaviour (sign) of expressions finitely
constructed from logα or expα, plus the direct/inverse operations +,×, ∂, ◦,
plus a finite number of analysable germs ϕi , can enable us to isolate a privi-
leged representative in the class of all possible iterates of the same order α –
no matter what degree of regularity 23 we choose to impose.

This and a few other results of the same ilk suggest that, in some sense,
the trigebras in the pair :

R[[[z]]] (transseries) and R{{{z}}} (analysable germs)

23whether cohesivity, analyticity, softness (see [E7], p 287) or any combination of these.
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are the “largest of their kind”. If we insist on enlarging them, some essential
properties are bound to give way. Fortunately, these two provide a framework
capacious and flexible enough for most problems of smooth asymptotics. It is
worth noting, in particular, that differential equations can never generate an
asymptotic behaviour even remotely like that of logα or expα for a fractional
or transfinite α (unless this behaviour is already there in the data).

1.17 Complement 3 : van der Hoeven’s intermediate
value theorem.

Theorem (J. van der Hoeven):
Let P be a differential polynomial with transserial coefficients, ie with coef-
ficients in the trigebra R[[[z]]]. Then, given any pair of transseries F̃ < G̃
in R[[[z]]] such that P (F̃ ) < 0 < P (G̃) there exists H̃ in R[[[z]]] such that
F̃ < H̃ < G̃ and P (H̃) = 0. Furthermore, there exists a fully algorithmic
procedure for constructing such an “intermediate solution” H̃.

1.18 Complement 4 : van der Hoeven’s complex trans-
series as a tool for solving algebraic differential
equations.

The difficulty with complexifying transseries is that the presence of imag-
inary parts “high up” in the transmonomials (inside exponentials) creates
oscillations, so that we can no longer compare, much less totally order, these
complex transmonomials. But there is a way round this difficulty : we may
equip C with an addition-respecting (total) order, regard our complex trans-
monomials as pure symbols, and then proceed with the inductive construc-
tion of complex transseries exactly as in the real case. There are as many
addition-respecting orders on C as there are “positive half-planes” H+ con-
taining R+ and excluding R−, with an additional convention for including
half the boundary of H+ and excluding the other half. Different choices lead
to different constructions CH+

[[[z]]], but these are all isomorphic. So it is
permissible to speak of the trigebra C[[[z]]] of complex transseries.

wJJJ
JJ

J
J
J
JJ

0
+

positive half-plane H+

−
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−
−
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+
+

35



Theorem (J. van der Hoeven):
Any algebraic differential equation P (y) = 0 polynomial in y, y′, y′′, . . . , y(d)

and with arbitrary transserial coefficients in C[[[x]]] admits solutions in C[[[x]]].

However, there doesn’t always exist a full d-parameter family of solutions,
so that not all solutions are caught in our net – which is another way of say-
ing that C[[[x]]] is not algebraically-differentially closed.

The true challenge, however, would be to resum as many complex transseries
as possible – beginning with those of natural origin, like the algebraic-
differential elements of C[[[x]]]. Encouraging forays have been made in this
direction, but there are serious obstacles, mainly because it is not at all clear
what should take the place of accelero-summation in the new context.

1.19 Complement 5 : finitary transseries and the di-
morphic core Na of R.

Let us now return to the real transseries. If in our inductive construction of
R[[[x]]] in §1.5 we replace R by the field A of algebraic numbers, and the rings
of power series R[[z−σ1 , . . . , z−σr ]] and R[[t1, . . . ,tr]] by the polynomial rings
A[z−σ1 , . . . , z−σr ] and A[t1, . . . ,tr], we get the trigebra Afin[[[x]]] of finitary
transseries, so-called because their definition (or construction) draws only on
a finite number of parameters.

Two huge sets of exotic derivations – the alien derivations ∆
{zi}
ω and the

foreign derivations ∇{zi}ω , each relative to a specific index ω ∈ R+ and a
specific time class {zi} – act on these finitary transseries and produce tran-
scendental constants, the so-called naturals, which (unlike the over-publicised
periods) come equipped with a natural indexation. The naturals order them-
selves spontaneously into a hierarchy of dimorphic rings D1,D2,D3,D4, . . . :

Q = rationals

A = algebraic numbers ⇐= Galois theory

D1 = multizetas ⇐= ARI/GARI

D2 = hyperlogarithmic constants ⇐= ARI/GARI ?

D3 = linear alg. differ. numbers ⇐= ? ?

D4 = non linear alg. differ. numbers ⇐= ? ? ?

that is to say, rings that possess two natural bases, each with its own multi-
plication rule, and, half-way between these two bases, a canonical and highly

36



non-trivial system of irreducibles. That at least is the case with D1. See §5.
The rings that lie beyond are still very much uncharted territory :

first natural basis with second natural basis with
multiplication table multiplication table

{αm} hidden canonical {βn}
↘ irreducibles ↙

{γs}

2 Lesson Two: Normal and Prenormal Forms.

2.1 Local objects and their homogeneous components.
Resonance, quasiresonance, nihilence.

By local analytic object we shall mean, primarily:
(1) germs of singular analytic vector fields at 0 on Cν , often referred to as
just fields for short
(2) germs of analytic diffeomorphisms of Cν into itself, with 0 as fixed point,
or diffeos for short
and, secondarily, all those equations or systems (differential, difference, func-
tional, etc) which may, in a standard manner, be rephrased in terms of fields
or diffeos.

Fields will be noted

X =
∑

1≤i≤ν

Xi(x) ∂xi ; Xi(x) ∈ C{x1, . . . , xν} (49)

but instead of diffeos proper:

f : (xi) 7→ (fi(x)) i = 1, . . . , ν ; fi(x) ∈ C{x1, . . . , xν} (50)

it will be more convenient to handle the corresponding substitution operators
F (same symbols, but capitalised):

(Fϕ)(x) := ϕ(f(x)) ; ∀ϕ(x) ∈ C{x1, . . . , xν} (51)
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Working with operators makes it easier to isolate a local object’s homo-
geneous components Bn :

X = X lin +
∑
n

Bn (for a field) (52)

F = (1 +
∑
n

Bn)F lin (for a diffeo) (53)

with Bn : xm.C→ xm+n.C (m,n multiintegers) (54)

For simplicity, we shall assume that the linear part is diagonalisable, and
work in an analytic chart where it is actually diagonal:

X lin =
∑
i

λi xi ∂xi (55)

F lin : ϕ(x1, . . . , xr) 7→ ϕ(l1 x1, . . . , lr xr) with li ∈ C? (56)

The discussion hinges on the nature of the object’s spectrum, ie the eigenval-
ues of its linear part: λ = (λ1, . . . , λν) for a field; l = (l1, . . . , lν) for a diffeo.
If the spectrum is “generic”, then the object is analytically conjugate to its
linear part – and that ends the matter, at least from the local point of view.

Difficulties arise only in the case of
– resonance : relations of type 0 = λi −

∑
mi λj or 0 = li −

∏
l
mj
j with

non-negative integers mj.
– quasiresonance : ie when Bryuno’s well-known diophantine condition, which
minorises the above expressions in terms of ‖m‖, is not fulfilled 24.
– nihilence : this complication, which presupposes resonance but bears on
coefficients of all orders, occurs mostly, though not only, in symplectic or
volume-preserving objects25.

The more ‘complicated’ an object, the larger its set of invariants tends
to be. Alongside the formal and analytic invariants (ie relative to formal or
analytic coordinate changes) we have the notion of holomorphic invariants –
ie invariants that depend holomorphically on the object Ob (or, in practical
terms, its Taylor coefficients), at least when Ob remains within a fixed formal
conjugacy class. 26

Resonance generates formal invariants (other than the spectrum itself),
of which there may be an infinite number27 if the resonance degree is ≥ 2.

24see conditions (171)+(172) in Lesson 4.
25see Lesson 4.
26thus, when applied to invariants, the words analytic and holomorphic assume quite

different meanings: analytic invariants are not necessarily holomorphic.
27more precisely, an infinite number of independent formal invariants.
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Each of the aforementioned complications – resonance, quasiresonance,
nihilence – whether in isolation or in combination, gives rise to analytic in-
variants (strictly analytic, ie non formal). Moreover, when resonance alone is
at work, there tend to exist 28 complete systems of analytic-cum-holomorphic
invariants {Aω}.

2.2 Continuous prenormalisation versus discontinu-
ous normalisation.

A resonant object X or F usually cannot be fully linearised – not even
formally – but, under a formal change of coordinates corresponding to a sub-
stitution operator Θpre , it can always be brought into a so-called prenormal
form Xpre or F pre

X = Θpre X
pre Θ−1

pre (57)

F = Θpre F
pre Θ−1

pre (58)

that is to say, a form which commutes with the linear part of X:

[X lin, Xpre] = 0 ; [F lin, F pre] = 0 (59)

and which therefore involves only resonant homogeneous components B?
n:

Xpre = X lin +
∑

B?
n with < n, λ >= 0 (60)

F pre = ( 1 +
∑

B?
n )F lin with ln = 1 (61)

If the number of (non-vanishing) resonant components B?
n is minimal (which

implies that their coefficients are formal invariants of the object), then Xpre

or F pre deserves to be regarded as a normal form and will be noted Xnor or
F nor. For objects with one (resp several) degrees of resonance, there exist
finitely (resp infinitely) many independent formal invariants.

Though simplest in terms of outward shape, the normal forms Xnor or
F nor have quite a few drawbacks. One is the unavoidably non-continuous
nature of the maps X 7→ Xnor or F 7→ F nor, even when we keep the linear
parts X lin or F lin fixed. Another is the absence, thus far, of general and
truly algorithmic procedures for determining them, especially in the case
of highly resonant spectra. A third drawback (manifest even in the case
of simple resonance) is their unsuitability for mechanical computation: the

28with slight qualifications, see eg [E5].
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exact shape of the normal forms always depends on one or several discrete
invariants (such as the “levels”, see for ex. [E3]), whose exact values, in
turn, depend on whether certain real or complex numbers (which depend
polynomially on the Taylor coefficients of the object) do or do not vanish –
a matter which a computer usually cannot decide, for want of algorithmic
tests.

So, for many purposes, it is preferable to work with continuous prenormal
forms or rather, to be quite precise, with prenormal forms that depend con-
tinuously on the homogeneous components Bn of the object, while the linear
part is kept fixed.29

In concrete terms, a continuous prenormalisation is a universal correspon-
dence of the form:

X = X lin +
∑

Bn 7→ Xpre = X lin +
∑

pran• B• (62)

= X lin +
∑

pranω1,...,ωr Bn1,...,nr (63)

F = (1 +
∑

Bn)F lin 7→ F pre = (1 +
∑

pren• B•) F lin (64)

= (1 +
∑

prenω1,...,ωr Bn1,...,nr) F
lin (65)

with Bn1,n2,...,nr := Bnr . . .Bn2Bn1 (66)

which is entirely determined by a given system {pran•} or {pren•} of scalar
coefficients30 independent of the object and indexed by sequences ω con-
structed from the ‘frequencies’ ωi :=< ni, λ >.

2.3 Examples of prenormalisations : ‘regal’ and ‘royal’.

Let us concentrate on vector fields for simplicity. In practice, the construc-
tion of the (alternal) prenormal mould pran• goes hand in hand with the
construction of the (symmetral) prenormalising mould spran• that yields
the prenormalising substitution operator:

Θpre := 1 +
∑

spran• B• = 1 +
∑

spranω1,...,ωr Bn1,...,nr

Here are two examples – the simplest of all, as it will turn out.

Regal prenormalisation :

29continuous dependence on the linear part would be an obviously impossible demand.
30The vowel a (resp e) alludes to the symmetry type – symmetral or alternal (resp

symmetrel or alternel) – of the moulds pran•, spran•, etc (resp pren•, spren•, etc) which
we call into play in the case of fields (resp diffeos).
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The moulds are characterised by

� spran• = pran• × spran• − spran• × I• (67)

lang . spran• = copran• × spran• (68)

together with the initial conditions

spran∅ = 1 (due to symmetrality) (69)

pran∅ = copran∅ = 0 (due to alternality) (70)

and the “complementarity” conditions

pranω = 0 (if ‖ω‖ 6= 0) (71)

copranω = 0 (if ‖ω‖ = 0) (72)

The two mould operators � and lang occuring in the above system multiply
moulds by, respectively, the sum ‖ω‖ or the length r(ω) of their indexing
sequences ω, and the obvious fact of their being mould derivations :

� (A• ×B•) ≡ (�A•)×B• + A• × (�B•)

lang (A• ×B•) ≡ (langA•)×B• + A• × (langB•)

ensures that the (clearly unique) solution of the above system consists of a
mould pair spran•/pran• of symmetral/alternal type.

Royal prenormalisation :
It is defined by the same system of mould equations as the regal form, except
that we replace the mould derivation lang by the mould derivation lan, which
mutiplies a mould, not by its length r(ω) (total number of indices), but its
reduced length r?(ω) , ie the number of its non-zero indices ωi. So the new
system reads :

� spran• = pran• × spran• − spran• × I• (73)

lan . spran• = copran• × spran• (74)

with the same initial conditions as above and also the same “complementar-
ity” conditions.

This innocuous-looking change brings with it considerable simplifications,
and in fact yields what must be adjudged the simplest and most regular of
all prenormalisations – hence its name royal.
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2.4 Mould amplification.

To show that the royal prenormalisation cannot be simplified or improved
upon, and also to establish its analytic properties (namely, generic divergence
+ resurgence), we require a mould transform – the so-called amplification –
that preserves a mould’s symmetry type but isolates the contribution of its
vanishing indices ωi = 0. Indeed, if a mould M• is alternal (resp symmetral),
then the amplified mould M•, which is defined by

M$1,...,$r :=
∑
ni≥0

M ω1,0[n1],...,ωr,0[nr ]

(ǎ1)n1(ǎ2)n2 . . . (ǎr)
nr (75)

$i :=
(ωi
ai

)
∈
(C?

C

)
; ǎi := a1 + a2 + · · ·+ ai ; 0[ni] :=

ni︷ ︸︸ ︷
(0, . . . , 0)

is also alternal (resp. symmetral). Amplification “almost” respects mould
multiplication (see [EV1], p16), and has a simple effect on most other mould
operations. For instance, the three mould derivations that enter the definition
of the regal and royal prenormalisations become after amplification :

� . M$ := ‖$‖M$ := (‖a‖+ ‖ω‖) M$ (76)

lang .M$ = (r(ω) +
∑

ai ∂ai) M$ (77)

lan .M$ = r?(ω) M$ (78)

Thus, one easily finds that the first non-trivial values of pran$, corresponding
to a length r = 2 and ω1 + ω2 = 0, ωi 6= 0, are as follows :

pran$1,$2 =
1

a1 + a2

log
(1 + a2

ω2

1 + a1

ω1

)
; “regal” (79)

pran$1,$2 =
1

2

( 1

ω2 + a2

− 1

ω1 + a1

)
; “royal” (80)

More generally, the moulds pran• and spran• associated with the royal (resp.
regal) prenormalisation are rational (resp hyperlogarithmic) functions of their
two sets of indices (ai and ωi).

Let us ponder a moment the above formulas.
(1) Though the regal and royal pran• differ, they are seen to coincide for
a1 + a2 = 0 (recall that ω1 + ω2 = 0 anyhow).
(2) For fixed indices ωi both are regular functions of the ai-variables at the
origin, but with a (common) singular locus away from the origin, and no
natural analytic boundaries.
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Those two observations, still valid beyond r = 2 , are highly significant,
since the presence of singularities in the ai variables stands in close relation
to the divergence of the corresponding prenormalisation, while the absence
of obstacles to endless analytic continuation (around these singularities) is
related to the resurgence properties of that same prenormalisation.

This immediately raises the question : are these singularities in the ai
variables peculiar to the two prenormalisations just examined, or are they
absolutely unavoidable ? As it happens, the latter is the case, but to es-
tablish this we require a mould hard• that describes “all that is common”
(singularities included) to all (not just the regal or royal) prenormalisations.

2.5 The ‘hard core’ common to all prenormalisations.

Taking our clue from the above remark, we define prann$ as being the re-
striction of pran$ on the hyperplane ‖a‖ = 0. 31

We then define the ‘hard core’ hard• in this way: for any set$1,$2, . . . ,$m

of unbreakable, zero-sum sequences,32 and any natural integer n no greater
than m we set

hard$
1;...;$m

n :=
∑

$(1)...$(n)∈circ($1;...;$m)

Prann$
(1)

. . .Prann$
(n)

(81)

with sequences $(i) made up of one or several sequences $j and with a sum∑
ranging over all decompositions of the form :

$(1)$(2) . . .$(n) ≡$i$i+1 . . .$m$1 . . .$(i−2)$(i−1) (for some i)

Thus for m = 1, 2, 3 we get:

hard$
1

1 := prann$
1

hard$
1;$2

1 := prann$
1$2

+ prann$
2$1

hard$
1;$2

2 := prann$
1

prann$
2

hard$
1;$2;$3

1 := prann$
1$2$3

+ prann$
2$3$1

+ prann$
3$1$2

hard$
1;$2;$3

2 := prann$
1$2

prann$
3

+ prann$
2$3

prann$
1

+ prann$
3$1

prann$
2

hard$
1;$2;$3

3 := prann$
1

prann$
2

prann$
3

Note that we must take care to avoid repetitions in the permutations: thus,
for n = 2,m = 3 we get three terms on the right-hand side, not six. More

31Of course, for pran$ or prann$ to be 6= 0, we must also have ‖ω‖ = 0 .
32ie not a product of zero-sum subsequences.
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generally, the number of terms on the right-hand side is exactly
∑

m!
m1!...mn!

,
with a sum ranging over 1 ≤ m1 ≤ m2 · · · ≤ mn and m1 + · · ·+mn = m.

Universality of the ‘hard core’ hard•.
For any fixed set of zero-sum, unbreakable sequences $1,$2, . . .$m and
any integer n ≤ m, the complex number hard$

1;...;$m

n does not depend on
the actual choice of prenormalisation.

Analytic expression of the ‘hard core’ hard•.
Again, for any set of m zero-sum unbreakable sequences $i and n ≤ m, the
universal ‘hard core’ is given by the formula:

hard$
1;...;$m

n =
daam−n

(m− n)!
(Taa$

1

. . .Taa$
m

) with (82)

Taa$ :=
(−1)r−1

$̌1 . . . $̌r−1

=
1

$̂2 . . . $̂r

and

daas

s!
Taa$ := Taa$

∑
1≤i1···≤is≤r−1

1

$̌i1 . . . $̌is

= Taa$
∑

2≤i1···≤is≤r

(−1)s

$̂i1 . . . $̂is

with the predictable abbreviations $̌i := ω̌i + ǎi, $̂i := ω̂i + âi and with daa
viewed as a symbolic derivation that acts according to the Leibniz rule on the
product on the right-hand side of (82). The proofs, as well as the parallel
formulae for diffeos (with alternel/symmetrel moulds in place of alternal/
symmetral ones for vector fields) may be found in [EV1].

The above expression of the “hard core” and the presence in it of un-
avoidable singularities on the hyperplanes

(ωi + ωi+1 + · · ·+ ωj) + (ai + ai+1 + · · ·+ aj) = 0

confirms what we were suggesting a moment ago, namely :

– any universal prenormalisation necessarily involves divergence (which is
unfortunate) but of resurgent type (which is fortunate), not only in the
prenormalising transformations (which was predictable enough) but also in
the prenormal form itself (which is more surprising)

– of all prenormalisations, the “royal” one stands out as the simplest choice :
(i) it displays no parasitical singularities and is acted upon non-trivially by
a minimal number of alien derivations (see §2.6 infra)
(ii) its resurgence equations, though complex enough, are ‘simplest’
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(iii) the associated moulds pran• and spran• are simplest too : namely, ra-
tional in the ω variables, and with amplifications pran•, spran• also rational
in both the ω and a variables.

2.6 Normalisation and prenormalisation resurgence.

We first recall the normalisation and prenormalisation equations for a reso-
nant (for definiteness, simply resonant) vector field:

X = Θnor X
nor Θ−1

nor (Xnor = normal form)

X = Θpre X
pre Θ−1

pre (Xpre = prenormal form)

Both transformations give rise to resurgence, but of a rather different sort
– even when we choose, as we shall in the sequel, the royal prenormalisation,
which is closest to normalisation.

This difference merely reflects the one that exists between the moulds
va•(z) and wa•(z) which enter the expansions of the normaliser and prenor-
maliser:

Θnor =
∑

va•(z) B• (normaliser)

Θpre =
∑

wa•(z) B• (royal prenormaliser)

As usual, we work in a chart z, u1, . . . , uν−1 so chosen as to ‘unload’ the whole
divergence and resurgence on one single variable z, the remaining ui being
inert parameters. As for the B•, they are ordinary differential operators
elementarily constructed from the Taylor coefficients of the field X. For
numerous examples, see eg [E3],[E5]. Both moulds va•(z) and wa•(z) are
symmetral, and both have components that are divergent-resurgent in z.
But there is a marked difference in complexity. Whereas va•(z) is given by
the simple induction :

(∂z + ‖ω‖) vaη1,...,ηr(z) = − vaη1,...,ηr−1(z) z−σr−1 with ηi := (
ωi
σi

)

or more explicitely :

(∂z + ω1 + · · ·+ ωr) va
(ω1
σ1

,...,
,...,

ωr
σr

)
(z) = − va

(ω1
σ1

,...,
,...,

ωr−1
σr−1

)
(z) z−σr−1 (83)
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the definition of wa•(z) is more involved :

waη(z) :=
∑

η=η1 η2...ηs-1 ηs η?

‖ω1‖=···=‖ωs‖=0,‖ω?‖6=0

(−1)s
lavaη

1

(z) lavaη
2

(z) . . . lavaη
s

(z) vaη
?
(z)

r1.(r1 + r2) . . . (r1 + · · ·+ rs)

with ri := length of ηi and

lava•(z) := (lan.va•(z))× (va•(z))−1 (lava• alternal)

lan.vaη(z) := (
∑
ωi 6=0

1) . vaη(z) (lan• = mould derivation)

The main difference, however, is in the Borel transforms v̂a•(ζ) and
ŵa•(ζ). Assume for simplicity that all σi are 0. Then v̂a•(ζ) is regular
at the origin ζ = 0, but usually not over the origin, ie at the points that lie
over 0 on the other Riemann leaves, whereas ŵa•(ζ) is always regular both
at and over the origin.

The shortest way to check this is via the resurgence equations of va• and
those of the alternal mould lava• which, alongside va•, is the main building
block of wa•. These resurgence equations involve one and the same constant
(ie z-independent) and alternal mould ka•, but again there is a significant
gap in complexity :

∆ va•(z) = ka• × va•(z) (84)

∆ lava•(z) = lan.ka• + ka• × lava•(z)− lava•(z)× ka• (85)

From here it is but a short step to derive the resurgence equations for our
main objects. For the (direct/inverse) normaliser they read :

[∆∆ω,Θnor] = −Θnor Aω (B.E. for direct normaliser) (86)

[∆∆ω,Θ
−1
nor] = + Aω Θ−1

nor (B.E. for inverse normaliser) (87)

and are none other than the Bridge Equation, which is an amazingly general
and flexible tool for extracting the object’s analytic invariants Aω and even,
if we so wish, for expressing these Aω in terms of two basic ingredients :
– the operators Bn which represent the field X via its Taylor coefficients.
– the mould ka• which represents the “universal-transcendental” part.

Similar, but more complex, resurgence equations hold for the prenor-
malising transformation Θpre as well as the prenormalised field Xpre (which,
unlike Xnor, is itself resurgent). Writing down these equations – they are
entirely deducible from the system (84),(85) – is a rewarding exercise, which
we highly recommend.
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3 Lesson Three: Canonical Object Synthesis.

3.1 Local objects and analytic invariants.

We revert to the notations and conventions of Lesson Two. Here too, by local
analytic object we shall mean essentially :

(1) germs of singular analytic vector fields at 0 on Cν or fields for short :

X =
∑

1≤i≤ν

Xi(x) ∂xi ; Xi(x) ∈ C{x1, . . . , xν} (88)

(2) germs of analytic diffeomorphisms of Cν into itself or diffeos for short :

f : xi 7→ fi(x) ; i = 1, . . . , ν , fi(x) ∈ C{x1, . . . , xν} (89)

with the corresponding substitution operators F denoted by a capital letter :

(Fϕ)(x) := ϕ(f(x)) ; ∀ϕ(x) ∈ C{x1, . . . , xν} (90)

We recall that everything depends on the nature of the object’s spectrum, ie
the eigenvalues of its linear part: λ = (λ1, . . . , λν) for a field or l = (l1, . . . , lν)
for a diffeo. If the spectrum is ‘generic’, then the object is analytically con-
jugate to its linear part. Difficulties arise only in case of
– resonance of the spectrum (see §2.1)
– quasiresonance of the spectrum (see §2.1)
– nihilence of the object (see §2.1)

As already pointed out, the more ‘complicated’ an object, the larger its
set of invariants tends to be. Alongside the formal and analytic invariants
(ie relative to formal or analytic coordinate changes) we have the notion of
holomorphic invariants – ie those invariants that depend holomorphically on
the object Ob (or, in practical terms, its Taylor coefficients), at least when
Ob remains within a fixed formal conjugacy class.

Resonance generates formal invariants : finitely many for one degree of
resonance, infinitely many for several degrees.

Each of the afore-mentioned complications – resonance, quasiresonance,
nihilence – also gives rise to analytic invariants 33. These complications may
combine, but when resonance alone is at work, there tend to exist 34 complete
systems of analytic-cum-holomorphic invariants {Aω}.

33strictly analytic, ie not deducible from formal invariants.
34with slight qualifications, see eg [E3],[E5].
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We shall in this Third Lesson deal with the purely resonant case. This
covers in particular such important objects as :
– identity-tangent diffeomorphisms,
– vector fields with (one or several) vanishing eigenvalues,
– most singular differential equations or systems 35

“Object analysis” starts from some object Ob and is concerned with find-
ing its invariants. For resonant objects, which alone matter to us here, there is
a method of sweeping generality – the Bridge Equation (see infra) – for conc-
tructing complete systems {Aω} of analytic-cum-holomorphic invariants, in
the form of specific differential operators Aω, with indices ω running through
a countable set Ω generated by the object’s spectrum. Moreover, relatively to
a special class of “nice” bases {∆nice

ω } of the algebra ALIEN of alien deriva-
tions, technically known as well-behaved bases, the Bridge Equation yields
systems {Anice

ω } that can be characterised by means of simple, transparent
growth conditions on the invariants Anice

ω as ω increases.

“Object synthesis” is the converse problem : starting from a prescribed
system {Aω} with the proper growth pattern, find an object Ob whose in-
variants coincide with that system. There are actually four degrees:
– existence : showing that such an object Ob does exist.
– constructiveness : producing an effective procedure for constructing it.
– expliciteness : expanding the object Ob, in a manner both explicit and
universal, by means of elementary special functions, the so-called resurgence
monomials, that are not constructed ad hoc, but given once and for all.
– canonicity : examining whether perchance there exists a “canonical” choice
for Ob and also (since we don’t want to forego expliciteness) a corresponding
system of “canonical” resurgence monomials.

We won’t recall (see [E2],[E3],[E15]) the basic facts about existential, con-
structive, explicit synthesis, nor shall we bother with the various strategies,
some going back to the late 70s, for establishing the related results. Our
concern here is with the dream-goal of explicit-canonical synthesis, particu-
larly for non-linear problems. The earliest attempts in this direction were
based on the notion of hyperlogarithmic monomials. We shall show why these
attempts, while interesting in their own way and insightful, were doomed to
partial failure. We shall then mention the existence of a whole new class

35after their standard rephrasing as time-autonomous systems or, equivalently, as vector
fields.
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of resurgence monomials, based on “prodiffusions” and which on account of
their nice growth properties, do permit explicit synthesis in all cases. Lastly,
we shall show that there exists a particular subclass, the so-called paraloga-
rithmic or spherical monomials, which unquestionably stand out as ‘canon-
ical’ and which can be harnessed to synthesise objects Ob that inherit their
‘canonicity’.

3.2 Object Analysis: the Bridge Equation.

Let Ob be some (purely) resonant object – field or diffeo – expressed in a
particular analytic chart x = {x1, . . . , xν} that diagonalises the object’s linear
part. The object’s complete linearisation is usually impossible, even formally,
and what takes its place is formal normalisation, which removes all but a few
resonant monomials, or the more radical step of formal trivialisation, which
forfeits entireness 36 but reduces the object to the simplest conceivable form,
namely ∂z for as field and z 7→ z + 1 for a diffeo.

Let y = {y1, . . . , yν} be a formal normal chart, and consider the formal-
entire coordinate changes yi = θi(x) and xi = θ−1

i (y) with the substitution
operators Θ and Θ−1 that go with them : Θ±1ϕ := ϕ ◦ θ±1

Also consider the “trivial chart” {z, u} = {z, u1, . . . , uν−1}. Expressing
the given coordinates x = {xi} in terms of the trivial coordinates {z, ui},
we get the so-called formal integral x(z, u) = {x1(z, u), . . . , xν(z, u)}, which
verifies:

∂z xi(z, u) ≡ Xi(x(z, u)) ∀ i for a field (91)

fi(x(z, u)) ≡ xi(z + 1, u) ∀ i for a diffeo (92)

The Bridge Equation (B.E.) is a powerful and versatile tool for extracting
the object’s invariants from the divergence-resurgence of the trivialising or
(direct/inverse) normalising transformations. Here are its three main forms :

∆∆ω x(z, u) = Aω x(z, u) (B.E. for the formal integral) (93)

[∆∆ω,Θ] = −Θ Aω (B.E. for the direct normaliser) (94)

[∆∆ω,Θ
−1] = + Aω Θ−1 (B.E. for the inverse normaliser) (95)

The indices ω on both sides of the Bridge Equation range through a
countable set Ω spanned by the object’s multipliers, ie the λj in the case
of a field, and the log lj (to which one must add the universal multiplier
λ0 := 2πi) in the case of a diffeo.

36it no longer relies on entire power series.
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The ∆∆ω on the left-hand side denotes the alien derivation relative to the
variable z and index ω but with a built-in exponential factor ∆∆ω := e−ω z∆ω

that makes it commute with ∂z and ensures the invariance rule under non-
divergent changes of equivalent variables z 7→ z? with z ∼ z?

37.

∆∆(z)
ω ϕ(z) ≡ ∆∆(z?)

ω ϕ?(z?) if ϕ(z) ≡ ϕ?(z?) and z ∼ z? (96)

The alien-differentiation variable z, also known as critical variable38, is always
∼ ∞. In (93) it is simply the z inside the formal integral. In (94) or (95) it
is the inverse of some resonant monomial, ie z := 1/xm or z := 1/ym. Due to
the afore-mentioned invariance property of alien differentiation,39 the critical
variable is actually defined up to equivalence ∼ and so the proper intrinsic
notion is in fact that of critical class.

The Aω on the right-hand side are ordinary differential operators – in the
variables (z, ui) or (xi) or (yi) respectively. They are constructively deter-
mined, even overdetermined, by the requirement of equality in the Bridge
Equation – whichever of its variants we choose to work with, and whichever
critical variable we pick (within the critical class) for alien differentiation.
Each single Aω is an invariant of the object Ob, and the total collection
{Aω, ω ∈ Ω} constitutes a set, both complete and free, of analytic-cum-
holomorphic invariants.

All these claims, as sketchy as they are sweeping, clearly cry for expla-
nations and qualifications, which cannot be supplied here but are available
in the literature ([E2][E3][E5][E10]). We recalled these statements simply as
a general backdrop for the twin problems of object analysis and synthesis –
but to illustrate the method we shall focus on just four typical examples.

3.3 Examples of local objects.

Example 1: one-dimensional identity-tangent diffeo.

fnor : z −→ z + 2πi (97)

f : z −→ z + 2πi+
∑
2≤n

an z
−n (98)

Remark : we might of course have chosen the unit shift as our normal form,
but choosing the 2πi-shift has the advantage of placing the singularities over
Z in the Borel-plane, and of rendering the parallel with Example 2 (infra)

37eg z? := z (1 +
∑
an z

−n) or z? := z (1 +
∑
an (log z)−n) with convergent series

∑
.

38or critical time.
39it mirrors the invariance rule ϕ′(z) dz ≡ ϕ′?(z?) dz? for ordinary differentiation.
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more obvious.
Example 2: singular, non-linear differential equation.40

dz y
nor = ynor (99)

dz y = y +
∑

1+n≥0

bn(z) y1+n ∈ y + C{y, z−1} (100)

Example 3: singular linear differential system.

dz y
nor
i = λi y

nor
i (1 ≤ i ≤ ν ; λi 6= λj if i 6= j) (101)

dz yi = λi yi +
∑

1≤j≤ν

bi,j(z) yj bi,j(z) ∈ C{z−1} (102)

Example 4: singular non-linear differential system.

dz y
nor
i = λi y

nor
i (1 ≤ i ≤ ν ; λ not res. nor quasi.res.) (103)

dz yi = λi yi +
∑

1+ni≥0
nj≥0 if j 6=i

bi,n(z) yi y
n ∈ λi yi + C{y1, . . . , yν , z

−1}(104)

3.4 Resurgence equations and analytic invariants.

Example 1: one-dimensional identity-tangent diffeo.
We may work with the formal normalising map f ? or its inverse ?f :

f ? ◦ f ≡ fnor ◦ f ? ie f ?(f(z)) ≡ 2πi+ f ?(z) (105)

f ◦ ?f ≡ ?f ◦ fnor ie f(?f(z)) ≡ ?f(z + 2πi) (106)

Both are generically divergent but always resurgent. They verify the resur-
gence equations:

∆∆n f
?(z) ≡ −An exp(−n f ?(z)) (∀n ∈ Z?) (107)

∆∆n
?f(z) ≡ +An e

−nz∂z
?f(z) =: An

?f(z) (∀n ∈ Z?) (108)

which in turn yield the complete and free system of analytic invariants:

A = {An := An e
−nz∂z ; n ∈ Z? , An ∈ C} (109)

Example 2: singular, non-linear differential equation.
We may work with the formal integral

y(z, u) ∈ C[[z−1, u ez]] (u = integration parameter) (110)

40under addition of a variable x := z−1 it translates into a two-dimensional vector
field, local (at 0 ∈ C2), singular, and resonant (with one vanishing and one non-vanishing
multiplier)
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which is generically divergent (in z) but always resurgent (again, in z) and
verifies the Bridge equation :

∆∆n y(z, u) ≡ An u
n+1 ∂u y(z, u) =: An y(z, u) (n = −1, 1, 2, 3, . . . )

(111)
yielding the complete and free system of analytic invariants:

A = {An := An u
n+1 ∂u ; n ∈ {−1} ∪ N? , An ∈ C} (112)

Example 3: singular linear differential system.
Here the formal integral reduces to

y(z, u) =
∑

1≤i≤ν

bi(z) eλi z ui with bi(z) ∈ C[[z−1]] (113)

The Bridge equation reads :

∆∆λi−λj y(z, u) ≡ Aλi−λj uj ∂ui y(z, u) =: Aλi−λj y(z, u) (i 6= j) (114)

and once again yields a complete and free, but this time finite, system of
analytic invariants:

{Aλi−λj := Aλi−λj uj ∂ui ; 1 ≤ i 6= j ≤ ν} (115)

Example 4: singular non-linear differential system.
The formal integral involves ν integration parameters ui, each with its ac-
companying exponential factor :

y(z, u) ∈ C[[z−1, u1 e
λ1 z, . . . , uν e

λν z]] (with Q-independent λi’s) (116)

The Bridge equation reads :

∆∆ω y(z, u) ≡ Aω y(z, u) (∀ω = Ω) (117)

with indices ω running through a set :

Ω = {ω ; ω =
∑

1≤i≤ν

mi λi , mi ≥ −1 ,
∑
mi=−1

1 = 0 or 1} (118)

and with differential operators of the form :

Aω := um1
1 . . . umνν

∑
1≤i≤ν

Aiω ui ∂ui if ω =
∑

mi λi (Aiω ∈ C) (119)

which, together, constitute a complete and free system {Aω ; ω = Ω} of
analytic invariants.

Caveat: Of course, in all these example, the systems of invariants {Aω} are
“free” only in the sense of being subject to no finite constraints (ie constraints
bearing on finite subsets) but they are subject to an infinite constraint which,
relative to a nice (“well-behaved”, see infra) basis of ALIEN, reduces to the
existence of exponential bounds in ω.
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3.5 Alien derivations: lateral, standard or organic.

Alien derivations ∆ω are determined by systems of weights d
( ε1
ω1

,...,
,...,

εi
ωi

,...,
,...,

εr
ωr

)

subject to the self-consistency relations :∑
εi ∈{+,−}

d
( ε1
ω1

,...,
,...,

εi
ωi

,...,
,...,

εr
ωr

)
:= d

( ε1
ω1

,...,
,...,

εi+1
ωi+ωi+1

,...,
,...,

εr
ωr

) ∀i (120)

and their action in the convolutive model is given by :

∆ω ϕ̂(ζ) :=
∑
εi=±

d
( ε1
ω1

,...,
,...,

εr
ωr

)
ϕ̂

( ε1
ω1

,...,
,...,

εr
ωr

)
(ζ + ω) (121)

for ζ close to +0 and by analytic continuation in the large. There being
no scope for confusion, we also use the same symbols to denote the alien
derivations acting in the multiplicative models (formal or geometric), ie the
pull-backs by Borel-Laplace of the operators ∆ω as defined by (121).

3.5.1 Lateral alien operators ∆+
ω and ∆−ω

The right-lateral operators ∆+
ω are defined by:

d( ε1
ωr

,...,
,...,

εr
ωr

) := εr 1 if (ε1, . . . , εr−1) = (+, . . . ,+)

:= 0 otherwise

and the left-lateral operators ∆−ω are defined by:

d( ε1
ωr

,...,
,...,

εr
ωr

) := − εr 1 if (ε1, . . . , εr−1) = (−, . . . ,−)

:= 0 otherwise

Their simplicity is deceptive because they are not first-order derivations.
Instead of verifying (in the multiplicative models) the Leibniz rule:

∆ω(ϕ1 ϕ2) ≡ (∆ωϕ1) ϕ2 + ϕ1 (∆ωϕ2)

they verify messier relations :

∆±ω (ϕ1 ϕ2) ≡ (∆±ωϕ1) ϕ2 + ϕ1 (∆±ωϕ2) +
∑

ω1+ω2=ω

(∆±ω1
ϕ1) (∆±ω2

ϕ2)

with a sum extending to all ω1, ω2 colinear with ω. For any given pair of test
functions ϕ1, ϕ2 the above sum makes sense, since it can never involve more
than a finite number of non-zero terms.
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3.5.2 Standard alien derivations ∆stan
ω .

They correspond to the weights :

d
( ε1
ω1

,...,
,...,

εr
ωr

)
:= εr

p! q!

(p+ q + 1)!
= εr

p! q!

r!

p := #{1 ≤ i < r ; εi = +}
q := #{1 ≤ i < r ; εi = −}

They are first-order alien derivations (and thus an impovement on the ∆±ω )
but they are not well-behaved.

3.5.3 Organic alien derivations ∆org
ω .

They correspond to the weights :

d
( ε1
ω1

,...,
,...,

εr
ωr

)
:= εr

2

ωp+1

ω1+···+ωr if (ε1, . . . , εr) = ((+)p, (−)q, εr)

:= εr
2

ωq+1

ω1+···+ωr if (ε1, . . . , εr) = ((−)q, (+)p, εr)

:= 0 otherwise

They are first-order and well-behaved alien derivations. In fact, at the mo-
ment, they constitute the simplest extant system of such derivations.

3.5.4 Conversion rule.

Each system {∆org
ω } or {∆stan

ω } freely generates the algebra ALIEN of alien
derivations, and we have the simple conversion rules :

∆org
ω0
≡ ∆stan

ω0
+
∑

3≤r odd

Hω1,...,ωr
ω0

[[∆stan
ωr , . . . , [∆stan

ω2
,∆stan

ω1
]] (122)

∆stan
ω0

≡ ∆org
ω0

+
∑

3≤r odd

Kω1,...,ωr
ω0

[[∆org
ωr , . . . , [∆

org
ω2

,∆org
ω1

]] (123)

with scalar coefficients Hω1,...,ωr
ω0

and Kω1,...,ωr
ω0

which of course vanish unless
ω0 6=

∑
ωi. For instance :

Hω1,...,ω2r+1
ω0

:=
1

2r + 1

∑
0≤i≤2r

(−1)i (2r)!

i! (2r − i)!
ωi+1

ω0

if ω0 =
∑

ωi (124)

3.5.5 Characterisation of well-behaved alien derivations.

To each system of alien derivations we may associate the moulds :

redω1,...,ωr := (−1)r d
( +
ω1

,...,
,...,

+
ωr

)
(right-lateral mould) (125)

ledω1,...,ωr := (−1)r d
( −
ω1

,...,
,...,

−
ωr

)
(left-lateral mould) (126)

54



Due to the self-consistency relations, both the right- and left-lateral moulds

encapsulate all the information about the entire weight system {d( ε1
ω1

,...,
,...,

εr
ωr

)},
and each one can be deduced from the other in a simple manner.

The three following conditions are equivalent:
(a) the alien operators ∆ω in (121) are (first-order) alien derivations
(b) the right-lateral mould red• is alternel
(c) the left-lateral mould led• is alternel

The five following conditions are equivalent:
(d) the system ∆ω in (121) of (first-order) alien derivations is well-behaved

(e) we have universal bounds | redω
≺≺ | ≤ C1 (D1)r(ω

≺≺ )

(f) we have universal bounds | redω
�� | ≤ C2 (D2)r(ω

�� )

(g) we have universal bounds | ledω
≺≺ | ≤ C3 (D3)r(ω

≺≺ )

(h) we have universal bounds | ledω
�� | ≤ C4 (D4)r(ω

�� )

3.6 Well-behaved resurgence monomials.

3.6.1 Multiplicative systems of resurgence monomials.

They are basically systems {Uω(z) = Uω1,...,ωr(z)} of elementary resurgent
functions which :
(1) behave simply under multiplication41

(2) behave simply under alien differentiation
(3) are “complete” in the sense that they should enable us to expand (or
approximate) any given resurgent function ϕ :

ϕ(z) ” = ”
∑
ω

cω(z) Uω(z) :=
∑
r≥0

∑
ωi

cω1,...,ωr(z) Uω1,...,ωr(z) (127)

with coefficients cω(z) that are either ordinary constants or “resurgence
constants”, that is to say functions with only vanishing alien derivatives :
∆ω0cω(z) ≡ 0 ,∀ω0.

Condition (2) is relative to a given basis {∆ω} of the algebra ALIEN of
alien derivations. In concrete terms the condition stipulates that :

∆ω0 Uω1,...,ωr ≡ Uω2,...,ωr if ω0 = ω1

≡ 0 if ω0 6= ω1 (128)

41or convolution, depending on the model.
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Condition (1) means that :

Uω′ Uω′′ ≡
∑

ω ∈ sha(ω′,ω′′)

Uω (129)

with a sum extending to all sequences ω obtained by shuffling the two factor
sequences ω′, ω′′. In other words, the mould U• should be symmetral.42

Clearly, there exist infinitely many multiplicative systems of resurgence
monomials. Indeed, if U•(z) is one such system, so will be the system
U•C (z) := U•(z) × C•(z) derived therefrom by postmultiplication43 by any
symmetral, resurgence-constant mould C•(z).

3.6.2 Integral alien calculus.

Multiplicative systems of resurgence monomials are extremely useful to solve
resurgence equations, or systems of such equations, and to express their solu-
tions in the form of expansions of type (127), often with constant coefficients
cω. Thus, if we revert to Example 1 and try to solve the system of resurgence
equations (107) that characterise the normalising transformation f ?, we find :

f ?(z) := z −
∑
r

∑
ni

An1 . . . An1 Γn1,...,nr Un1,...,nr(z) (130)

with Γn1,...,nr := (n1) (n1 + n2) . . . (n1 + n2 + · · ·+ nr−1) (131)

But the real issue of course is convergence. We might try to solve it on an
ad hoc basis, ie by choosing our resurgence monomials differently for each
problem. But we are more ambitious : we want resurgence monomials that
work in all cases. 44 That may seem a tall order, but it is feasibble ! The
answer lies in the notion of well-behaved systems of resurgence monomials.
And not only do such systems exist, but there is a canonical choice !

3.6.3 Characterisation of well-behaved resurgence monomials.

To any given system of resurgence monomials we may associate a right-
lateral mould reU•(z) and a left-lateral mould leU•(z) characterised by the
orthogonality conditions :

{ reU ω1,...,ωr} orthogonal to {∆+
ω1,...,ωr

:= ∆+
ωr . . .∆

+
ω1
} (132)

{ leU ω1,...,ωr} orthogonal to {∆−ω1,...,ωr
:= ∆−ωr . . .∆

−
ω1
} (133)

42see §6.1
43in the sense of moulds.
44ie for all systems of resurgence equations that do admit solutions.
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The three following conditions are equivalent:
(a) a system of resurgence monomials is multiplicative
(b) its right-lateral mould reU• is symmetrel45

(c) its left-lateral mould leU• is symmetrel

Observe that the criterion here is symmetrel and not symmetral as in §3.6.1
This is because the lateral alien operators ∆±ω are not first-order alien deriva-
tions (see §3.5.1).

The five following conditions are equivalent:
(d) a system of multiplicative resurgence monomials is well-behaved
(e) we have universal bounds ‖ reUω≺≺ ‖ ≤ C1 (D1)r(ω

≺≺ )

(f) we have universal bounds ‖ reUω�� ‖ ≤ C2 (D2)r(ω
�� )

(g) we have universal bounds ‖ leUω≺≺ ‖ ≤ C3 (D3)r(ω
≺≺ )

(h) we have universal bounds ‖ leUω�� ‖ ≤ C4 (D4)r(ω
�� )

for a suitable norm ‖.‖ (see [E15]) and with the arborification rule (31).

Resorting to so-called ‘prodiffusion integrals’ (rather similar to the diffu-
sion integrals which we used in Lesson One, §1.10.4, to construct our well-
behaved averages, but with Borel-Laplace replacing the Fourier transform)
one may produce a large variety of well-behaved systems of resurgence mono-
mials. Furthermore, there exits a canonical choice, the only remaining lati-
tude being in the determination of a single real parameter c.

3.6.4 The canonical choice : “spherical” or “twisted” monomials.

As just mentioned, they depend on a positive parameter c > 0 (the “twist”)
and are defined by the absolutely convergent integrals :

Uaω1,...,ωr
c (z) :=

S.P.A.

(2πi)r

∫ ∞
0

e−
Pr

1(ωi yi+c
2ω̄i y

−1
i ) dy1 . . . dyr

(yr − yr−1) . . . (y2 − y1)(y1 − z)
(134)

Ueω1,...,ωr
c (z) := Uaω1,...,ωr

c (z) e (
Pr

1 ωi) z+(
Pr

1 ω̄i) c
2 z−1

(135)

U ω1,...,ωr
c (z) := Uaω1,...,ωr

c (z) e (
Pr

1 ω̄i) c
2 z−1

(136)

with integration along the rays arg(ωi yi) = arg(ω̄i/yi) = 0.

The Uaωc are auxiliary expressions. The resurgence monomials proper are
the Uωc (orthogonal to the ordinary alien derivations ∆ω) and the exponential-
carrying Ueωc (orthogonal to the exponential-carrying alien derivations ∆∆ω).

45see §6.1.
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Interpretation of S.P.A.
S.P.A. in front of the integral means suitable path average. If we integrate
first in y1, then y2, etc, the question arises46 as to how (ie on which side)
yi should bypass the next (yet unused) variable yi+1. If to the right, we set
εi := +. If to the left, we set εi := −. To each choice {ε1, ε2, . . . } there
corresponds a different integration path, and S.P.A. means that one should
take a precise average of all such paths, depending on which system ∆ω of
alien derivations one wishes the Uω to be orthogonal to. But for the right- or
left-lateral moulds (characterised by orthogonality to ∆±ω ) the S.P.A. average
reduces to one single path, with all εi identical (either + or −).

Interpretation of 1/(y1 − z)
The integral (134) defines Uω in all three models (formal, geometric, convo-
lutive) at one stroke, depending on how we construe 1/(y1 − z) :
– as a power series in z−1,
– or as a function germ at ∞,
– or again as its own Borel tranform.

Formal model : 1
y1−z → −

∑∞
0 z−n−1 yn1

=⇒ Ũωc (z) as a formal power series

Geometric model : 1
y1−z → z-germ at ∞

=⇒ Uωc (z) as a sectorial z-germ at ∞

Convolutive model : 1
y1−z → − exp(y1 ζ)

=⇒ Ûωc (ζ) as a full ζ-germ at 0

Main result:
For positive values c > 0 of the twist, U•c constitutes a well-behaved, multi-
plicative system of resurgence monomials.

Gist of the proof : The difficult bit of course is well-behaved. We use the cri-
teria of §3.6.3 and the fact (see §6.1) that the moulds tas•a,∞, tas•∞,b as well as
the moulds sofo•, sefo• ( which are essentially their “Fourier transforms”)
conserve their form under either arborification or anti-arborification, and as
a consequence do not register any significant increase in component size 47.

The limit-case c = 0.

46at least when two consecutive integration axes coincide, ie when argωi = argωi+1.
47see towards the end of §6.1 and also [E15],[EV3].
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In the limit-case c = 0 the integrals (134) remain well-defined and we still
have a multiplicative system U•0 of resurgence monomials, but it is no longer
well-behaved. In fact, it coincides with the much more ancient system U• of
hyperlogarithmic monomials, so-called because their dependence in the ωi’s
is indeed of hyperlogarithmic type. In contradistinction, the U•c and the host
of special functions attached to them (see §6.7) are called paralogarithmic.

Why “twisted” and why “spherical” ?
The presence of a free parameter c slightly detracts from the “canonicity” of
our system, but this cannot be helped : no system of well-behaved resurgence
monomials can suffice for all problems unless there is at least one free param-
eter that can be adjusted from case to case. The miracle is rather that one
parameter should be enough ! So much for the twist. As for “spherical”, it
refers to the striking symmetry of behaviour which our monomials U•c exhibit
at the antipodes 0 and ∞ of the Riemann sphere when c > 0, and which,
remarkably enough, disappears when we “untwist” them, ie when c = 0.

3.7 Canonical object synthesis at work.

Basically, with the twisted monomials at our disposal, Object Synthesis be-
comes a purely mechanical affair. This is precisely what we had set out to
achieve : to reduce the whole process to a succession of formal manipulations.
But here we must be content with outlining the six main steps :

Step 1: select a formal class of local analytic objects, characterised by a
formal normal form Obnor, and start from any given admissible system of
analytic invariants A = {Aω ; ω ∈ Ω}

Step 2: choose a well-behaved system of alien derivations, preferably the
organic system ∆org = {∆org

ω ; ω ∈ C?} , and express the analytic invariants
in the corresponding basis Aorg = {Aorg

ω ; ω ∈ Ω}

Step 3: solve “mechanically”48 the system of resurgence equations that
characterise the direct or inverse normaliser Θ±1. For instance, in the case

48ie without worrying about convergence. Mark the choice of words: mechanically, ie
by means of expansions into series (127) of abstract resurgence monomials, rather than
formally, which would suggest solving the problem in the ring of formal power series.
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of simply resonant fields we find these expansions49 :

Θ
always

:= 1 +
∑
1≤r

∑
ωi∈Ω

(−1)r Ueω1,...,ωr(z) Aωr . . .Aω1 (137)

Θ−1 conditionally
:= 1 +

∑
1≤r

∑
ωi∈Ω

Ueωr,...,ω1(z) Aωr . . .Aω1 (138)

Step 4: replace in that “mechanical” solution the abstract monomials Uωorg(z)
by the twisted or spherical monomials Uωc , org(z) for a large enough twist c.

Step 5: arborify the expansions according to the rules given in §6.1 so as to
render the previously obtained expansions for Θ±1 convergent in the space of
resurgent functions.

Step 6: Construct the sought-after analytic object Ob from its normaliser
by using Ob = Θ Obnor Θ−1

The reader may easily work this out in the case of our four Examples. For
details and more examples, he may turn to [E.15].

3.7.1 Remarks and complements.

Remark 1: Antipodal involution.
As already pointed out, our twisted monomials have much the same be-
haviour at both poles of the Riemann sphere. The exact correspondence is
described in §6.7 using the so-called antipodal involution :

pod : z 7→ c2 z−1 and (ωi, c
2 ω̄i) 7→ (ω̄i, c

2 ωi) (139)

In terms of the objects being produced, this means that canonical object
synthesis automatically generates two objects for the price of one : the ‘true’
object, local at ∞ and with exactly the prescribed invariants, and a ‘mirror
reflection’, local at 0 and with closely related invariants. Depending on the
nature of the problem (linear/non-linear, etc) and of the invariants, these two
objects may or may not link up under analytic continuation on the Riemann
sphere.

Remark 2: Analogy with q-equations.

49The second expansion, for the reverse normaliser, is valid only if all the invariants Aω
have no ∂z-component and so commute with the resurgence monomials Ueω(z). When
this is not the case, the expansion (138) should be slightly modified, but one can also be
content to work with (137), which is always valid, and then derive Θ−1 by straightforward
inversion of Θ.
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Authors like Sauloy recently observed that q-difference equations are in some
sense easier to tackle than difference or differential equations, due to dila-
tions z 7→ q z having two fixed points 0 and ∞, whereas shifts z 7→ a + z
have only one, namely ∞. It is certainly no coincidence that the simplest
resurgence monomials that permit object synthesis are precisely the twisted
ones (c 6= 0), for whom the antipodal symmetry is restored, and that the
twistless monomials (c = 0), though apparently more simple, turn out to be
inadequate for this particular purpose.

Remark 3: Necessity of a one-parameter freedom.
The necessity of having at least one degree of freedom in object synthesis
has been known since the 1980s at least. This holds even for such elemen-
tary objects as linear systems (Example 3). Indeed, in most cases, the twist
c must exceed a certain lower bound cmin that depends on the invariants
{Aω}. There exists, however, an important exception : the so-called unilat-
eral classes, when for instance all non-vanishing Aω have their indices on the
same half-line. There any choice c > 0 will do ! This applies in particular to
Example 2 when A−1 = 0

Remark 4: Iso-invariant deformations.
There exists a closed system of formulae (see §6.7 and [E15]) to describe
the exact dependence (partial derivatives, asymptotics, etc) of our canonical
resurgence monomials as functions of their variable z, twist c and indices
ωi, ω̄i. As a result, one may write down the – often unexpectedly simple
– partial differential equations which govern the sundry deformations (iso-
invariant, iso-monodromic, iso-resurgent, iso-Galoisian, etc) of our synthe-
sised objects.

Remark 5: WB derivations and WB monomials : unequal status.
Working with well-behaved alien derivations is merely convenient, whereas
the recourse to well-behaved resurgence monomials is truly indispensible.
There is a subtle difference here, which should be well understood. Indeed,
the choice of this or that system of WB alien derivations does not affect
the result : it simply gives us a comfortable basis of ALIEN to work with.
Besides, there is always the lazy option of working with the lateral alien
operators ∆±ω , the only drawback being that the corresponding invariants
A±ω cease to be first-order differential operators. In complete contrast, the
synthesised object very much depends on the choice of the system of WB
monomials. And in the absence of well-behaved monomials, canonical syn-
thesis would founder altogether.

Remark 6: Non-canonical synthesis.
Linear object synthesis (Example 3) is of course a very old subject. As for
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non-linear object synthesis, adequate methods (especially for situations like
in our examples 1,2,4) were evolved in the late 1970s (see [E2],[E3],[Ma]) but
they were not always explicit, much less canonical, except in a few special
instances.

4 Lesson Four: A surprise development in

KAM theory: the non-existence of Super-

multiple Small Denominators.

4.1 A few landmarks.

– Poincaré leaned (ca 1880) towards the view that the small denominators
occuring in Hamiltonian systems must generically create unsurmountable di-
vergence in the so-called Lindstedt series (the formally quasiperiodic Fourier
series which describe the motion).

– The first truly general convergence results in the presence of small denom-
inators were established ca 1940 by Siegel [Sie1][Sie2], but under unnec-
essarily strong diophantine assumptions, and moreover in non-hamiltonian
situations, where the risk of SSD (supermultiple small denominators , ie small
denominators aggravated by resonance) does not arise.

– Using successive approximations, Kolmogorov proved in 1954 his epoch-
making result about the survival of invariant tori near integrability (under
Siegel’s condition), thus indirectly establishing the convergence of the Lind-
stedt series – and proving Poincaré wrong. This set off an extremely active
line of research (Arnold, Moser, etc), known as KAM theory50.

– Cherry before World War II and (far more systematically) Bryuno and
Rüssmann in the 70s began proving small denominator results under a dio-
phantine condition weaker than Siegel’s and probably optimal (ie minimal),
known as Bryuno’s condition.

– towards the close of the 80s Yoccoz and in his wake Perez-Marco, us-
ing an original renormalisation approach, proved the optimality of Bryuno’s
condition for a number of non-linear problems (in low dimensions).

– about the same time Eliasson re-proved the convergence result for the
Lindstedt series near integrability, but directly, by a super-meticulous ex-
amination of their coefficients. This was a premiere of sorts, but it used a

50an acronym for the three main contributors : Kolmogorov, Arnold, Moser
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forbidding amount of analysis (Eliasson’s famed method of “sign compen-
sations”) and it somehow entrenched the impression that the SSD (super-
multiple small multipliers) were “really there”. Numerous epigones (mainly
Italians, Gallavotti etc, also Krikorian) took up and developed the method,
which came to be known as the “direct method” in KAM theory.

In the course of this Fourth Lesson, I shall draw on joint work by B. Vallet
and myself, and show, by purely algebraic or rather combinatorial arguments,
that the SSD actually do not exist. We shall focus on three closely related
problems, of slightly increasing difficulty :

– the so-called “correction” of resonant vector fields
– Floquet theory (differential equations with quasi-periodic coefficients)
– the survival of tori for near-integrable Hamitonian systems

4.2 Cor and Pre : differences/similarities.

Let X be a local, singular, analytic vector field with diagonal linear part X lin

and homogeneous components Bn :

X = X lin + B = X lin +
∑
n

Bn with (140)

X lin =
∑

1≤i≤ν

λi xi ∂xi and Bn = xn
∑

1≤i≤ν

bn,i xi ∂xi

In the non-resonant case, X is formally linearisable, even analytically so if
there is no quasiresonance. In the resonant case, however, the simplifica-
tion cannot be so thorough. The most we can hope for is to remove all
non-resonant terms, and allow resonant terms on one side of the conjugation
equation only. If we allow them on the left-hand side, we get familiar ob-
jects, the so-called normal or prenormal forms Xnor, Xpre, which we studied
at length in Lesson Two. But if we allow them on the right-hand side, we en-
counter another type of object, the so-called correction Xcor, with altogether
different properties, both formal and analytic.

X
conj.∼ X lin (non-resonant case) (141)

X
conj.∼ X lin +Xpre (resonant case , Xpre ∈ Reson) (142)

X −Xcor conj.∼ X lin (resonant case , Xcor ∈ Reson) (143)
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The main differences are these :

Xcor (“correction”) Xpre (“prenormal form”)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
unique (in any given chart) non-unique ( even after chart choice )

but unique mod [Reson,Reson]

generically convergent generically divergent-resurgent

interpretation: recondite interpretation: simple
(Gallavotti’s ‘Wick Invariant’) (geometrical-dynamical)

4.3 The ‘correction’ of resonant vector fields.

The corrected form X −Xcor and its linearising transformation Θcor :

X 7→ Xcorrd = X −Xcor (Xcor unique) (144)

X −Xcor = Θcor X
lin Θ−1

cor (Θcor non-unique) (145)

[X lin, Xcorrd] = [X lin, Xcor] = 0 (146)

both admit mould expansions :

Xcor =
∑

Carr• B• =
∑
r≥1

∑
Carrω1,...,ωr Bnr . . .Bn1 (147)

Θcor =
∑

Scarr• B• =
∑
r≥1

∑
Scarrω1,...,ωr Bnr . . .Bn1 (148)

with “frequencies” ωi :=<λ, ni > and with moulds Carr• (alternal) and
Scarr• (symmetral) that depend rationally on these frequencies. Here, we
shall leave Scarr• alone and concentrate on the mould Carr•. It is calculable
from the following induction :

vari Carrω =
∑

aωibc=ω

CarraωicCarrb −
∑

abωic=ω

CarrbCarraωic (149)

with the initial conditions :

Carr∅ = 0 ; Carr0 = 1 ; Carrω1 = 0 if ω1 6= 0 (150)

and with ‘variation operators’51 vari that act like this :

vari M
ω1,...,ωr := ωiM

ω1,...,ωr +Mω1,...,ωi+ωi+1,...,ωr −Mω1,...,ωi−1+ωi,...,ωr (151)

51for their geometric interpretation, see [EV2]
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Key lemma : Non-repetition of denominators in Carrω.
For sequences ω of a given length r and a fixed degeneracy pattern of order d
(see below) the correction coefficient Carrω, as a rational function of its r-d
independent variables ωi, has only poles of the form η−µ, with linear combi-
nations η of the ωi obtained by splitting unbreakable zero-sum sub-sequences
ω? of ω:

±η = ‖ω′‖ = −‖ω′′‖ (ω′ω′′ = ω? = (ωi, . . . , ωj)) (152)

and with a multiplicity µ no larger than the number of unbreakable, zero-sum
sequences ω? which, when split, can produce η. Moreover, although there is
in general no canonical “best way” of decomposing Carrω, there always exist
decompositions of the form

Carrω =
∑

mP

∏
i=1...sP

(ηP,i)
−µP,i with

∑
i

µP,i ≡ r − 1 (153)

which involve only effective poles η, with a multiplicity never exceeding the
intrinsic multiplicity µ and with integral coefficients mP bounded by:∑

P

|mP | ≤
(2r − 2)!

(r − 1)! r!
≤ 4r (r = r(ω); mp ∈ Z?) (154)

Comments and proof.
A fixed degeneracy pattern of order d is a set of d pairs (i, j) verifying
1 ≤ i ≤ j ≤ r and such that the sequence ω? = (ωi, . . . , ωj) be unbreakable
with zero-sum. “Unbreakability”, we recall, rules out non-trivial factorisa-
tions ω? = ω′ω′′ with either ‖ω′‖ = 0 or ‖ω′′‖ = 0, but it does not rule out
non-trivial factorisations of the form ω? = ω′ω′′ω′′′ with a zero-sum middle
factor ‖ω′′‖ = 0.
What the above lemma tells us about the multiplicities µ of the poles η−µ

amounts to this: the denominators η of Carrω undergo no repetitions un-
less they are already repeated within the sequence ω, these repetitions being
induced by the degeneracy pattern itself. This is in sharp contrast to the
behaviour of most other moulds, such as sa•, musa•, etc, and all prenormal-
isation moulds pran•.
Thus, if ω has even length r = 2r′ and the following degeneracy pattern:

0 = ω1 + ωr; 0 = ω2 + ω3 = ω4 + ω5 = · · · = ωr−2 + ωr−1 (155)
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(which leaves as independent variables ω1 and ω2, ω4, ω6, ωr−2) we have on
the one hand, for all coefficients pranω 52:

pranω = −(ω1)−r
′
r′−1∏
i=1

(ω1 + ω2i)
−1 (156)

with a “huge” multiplicity ( either r′ or 1+r′) for ω1 ; and on the other hand,
calculating Carrω by the procedure which we shall spell out in a moment,
we find:

Carrω = (−1)r
′−1(ω1)−1

∏
1≤i≤r′

(ω2i)
−1(ω1 + ω2i)

−1 (157)

in full agreement with the above lemma, and with no unwarranted repetition
of poles.

We say that a ZUS (short for “zero-sum, unbreakable sequence”) ω? is
adjacent to a component ωi if ωi either initiates or terminates ω? (as its first
or last element) or if it immediately precedes or follows ω?. Thus, any ωi has
at most four distinct adjacent ZUS. If ωi initiates a (necessarily unique) ZUS
ω+, we set r+

i = r(ω+) = length of ω+ and, if not, we set r+
i = 0. Similarly,

if ωi terminates a (necessarily unique) ZUS ω−, we set r−i = r(ω−) = length
of ω− and, if not, we set r−i = 0.
We can now state the two selection rules for the index i of vari. They read:

[C1] {0 < r+
i + r−i }

[C2] {0 < r+
i + r+

i+1 or 0 = r+
i+1} and {0 < r−i + r−i−1 or 0 = r−i−1}

and can be interpreted as follows:
[C1] says that ωi should be the first or last component of some ZUS, or both.
[C2] says that ωi should not be squeezed between two adjacent ZUS ω? and
ω?? such that ω? ⊂ ω??. It says, too, that if ωi is externally adjacent to some
ZUS ω?, it should also be internally adjacent to some other ZUS ω?? that
overlaps with ω?, but doesn’t contain it.

There clearly exist 25 = 55 distinct adjacency types T1, T2, . . . , T25 but a
careful check shows that only 8 = 32 − 1 of them, namely T1, T2, . . . , T8 are
allowed under the selection rule [C1] + [C2]. All licit and illicit adjacency
types are listed in the table below, where all sub-sequences d. . . e or b. . . c
squeezed between two opposite upper or lower brackets (facing one another)
are assumed to be of ZUS type.

52more accurately, for all prenormalisations that are free of parasitical singularities, like
the royal or regal one, but for the others the phenomenon of “supermultiplicity” is either
just as bad or worse.
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licit illicit illicit

T1 bωi c c T9 ωi T17 bb cbωid c cd e

T2 dbωie T10 ωid c e T18 bb cbωid c ed c

T3 db bωie c c T11 bb cωi T19 db bωied c ed c

T4 bωid c cd e T12 bb cωid c e T20 b a db cωied c e

T5 b a db cωie T13 dbωieb c c T21 d a bb cωied c e

T6 db bωied c cd e T14 bb cbωi c c T22 d a bb cbωie c c

T7 b a db cbωie c c T15 bωid c ed c T23 b a db cbωied c ed c

T8 b a db cbωied c cd e T16 d a bb cωie T24 d a bb cbωied c cd e

T25 d a bb cbωied c ed c,

The next step is to prove that any ω, whatever its degeneracy type, has
at least one licit component ωi . In fact, it always has two, and often much
more : see [EV2].

A linear combination η = ωp + · · · + ωq is said to be a formal pole of
the sequence ω if it can be obtained by breaking up some ZUS. The formal
multiplicity of

[
η
ω

]
of η in ω is defined as being the number of ZUS which,

when split, can produce η.

Collecting all the above results, rewriting the induction rule as follows :

Carrω =
1

ωi
{+Carrω

1 − Carrω
2

+
∑

Carrω
3

Carrω
4 −

∑
Carrω

5

Carrω
6}

with

ω1 = (. . . , ωi−1 + ωi, . . . ) ; ω2 = (. . . , ωi + ωi+1, . . . )

ω3 = ω34ωiω
43 for ω = ω34ωiω

4ω43

ω6 = ω65ωiω
56 for ω = ω65ω5ωiω

56

and taking care of applying this rewritten induction rule for licit ωi’s only,
we can easily verify, by going through all the 8 licit cases, that the actual
multiplicity of η as pole of the rational function Carrω is no larger than the
formal multiplicity of η in the sequence ω. QED
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Arborification.
The above argument shows the absence of SSD (supermultiple small denomi-
nators) but is not enough to establish the convergence of Xcor under Bryuno’s
condition. Indeed, the straightforward mould expansion (147) is usually di-
vergent. But it can easily be rendered convergent by resorting to the usual
trick of arborification-coarborification (see §6.1) :

Xcor =
∑

Carr•
≺ B•≺ =

∑
r≥1

∑
Carrω1,...,ωr≺ Bn1,...,nr≺ (158)

and by dutifully ‘arborifying’ the whole argument that we went through.
Thus the induction rule becomes :

vari Carrω
≺

=
∑
ωi∈a≺
ωi<b≺

Carra
≺

Carrb
≺ −

∑
ωi∈c≺
ωi>b≺

Carrb
≺

Carrc
≺

(159)

The sums now extend to all connected sub-trees b≺ of ω≺ either directly
following or preceding ωi and a≺ (resp. c≺ ) denotes the remaining part of
ω≺, with the arborescent order inherited from the parent sequence ω≺. The
variance operator vari also must be arborified. The transposition goes like
this:

vari Carrω
≺

= ωi Carrω
≺ − Carrη

≺
+
∑

Carrσ
≺

(160)

where η≺ denotes the unique arborified sequence obtained by contracting
ωi with its (necessarily unique) immediate predecessor ωi− ; and the sum

∑
extends to all arborescent sequences σ≺ obtainable by contracting ωi with
any one of its immediate successors ωj ( ie all ωj such that ωj− = ωi). For
details and numerous examples see [EV2].

The upshot is that not only is the correction Xcor always analytic under
Bryuno’s diophantine condition but also that its analyticity owes nothing to
any so-called compensation of supermultiple small denominators, given that
these SSD quite simply do not exist.

4.4 Application to Floquet theory.

Floquet theory deals with differential equations whose coefficients are q.p.
(quasiperiodic) functions of the variable. The central difficulty, as with the
correction or KAM theory, comes from the small denominators, which inte-
gration creates at every step. Let us consider a simple but fairly typical case,
that of a homogeneous linear differential system :

∂tX(t) = U(t)X(t) (161)
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for a q.p. matrix U(•) with frequencies in a fixed set Ω :

U(t) :=
∑
ω∈Ω

e i ω t Uω (Uω = const , t ∈ R) (162)

ω ∈ Ω := λ1Z + λ2Z + · · ·+ λν Z (163)

An important, very popular sub-case is :

U(t) := l A+ εB(t) = l A+ ε (
∑

e i ω t Bω) (164)

(A , Bω constant matrices , 1 << l , ε << 1) (165)

Some notations.
The method is to reduce (161) to a trivial equation

∂t Y (t) = V Y (t) with V = Const (166)

by means of a change of unknown

X(t) = Θ(t)Y (t) (167)

The problem thus reduces to finding a q.p. matrix Θ(•) verifying :

V + Θ−1(t) ∂t Θ(t) = Θ−1(t)U(t) Θ(t) (168)

On the space of q.p. matrices with frequencies in Ω, i.e. of the form (162),
let there be defined the following operators :

V := (∂t − ad(V )) ; V := (∂t − ad(V ))−1 (169)

The ‘derivation’ V acts on all components e i ω t Uω. The ‘integration’ V acts
unambiguously only on those components that are non-constant (ω 6= 0). For
instance, if we take for Uω the general matrix [aj,k] and for V the diagonal
matrix with spectrum {ivj}, we get for each ω 6= 0 :

V (eiωt[aj,k]) = eiωt[bj,k] with bj,k =
aj,k

i(ω − vj,k)
; vj,k := vj − vk (170)

A similar formula holds for a general input V and, in all cases, the only
denominators to appear are the (ω − vj,k), which of course includes the ω
themselves (for j = k). We call such denominators intrinsic53.

53as opposed to the extrinsic denominators which bedevil all approximation methods.
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The occurrence of (potentially small) denominators other that the ω
makes it necessary to impose a modified form of Bryuno’s classical diophan-
tine condition :

S(λ) :=
∑
k

2−k log(
1

$(2k)
) <∞ (171)

with

$(K) := inf |
∑

mi λi| for
∑

mi λi 6= 0 and
∑
|mi| ≤ K (172)

Here, we must replace S(λ) by Sv(λ), with the same definition as in (171),
but relative the diophantine gauge $v(K) :

$v(K) := inf |(
∑

miλi)− (vj − vk)| (173)

Everything hinges on the arithmetics of the spectrum iv = {iv1, . . . , ivn}
of the constant matrix V . The parameters vj are the so-called Floquet ex-
ponents.54 They are defined only modulo Ω (or, exceptionnaly, modulo a
slightly larger group), but they possess a “principal determination” 55, and
the way to calculate the latter is as follows : start from the fundamental ma-
tricial solution X(t) of (161), with initial conditions X(0) = I and of course
detX(t) 6= 0; then follow a continuous determination of (1/t) logX(t); lastly
take the limit of its spectrum as t→ ±∞.

Since the frequencies λi that span Ω were assumed to verify the Bryuno-
type condition (171)+(173), we can pick ε ≤ ε0(B) small enough to ensure
the convergence not only of the familiar-looking series :

C =
∑
r

εr
∑
ωi

Carrω1,...,ωrBωr . . . Bω2Bω1 (174)

Θ = 1 +
∑
r

εr
∑
ωi

ei (
P
ωj) t Scarrω1,...,ωrBωr . . . Bω2Bω1 (175)

but also of these two new series :

C =
∑
r

εr
∑
ωi

CarrBω1 ,...,Bωr (176)

Θ = 1 +
∑
r

εr
∑
ωi

ei (
P
ωj) t ScarrBω1 ,...,Bωr (177)

54For the cognoscenti : in the ‘hyperbolic’ case, the vj may possess an imaginary part,
which creates in the ivj a real part that corresponds to the so-called Lyapunov exponents.

55which in the case of sl(2,R) reduces to a classical (but generally complex) ‘rotation
number’.
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The first pair of series is clearly patterned on the expansions which we
found for the “correction” of a resonant vector field (see §4.3 supra). The
second pair is derived from the first by applying a simple transposition rule
which can be easily grasped from the following example, for a length r = 3:

Carrω1,ω2,ω3Bω3Bω2Bω1 :=
1

3

( 1

ω1(ω1 + ω2)
− 1

ω1ω3

+
1

ω3(ω2 + ω3)

)
Bω3Bω2Bω1

−→ CarrBω1 ,Bω2 ,Bω3 := +
(−1)3

3

(
(eiω3Bω3)(V ((eiω2Bω2)(V e

iω1Bω1))
)

−(−1)3

3

(
(V eiω3Bω3)(e

iω2Bω2)(V e
iω1Bω1))

)
+

(−1)3

3

(
(V ((V eiω3Bω3)(e

iω2Bω2)))(e
iω1Bω1)

)
Since the coefficients Carr• (unlike Scarr•) vanish for ω1 + · · ·+ ωr 6= 0,

the series C (unlike Θ(t)) is t-constant, as indeed it should be. Nonetheless,
in order to properly carry out the above transposition, one should take care of
adopting not any expression of Carr• and Scarr•, but a suitably symmetrised
one. Even so, the expression is not unique, but this does not affect the one-
to-one character of the transposition, since to each algebraic identity of type :

1

ω1(ω1 + ω2)
+

1

ω2(ω1 + ω2)
=

1

ω1ω2

(178)

there corresponds an non-commutative integration-by-parts identity:

V ((eiω2Bω2)(V (eiω1Bω1))) + V (V (eiω2Bω2))(e
iω1Bω1))) =

(V (eiω2Bω2))(V (eiω1Bω1)) (179)

For V = 0, the series (176),(177) coincide with the series (174),(175).
So by construction they are guaranteed to converge, since at the outset the
perturbation εB(•) was assumed to be small enough.

For V 6= 0 on the other hand, the series (176),(177) converge only if Sv(λ)
is close enough to S(λ). If this already holds for the ‘principal determination’
v := u, so much the better, for that means that our construction is at an
end : U(•) is indeed of the form V − C + εB(•) for some matrix V with
spectrum iu (we may even, if we so wish, exactly calculate that matrix) and
the normalising matrix Θ(•) is explicitly given by (177).

When applied to a Floquet equation such as (161)+(164), the above con-
siderations immediately establish the reducibility theorem56 for a l-set of

56ie the existence of a q.p. non-singular matrix Θ(t) that reduces the given equation
(161) to the trivial form (166).

71



positive Lebesgue measure. In fact, a slight refinement of the argument57

yields reducibility for a l-set of full measure. The phenomenon was first dis-
covered by Eliasson (by his own methods) and then extended by Krikorian
(by much the same methods). See [El1],[EL2],[Kri].

4.5 Application to KAM theory.

We shall perforce remain extremely sketchy. We work under the classical
(analytic) KAM assumptions, ie we perturb an integrable hamiltonian h :

h(y) = < λ, y > + < y,Q, y > =
∑

λi yi +
∑

Qi,j yi yj (180)

(with Q-independent basic frequencies λi) into a non-integrable H :

H(x, y) = h(y) + ε b(x, y) (x ∈ Tν , y ∈ Rν
0) (181)

= < λ, y > +
∑
m,n

Hm,n(x, y) (182)

and we wish to establish, under Bryuno’s (not Siegel’s) diophantine assump-
tion on the λi’s, the convergence, for y = 0 and for small enough values of
the perturbation parameter ε, of the “uncorrected” Lindstedt series :∑

Hm,n(x, y) =
∑

cm,n(ε) e2πi<x,m> yn =
∑

cm,n(ε) e2πi<λ,m> t yn(183)

ω := < m,λ >= “frequency” (m ∈ Zν) (184)

η := |n| − 1 =
∑

ni − 1 = “grade” ≥ −1 (n ∈ Nν) (185)

We prefer to work with fields rather than their potentials. The thing is
to partially “correct” and partially “normalise” 58 our field XH :

XH −Xcor conj∼ X lin +Xnor (186)

frequency(Xcor) = 0 , frequency(Xnor) = 0 (187)

grade(Xcor) = 0 , grade(Xnor) 6= 0 (188)

by allowing only terms of zero (resp non-zero) grade on the left- (resp right-
hand) side of (186). Like in §4.3 the correction still possesses a mould ex-
pansion of type :

Xcor =
∑
r≥1

∑
Bicarr

(ω1
η1

,...,
,...,

ωr
ηr

)
XHmr,nr . . . XHm2,n2XHm1,n1 (189)

57by playing on the indeterminacy of the Floquet exponents, which enables us to change
vi into vi + ωi with ωi in Ω and large enough, so as to make Sv(λ) as close to S(λ) as
necessary.

58in the sense of §2. Note that in this case, due to symplecticity, there is no difference
between normalising and prenormalising : all prenormalisations coincide with one another
and with the normalisation.
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with frequencies ωi :=<mi, λ> and grades ηi := −1 + ‖ni‖. The normal part
Xnor also has a similar mould expansion, but we need not worry about it,
since it vanishes for y = 0 and so does not contribute to the Lindstedt series.

The alternal mould Bicarr• is more complex than, but essentially similar
to, the mould Carr• of §4.3. In fact, Bicarr• reduces to Carr• when all
the grades ηi are 0 or, more generally, when to each vanishing partial sum
ωi + · · ·+ωj = 0 there corresponds a vanishing partial sum ηi + · · ·+ ηj = 0.

To cut a long story short : we can duplicate in this case all the steps
of §4.3 and prove, once again, the non-occurence of supermultiple small de-
nominators, except that now the formal multiplicity of a divisor is exactly
twice what it was in §4.3. That apart, precious little changes. We still must
arborify to get the convergence of Xcor. This establishes, for a small enough
pertubation parameter ε, the convergence of the Lindstedt series for the cor-
rected hamiltonian. But a standard argument going back to Poincaré (known
as “killing the constants” and using the possibility of changing the integra-
tion constants) readily yields the convergence of the Lindstedt series for the
given hamiltonian itself.

4.6 KAM theory “in three theorems”.

Since we are on this subject of KAM theory, I cannot resist mentioning that
the formalisation approach applies with equal success to three distinct cases,
which between themselves cover almost the whole spectrum of possibilities :

(1) The general case: no assumption on λ whatsoever.
The proper tool here is the (genuine) theory of compensation59 and its com-
pensators. We get special, divergent but resummable expansions of the move-
ment, valid for nearly optimal time intervals −t1(ε) < t < t2(ε).

(2)Maximal resonance: all λi’s commensurate.
There are no small denominators at all. There is divergence, but of a per-
fectly manageable sort : resurgent and exactly resummable. We therefore get
a good description of the movement, including the tendency towards escape
(the so-called Arnold diffusion).

(3) The generic case: λ diophantine.
This is the case we have just discussed : we have a Cantor of surviving in-
variant tori near integrability. We cannot beat Kolmogorov’s original proof
for brevity or elegance, but we dispense with the non-intrinsic approxima-
tion process inherent in that proof. We also get behind the “true reasons”

59see §4.7 infra and [E9].
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for the convergence of the Lindstedt series, by a direct examination of their
coefficients, and unravel the mechanism that inhibits the occurence of SSD.

4.7 Genuine versus illusory compensation.

To preclude any terminological confusion, let us point out that the notion of
“sign compensation”, as used by the “Italo-Nordic KAM school” ( Eliasson,
Gallavotti, etc) bears no relation whatsoever to the genuine notion of com-
pensation as introduced and used by us in the late 80’s ([E9],[E10]). The
latter belongs to an altogether different context, namely that of local objects
with a Liouvillian (ie non-diophantine) spectrum. Even when such objects
can be formally linearised, they generically resist analytical linearisation.
However, after ramifying one, two, or at the utmost three coordinates (ie by
considering expansions involving non-entire powers of these coordinates), it
is always possible to construct a ramified and yet effective (as opposed to
formal) linearisation of these Liouvillian objects 60. The real compensation
at work here takes place within the so-called “compensators”, the simplest
of which have the form:

z σ0,σ1,...,σr :=
∑

0≤i≤r

zσi
∏
j 6=i

(σi − σj)−1 (z ∈ C• , σi ∈ R+) (190)

When the exponents σi are pair-wise different, but very close to each other,
the coefficient in front of the power zσi (which has a genuine, individualised
existence) becomes very large and yet, due to a true phenomenon of com-
pensation, the finite sum on the right-hand side of (190) remains bounded.

To recap, let us illustrate the difference on a trivial, yet telling example:

Bogus compensation: f(ω1, ω2) := 1
ω1 (ω1+ω2)

+ 1
ω2 (ω1+ω2)

≡ 1
ω1 ω2

Genuine compensation: gt(σ1, σ2) := tσ1
σ1−σ2

+ tσ2
σ2−σ1

5 Lesson Five: A Tale of Three Structures:

Singular Perturbations; Multizetas; ARI/GARI

5.1 Dimorphy : functional or numerical.

Three interlinked structures.

60inside ramified neighbourhoods of the origin with spiral-like boundaries. Compensa-
tion (in our sense) also comes into its own in KAM theory, but in statements like §4.6,
case (1), and not at all for establishing the convergence of the Lindstedt series
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The first “structure” referred to in the title cannot, alas, be seriously dis-
cussed in this Survey, but it deserves at least a passing mention, because this
is the development which in a sense sparked off everything. It is the theory
of singular perturbations and co-equational resurgence. Singular peturbation
parameters typically sit in front of the highest-order derivative in ODEs or
PDEs. They are ubiquitous in physics, and invariably give rise to divergent
expansions, which fortunately are often resurgent and resummable. Their
resurgence, however, is unlike any other. We call it co-equational because it
is loosely dual to equational resurgence61. Whereas equational resurgence is
governed by one single Bridge Equation62, co-equational resurgence requires
two Bridge Equations for its complete description. Moreover, the whole edi-
fice of co-equational resurgence is underpinned by a novel algebraic structure,
which operates with two sets of parameters, the ui’s that get added and the
vi’s that get subtracted. As it gradually emerged, the proper framework to
deal with these operations was a new Lie algebra ARI with its group GARI.
Then, roughly ten years after its cristallisation, the new-fangled algebraic
apparatus was found (ca August 1999) to provide the key – some of the keys,
at least – to another extremely active subject : the arithmetics of multizetas
(or MZV, for Multiple Zeta Values) and the more general phenomenon of
dimorphy.

“Dimorphous dimorphy”.

Strange to say, but the notion of dimorphy is itself ‘dimorphous’ :

(i) For a space DD of functions, dimorphy means closure under two distinct
products : usually point-wise multiplication and some form or other of con-
volution63.

(ii) For a space D of numbers, dimorphy means being a countable Q-ring and
possessing two distinct, natural bases {αm} and {βn}, each with its countable
indexation m and n 64, with finite conversion laws :

αm ≡
∑
n

Hn
m βn ; βn ≡

∑
m

Km
n αm (191)

61ie the sort of resurgence that is carried, not by parameters, but by the active variable(s)
of a (differential, partial-differential, functional, etc) equation.

62we saw many forms of that B.E., but it is essentially one equation.
63see for example the algebra of biresurgent functions in [E13], §4
64m an n usually do not range through N , but through more complex sets, like the

monoid generated by N.
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and with two distinct ways of calculating the one and only product on D,
which is ordinary number multiplication :

αm αn ≡
∑
r

A r
m,n αr ; βm βn ≡

∑
r

B r
m,n βr (192)

All four sums have to be finite, with rational constants H,K,A,B.

Clearly, since one may always concoct artificial bases {αm},{βn} to meet
the above conditions, the whole emphasis in this notion of numerical dimor-
phy must lie on the naturalness of the two bases . This may seem a rather
shaky foundation for a mathematical definition, but we venture to suggest
that in fact it is not : in all known instances of dimorphy, there is no scope
for hesitation ; the two bases {αm},{βm} are clearly there for all to see, un-
mistakably nature-given, whereas it often takes a considerable amount of toil
to extract the hidden core of D, which usually is an algebraically free system
{γr} of irreducibles. This third set {γr}, typically, lies buried deep below the
surface and, at least when taken in canonical form, tends to be found exactly
mid-way between the two ‘emerging’ sets {αm},{βn}. So, even though it may
be argued that numerical dimorphy is, ultimately, pure māyā, it is the sort
of māyā that you must work hard to dispel. . .

In any case, functional and numerical dimorphy go hand in hand, and
the proper framework for their joint investigation would seem to be, not
the so-called ‘theory of periods’ 65, but the twin systems NNaa,Naa, whose
construction, very roughly, goes like this :

(i) We produce the function germs f (of z, at ∞) in NNaa ‘out of nothing’,
i.e. from f(z) ≡ 1, by taking larger and larger closures under the (direct and
reverse) operations +,×, ∂z, ◦, with Q or A as scalar field. Very early on in
this enlargement process, chronic divergence appears in the formal series or
transseries f̃ which ‘expand’ at ∞ the germs f in NNaa .

(ii) We carefully refrain from introducing artificial derivations onNNaa, for fear
of compromising the natural character of the construction. Rather, we ask :
are there − already, without our doing − exotic derivations (i.e. derivations
not generated by ∂z) that act on NNaa and respect its natural topology ? And
we find that there is indeed a teeming profusion of them − two systems in
fact, the alien derivations ∆ω and the foreign derivations ∇ω . The reason

65despite all the hullabaloo about ‘periods’, the constants there are given pell-mell, with
no natural indexation, and all the symmetries central to dimorphy are broken, beginning
with the sum/integral symmetry.
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for this plethora of exotic derivations is the omnipresence of divergence in
NNaa : to analyse this divergence, qualitatively and quantitatively, suitable
operators are called for, which are precisely the exotic derivations.

(iii) To produce Naa from NNaa (i.e. numbers from function germs, monics from
monomials) we do not evaluate our germs at given points 66. Rather, we let
the exotic derivations act on these germs, and it turns out that the exotic
derivatives of our monomials are expressible as sums of ‘simpler’ or ‘earlier’
monomials, with well-defined, generically transcendental scalar coefficients.

(iv) We harvest all these coefficients, declare them to be ‘monics’, and call
Naa the ring generated by them.

The advantage of exotic derivation over pointwise evaluation lies not at
all in the nature of the constants being produced (they are much the same
with both methods) but rather in the orderliness of the procedure, which
turns out monics directly in mould form, automatically gives them the right
type of indexation, and tells us to which fundamental symmetry type they
belong (as moulds).

There are at least four major ‘domains of dimorphy’, of increasing size,
in Naa. They comprise, respectively :

(i) the multizetas

(ii) the general hyperlogarithmic monics (see §4)

(iii) the monics associated with monomials that verify affine differential equa-
tions, with coefficients in Q[z] or A[z]

(iv) the monics associated with monomials that verify ‘bipolynomial’ 67 dif-
ferential equations, again with coefficients in Q[z] or A[z]

The third and (especially) fourth domain of dimorphy are incredibly large
and would seem to encompass more or less all constants encountered in ‘real
life’. In fact, dimorphy appears to extend as far as he sight reaches : the whole
of R’s explorable-constructive part seems to be ‘dimorphic’ to the core.

Needless to say, these constructions certainly admit many variations, and
their exhaustive investigation (for instance extending to Domains 2,3,4 the

66say, rational or algebraic points.
67‘bipolynomial’ means that the differential equation may involve not only ordinary

products of f , f ′,f ′′, etc, but also convolution products of type /. .
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whole algebraic apparatus developped for Domain 1) would require huge ef-
forts – and might not repay them. Yet, strangely, the central fact about Naa,
namely numerical dimorphy, is easy enough to establish, at least for these
four domains. It directly mirrors the fact of functional dimorphy, which
follows from the stability of NNaa under the generalised ‘Borel-Laplace’ trans-
form, which itself is but an adaptation of the Fourier transform. So the least
we can say is that dimorphy is ‘well-connected’ ! It is definitely no accident
or freak of nature, but arguably NNaa’s most outstanding feature.

P.S. This section owes much to discussions I had with Joris van der Hoeven.

Are there exotic derivations acting on numbers ?

Dimorphy is by no means the end of the story. After identifying the phe-
nomenon and acknowledging its scope, we must raise another question : does
dimorphy really exhaust the arithmetico-algebraic structure of Naa, the ‘ex-
plorable part’ of R ? For instance, narrowing the focus to Domain 1 : do
the ‘quadratic relations’ of §5.3.1 exhaust the set of algebraic constraints on
multizetas ? One would assume the answer to be yes, but at the moment
the tool-kit of transcendence theory seems woefully inadequate to tackle
such questions68. That might change, however, if we had at our disposal,
for numbers, the sort of high-powered machinery that we have for functions,
namely : exotic derivations. We might then go about disproving the existence
of ‘undesirable relations’ R(α, β, . . . ) = 0 for numbers by subjecting them to
exotic differentiation, in search of a contradiction. The scheme works won-
ders with the resurgent or analysable functions and the alien derivations that
operate on them. So do there exist numerical derivations, non-elementary
and useful, which annihilate Q and A but act non-trivially on some count-
able ring D containing A (:= the field of algebraic numbers) ? Well, it is
too early to say, but our canonical decomposition for the (formal) multizetas
does strongly suggest a positive answer. More precisely, it does give us a
system of non-trivial derivations on the ring of formal multizetas, and these
derivations in all probability extend to the true multizetas. See §5.3.6 infra
and [E16].

68despite spectacular but localised break-throughs by Apéry and, quite recently, Rivoal.
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5.2 The overarching structure: ARI/GARI.

5.2.1 Bimoulds. Swap/Push. Contractions.

A few basic facts about the mould formalism may be found in §6.1. As for
bimoulds, they are moulds that depend on double sequences :

A• = Aw = Aw1,...,wr = A
(u1
v1

,
,
...
...
,
,
ur
vr

)

and, more crucially, that are subjected to operations which mix up intimately
the two sequences 69.

One such operation is the basic involution swap :

A•∗ = swap(A•) ⇐⇒ A
(u1
v1

,
,
...
...
,
,
ur
vr

)

∗ = A
( vr
u1...r

,
,
vr−1:r
u1...r−1

,
,
...
...
,
,
v2:3
u12

,
,
v1:2
u1

)
(193)

Another operation is the push :

A•∗ = push(A•) ⇐⇒ A
(u1
v1

,
,
...
...
,
,
ur
vr

)

∗ = A
(−u1..r
−vr

,
,
u1
v1:r

u2
v2:r

,
,
...
...
,
,
ur−1
vr−1:r

)
(194)

(We make constant use of the shorthand u12 := u1+u2, v1:2 := v1−v2 etc).

It is often convenient to represent bimoulds in the so-called ‘augmented
notation’, which consists in adding to any given sequence w a redundant
initial term w0 = (u0

v0
). The u-variables are then constrained by the condition

u0 + u1 + ..ur = 0 and, dually, the v-variables are defined upto addition of a
common constant. Thus :

A
(u1,...
v1,...

,ur
,vr

) ≡ augA
(u0,
v0,

u1,...
v1,...

,ur
,vr

)
with u0 := −u1..r ; v0 := 0. (195)

With the augmented notations, for instance, the push reduces to a unit shift
on the sequence w.

More operations on bimoulds shall be defined in the sequel, but nearly all
of them involve four specific types of sequence contractions, denoted by the
symbols e , d , c , b . These are always relative to some given factorisation
w = w1w2 . . .ws of the total sequence. The contraction rules are immedi-
ately apparent from the following example. Relative to the factorisation :

w = . . .a.b. . . = . . .(u3
v3

,
,
u4
v4

,
,
u5
v5

)(u6
v6

,
,
u7
v7

,
,
u8
v8

,
,
u9
v9

). . .

69otherwise they ought to be regarded as moulds whose indices wi = (ui

vi
) simply happen

to be in C2 rather than in C .
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the symbols e , d , c , b signal the following changes :

ae := (u3
v3

,
,
u4
v4

,
,
u56789
v5

) db := (u3456
v6

,
,
u7
v7

,
,
u8
v8

,
,
u9
v9

) (196)

ac := ( u3
v3:6

,
,
u4
v4:6

,
,
u5
v5:6

) bb := ( u6
v6:5

,
,
u7
v7:5

,
,
u8
v8:5

,
,
u9
v9:5

) (197)

with the usual abbreviations for sums and differences.
Thus we see that the contractor e adds to the upper-right element of a all

upper elements of neighbouring b, whereas the contractor c subtracts from
all lower elements of a the lower-left element of neighbouring b. And vice
versa for d and b. Indeed, the u-variables are meant to be added together,
and the v-variables to be subtracted from one another.

5.2.2 The Lie algebra ARI.

Consider the bilinear product ari :

C• = ari(A•, B•) ⇐⇒ Cw =
∑

w=b.c

(AbBc −BbAc)

+
∑

w=b.c.d

(AbcBbed −BbcAbed) +
∑

w=a.b.c

(AadcBbc −BadcAbc) (198)

with b 6= ∅, c 6= ∅ in all three sums (but a and d may be empty) .

The ari-bracket is anti-commutative, verifies the Jacobi identity, and turns
the space of all bimoulds such that A∅ = 0 into a Lie algebra, known as ARI.

5.2.3 The Lie group GARI.

Consider the binary law gari :

C• = gari(A•, B•) ⇐⇒ Cw =∑
w=a1.b1.c1...as.bs.cs.as+1

Adb
1e...dbseBa1c . . . BascBas+1cBbc

1

? . . . Bbc
s

? (199)

with summation over all s ≥ 1 and with factor sequences subject only to
bi 6= ∅ and ci.ai+1 6= ∅ (but consecutive factors ci and ai+1 may be empty
separately and the extreme factors a1,cs,as+1 and even the product cs.as+1

may also be empty, separetly or simultaneously ). Here B•? denotes the inverse
invmu(B•) of B• relative to the ordinary (associative, non-commutative)
product (mu or ×) on moulds :

C• = mu(A•, B•) = A• ×B• ⇐⇒ Cw =
∑

w=w1.w2

Aw1

Bw2

(200)
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This gari-product is clearly affine in A• but severely non-linear in B•.

It is also associative, and turns the set of all bimoulds such that A∅ = 1
into a Lie group, known as GARI, whose Lie algebra is ARI.

5.2.4 Some properties of ARI/GARI. Allied structures.

Like ordinary moulds, most interesting bimoulds fall into a few basic symme-
try types. The definition for symmetral/alternal and symmetrel/alternel is
exactly the same as for ordinary moulds, but in the case of symmetril/alternil
the additive contraction wi + wj changes to wi ⊗ wj with :

A...,wi⊗wj ,... := P (vi:j)A
...,uij

vi
,...

+ P (vj:i)A
...,uij

vj
,...

with P (t) := 1/t (201)

Thus, for a symmetral bimould A• and factor sequences of length 1 and 2 we
get :

A
(u1
v1

)
A

(u2,u3
v2,v3

) ≡ A
(u1,
v1,

u2,
v2,

u3
v3

)
+ A

(u2,
v2,

u1,
v1,

u3
v3

)
+ A

(u2,
v2,

u3,
v3,

u1
v1

)

but if A• is symmetrel (resp. symmetril) we get additional, ‘contracted’ terms

on the right-hand side, namely A
(u12,
v12,

u3
v3

)
+ A

(u2,
v2,

u13
v13

)
resp.

P (v1:2)A
(u12,
v1,

u3
v3

)
+ P (v2:1)A

(u12,
v2,

u3
v3

)
+ P (v1:3)A

(u2,
v2,

u13
v1

)
+ P (v3:1)A

(u2,
v2,

u13
v3

)

The set of all alternal bimoulds is a subalgebra of ARI .That of all sym-
metral bimoulds is a subgroup of GARI.

These are closure properties for moulds with a simple symmetry. But
ARI/GARI is specially well-suited for the study of bimoulds with a double
symmetry :

The set ARIal/al of bialternal even bimoulds (i.e. bimoulds that are alter-

nal and whose swappee is also alternal) constitute an important subalgebra
of ARI, and similarly the set GARIas/as of bisymmetral even bimoulds is an
important subgroup of GARI.

Here, “even” means that, for any given length r, the component Aw1,...,wr

is an even functions of w. Actually, ‘evenness’ is almost a consequence of
the double symmetry : thus, it may be shown that a bialternal bimould
automatically has even components for all lengths r, except at most for r = 1.
But to ensure stability under the ARI-bracket, length-one components also
have to be even. This subsidiary parity condition is signalled by underlining :
e.g. al/al and as/as.

Even more important for our purpose is the subalgebra ARIal/il of alternal
bimoulds with an alternil swappee , and the subgroup GARIas/is of symmetral
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bimoulds with an symmetril swappee . Here also, the parity condition implies
the evenness of length-one components, but is slightly more technical for
r ≥ 2.

The double symmetry has other consequences : it implies invariance under
some form or other of idem-potent transformation, like
(i) the push for ARIal/al ;

(ii) the spush for GARIas/as ;

(iii) variants of these for ARIal/il and GARIas/is (see[E14],[E16],[E17]).

It also ensures the existence of an involutive (or group) automorphism :
thus, the involution swap, which is no algebra automorphism on ARI as a
whole, becomes one when restricted to ARIal/al.

5.2.5 Some remarkable elements of ARI.

Bimoulds with a double symmetry do matter – and in more ways than one.
But they are rather thin on the ground, and not so easy to construct. So it
comes as a relief to know that most of them , and in some important cases all
of them , can be derived from a small set of rather elementary bimoulds, the
so-called bielementals belam•r/belim

•
r. These depend only on the component

length r and on a two-variable function xaxi(w1) := xa(u1)xi(v1) 70, or
rather the even part of xaxi . All components of belam•r/belim

•
r are ≡ 0,

except the component of length r, which reduces to a simple superposition :

belamw1,...,wr
r, xaxi = belam

(u1
v1

,...,
,...,

ur
vr

)

r, xaxi :=∑
i,j,m,n∈Zr+1
···<i≤m<j≤n<...

beli,j;m,nr xa(ui + ui+1 + · · ·+ uj−1) xi(vm − vn) ≡

∑
i,j,m,n∈Zr+1
···<i≤m<j≤n<...

1

2
beli,j;m,nr

(
xa(ui...j−1) xi(vm:n) + xa(uj...i−1) xi(vn:m)

)
(202)

with a swappee

belim•r,xaxi := swap(belam•r, xaxi) ≡ belam•r, xixa (203)

and with integer coefficients

beli,j;m,nr ≡ belj,i;n,mr :=
(−1)[m−i]r+[n−j]r [r−1]r!

[m−i]r! [n−j]r! [j−m−1]r! [i−n−1]r!
(204)

70with variables u1, v1 in two (possibly different) abelian groups.
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This calls for a few comments :

The above formulas use the cyclic augmented notation : we index the
variable ui, vi of the r-th component of a bimould on Zr+1 := Z/(r+1)Z
after adding the two ‘redundant’ variables u0 := −u1...r et v0 := 0 . The
inequalities under the

∑
sign are of course relative to the cyclic order on Zr+1

and, for any k ∈ Zr+1 , [k]r denotes the representative of k in {0, 1, . . . r}.

Formula (203) shows that the involution swap leaves bielementals un-
changed, apart from swapping xa and xi. But the main facts are these :

(i) all bimoulds belam•r, xaxi are bialternal
(ii) they vanish for odd or (iff r≥2) semi-constant functions xaxi
(iii) they are non-zero for even functions xaxi constant in neither variable
(iv) they generate most other bialternals under the ari-bracket.

5.2.6 Further remarkable elements of ARI.

As usual, we set : P (t) := 1/t and Qc(t) := c/ tan(c t) for some c ∈ C.
The identities

paw1
1 := P (u1) ; paw1,...,wr

r := P (u12...r) (pa
w1,...,wr−1

r−1 − paw2,...,wr
r−1 ) (205)

piw1,...,wr
r := (v1 + v2 + . . . vr) P (v1)P (v1:2)P (v2:3) . . . P (vr−1:r)P (vr) (206)

define (the former by induction, the latter directly) two series of rather pe-
culiar bimoulds, the pa•r and pi•r, which depend each on one set of variables
– the ui or vi, and have only one non-zero component, that of length r. The
pa•r and pi•r are alternal, and although not bialternal, they still possess a dou-
ble symmetry of sorts, since they are exchanged, not under the involution
swap, but under another important, if less general involution : the slap 71.
Moreover they self-reproduce under the ARI-bracket:

ari(pa•r1 , pa•r2) = (r1 − r2) par1+r2 (207)

ari(pi•r1 , pi•r2) = (r1 − r2) pir1+r2 (208)

which means that the subalgebras ARIpa and ARIpi of ARI generated by the
bimoulds pa•r or pi•r are each isomorphic to the algebra Difft spanned by the
differential operators tn+1∂t.

71wich acts as an automorphism, but only on the subalgebra ARIeupol ⊂ ARI consisting
of so-called eupolar bimoulds, which are particular rational functions of u or v
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5.2.7 Some remarkable elements of GARI.

By Lie exponentiation, the algebra isomorphisms just mentioned induce
group isomorphisms between each of the subgroups :
(i) GARIpa := expari(ARIpa)
(ii) GARIpi := expari(ARIpi)
and the group :
(iii) Diffeot := exp(Difft)
of formal, identity-tangent diffeomorphisms t 7→ t+O(t2) of C,0 unto itself.

Of special interest are the images par• ∈ GARIpa and pil• ∈ GARIpi

of the diffeomorphism f ∈ Diffeot defined by f(t) := 1 − exp(−t). Like
all bimoulds in GARIpa and GARIpi , par• and pil• are symmetral, but the
remarkable and unexpected thing is that their swappees pir• := swap(par•)
and pal• := swap(pil•) are symmetral too.

The bisymmetral pairs pal•/pil• and par•/pir• thus defined are central to
the theory. They do not fulfill the parity condition and so do not belong to
GARIas/as . Indeed, upto rescaling and under suitable additional conditions

(“eupolarity”), they are the only bisymmetral (bi)moulds 72 that depend on
one set of variables only ( u or v ) and whose r-th component is homogeneous
of degree -r.

Of the two pairs, pal•/pil• is the more important by far. It has a ‘eu-
trigonometric’ counterpart tal•/til•, obtained by replacing P (t) := 1/t by
Qc(t) := c/ tan(c t) and adding suitable corrective terms that involve only
even powers of c . See [E14].

These bisymmetral bimoulds enjoy an incredible number of properties
and sit at the hub of a galaxy of some sixty ‘special bimoulds’, which are
investigated in [E17] and whose applications far outstrip multizeta theory.

5.2.8 Further remarkable elements of GARI.

The scramble is a general bimould transform defined by :

A• 7→ B• = scramble(A•) with B• :=
∑

w∗ ∈ scram(w)

ε(w,w∗) Aw∗ (209)

where scram(w) is the set of all sequences w∗ = (u
∗
1
v∗1

,...,
,...,

u∗r
v∗r

) which have the

same length r as w = (u1

v1

,...,
,...,

ur
vr

) and are characterised by the property that

72being constant in one series of variables, bimoulds like pal•/pil•, par•/pir• etc are
often referred to as “moulds”.
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for each j ∈ {1, . . . , r}:

u∗1v
∗
1 + u∗2v

∗
2 + . . . u∗jv

∗
j =

∑
1≤i≤j

(
∑

pj,i−1<p≤pj,i

up)vqj,i (210)

for some pair {pj,k}, {qj,k} of intertwined sequences :

0 = pj,0 < qj,1 ≤ pj,1 < qj,2 ≤ pj,2 < · · · < qj,j ≤ pj,j < r

There are exactly r!! := 1.3 . . . (2r − 1) such sequences w∗. Each u∗j is a
sum of one or several consecutive ui and each v∗j is either of the form vj? , in
which case we set ε(w,w∗, j) := 1, or of the form vj? − vj?? , in which case we
set ε(w,w∗, j) := sign(j?? − j?). (Mark the inversion). Multiplied together,
these signs define the global sign factor ε(w,w∗) :=

∏j=r
j=1 ε(w,w

∗, j) in the
definition of the scramble transform.

In the above definition (209), A• was assumed to be a bimould, but it
could just as well be a mere mould, in which case Aw∗ should be interpreted
as Au

∗
1v
∗
1 ,...,u

∗
rv
∗
r . Thus, the scramble turns moulds and bimoulds alike into

bimoulds.
One of the reasons behind the importance of the scramble is that it pre-

serves the two basic symmetry types : if the mould or bimould A• is alter-
nal (resp. symmetral), so is the bimould B• = scramble(A•) .

Remarkable (bi)moulds tend to have remarkable ‘scramblees’. Thus the
symmetral mould V•(z), (see §6.7.7) which is central to equational resurgence
and Singular Systems, yields the bimould S•(x) := scramble(V•(x)), which
is central to the theory of co-equational resurgence and Singularly Perturbed
Systems . This theory is one of the three structures referred to in the title of
our Fifth Lesson. This being a hasty Survey, it must be given short shrift
here, but a detailed treatment is available in [E8].

Closely linked to the symmetral resurgence monomials V•(z) are the al-
ternal hyperlogarithmic monics V • = V •ω0

featuring 73 in the resurgence equa-
tions :

∆ω0 V•(z) = V •ω0
× V•(z) (211)

When scrambled, that mould yields the so-called tesselation mould
([E8]) tes• := scramble(V •), which dominates the geometry of co-equational
resurgence in the Borel planes, and possesses many arresting features, like
being locally constant in its two series of variables, the ui as well as the vi

73The lower index is actually redundant and may be dropped, since V ω1,...,ωr
ω0

≡ 0 unless
ω1 + . . . ωr = ω0
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(although tes• is a superposition of several highly complex functions). Thus
for r = 2, the tesselation coefficient :

tesw1,w2 := V u1v1,u2v2 + V u12v2,u1v1:2 − V u12v1,u2v2:1

is, contrary to appearances, locally constant on C4 and assumes only three
distinct values there, namely 0 and ±1 .

5.2.9 Basic complexity of ARI/GARI.

The basic complexity of ARI/GARI (as reflected in its main operations, as-
sociated structures, fundamental bimoulds, etc) is quite high. Thus, for a
given component length r, the inversion invgari in GARI or the Lie exponen-
tial expari of ARI into GARI resolves into a sum of a fast increasing number
(marked # in the table below) of terms, each of which fills upto half a line,
or more, of small print :

length r 1 2 3 4 5 6 7 8 . . .
#(invgari) 1 4 20 112 672 4 224 27 459 183 040 . . .
#(expari) 1 4 21 126 818 5 594 39 693 289 510 . . .

For r = 8, we already get six figure numbers, and spelling out the corre-
sponding formulas in full would take about one hundred pages. This means
that one must often rely heavily on automatic computation when explor-
ing the fringes and by-paths of ARI/GARI. Fortunately, however, the whole
field is so strongly structured, and so harmonious too, offering so many hints
and props to intuition, that facts and formulas are easy to guess and, once
guessed, quickly yield to rigorous proving. Writing down all these proofs is of
course another matter, due to the sheer mass of the facts already unearthed
or yet to emerge !

5.3 The arithmetics of multizetas.

5.3.1 Formal multizetas za•/ze•.

In the first encoding , the generalised or modulated multizetas are defined by :

Ze
( ε1
s1

,...,
,...,

εr
sr

)
:=

∑
n1>...nr>0

n−s11 . . . n−srr en1
1 . . . enrr (212)

with sj ∈ N∗ , εj ∈ Q/Z , ej := exp(2πiεj)
The second encoding may be directly defined, via the polylogarithms, but it
is more expeditious to derive it from the first encoding :

Zae1,0
(s1−1),...,er,0(sr−1) essentially

:= Ze
( εr
sr

,
,
εr−1:r
sr−1

,...,
,...,

ε1:2
s1

)
(213)
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Setting εj ≡ 0, ej ≡ 1, we get the usual or plain multizetas.

On its obvious domain of convergence <(s1) > 1,<(s12) > 2, . . . , the
series (212) defines a holomorphic function with a meromorphic extension to
the whole of Cr which in turn possesses :
(i) a remarkable singular locus,
(ii) remarkably simple multipoles described by the Bernoulli mould,
(iii) a ‘parity property’ reminiscent of the reflexion property of the Riemann
zeta function 74.

From the arithmetical point of view, however, the Q-ring generated by the
values of the multizeta function on Zr (at regular points or even at singular
ones, after canonical removal of the multipole ) is no larger than the Q-ring
generated (in fact : spanned) by its values on Nr. So we may restrict our
attention to the latter.

The multizetas, whether plain or modulated, are eminently ‘dimorphic’
entities : they are doubly closed under multiplication, since to the two encod-
ings there correspond two distinct ways of calculating their products. These
are the two classical systems of quadratic relations, which can be derived in
any number of ways. In pithy mould language, with the conventions of §6.1 ,
they can be enuntiated as follows :

(i) The mould Ze•, where defined, is symmetrel 75, and there is a unique ex-

tension to the divergent case that keeps it symmetrel and gives Ze( 0
1

) = 0 .

(ii) The mould Za•, where defined, is symmetral and there is a unique exten-
sion to the divergent case that keeps it symmetral and gives Za0 = Za1 = 0 .

But these two extensions do not exactly coincide. There is a slight discrep-
ancy, which calls for some simple corrective terms ([E14]) in the conversion
formula (213). Hence the mention “essentially” in the middle of (213).

All the indications, numerical and theoretical, are that the two sets of
‘quadratic relations’ do express the totality of algebraic constraints on mul-
tizetas. So we may confidently replace the true multizetas Ze•, Za•, which
at the moment are still largely beyond the reach of arithmetics 76, by their

74somewhat confusingly known as ‘functional equation’
75since the mould Ze• has two-storeyed indices ωi = ( εisi

), the contractions ωi+ωj must
of course be interpreted as ( εi+εjsi+sj

)
76despite the trail-blazing work of R.Apéry and T.Rivoal.
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formal or symbolic counterparts ze•, za•, written in lower-case letters and
subject only to
(i) the symmetrelity of ze•

(ii) the symmetrality of za•

(iii) the conversion rules (213)
and address the problem of unravelling all the algebraic consequences.

5.3.2 Generating functions zag•/zig•.

In scalar form, the multizetas are rather unwieldy, and it is convenient to
replace them by generating series, so tailored as to preserve the simplicity of
the two symmetries and the transparency of the conversion rule. The proper
definitions are :

zig
( ε1
v1

,...,
,...,

εr
vr

)
:=
∑
1≤sj

ze
( ε1
s1

,...,
,...,

εr
sr

)
vs1−1

1 . . . vsr−1
r (214)

zag
(u1
ε1

,...,
,...,

ur
εr

)
:=
∑
1≤sj

zae1,0
(s1−1),...,er,0(sr−1)

us1−1
1 us2−1

12 . . . usr−1
12...r (215)

In the formal case the components of the two new moulds zag•/zig• are
mere power series, but in the genuine case, i.e. of for the moulds Zag•/Zig•

built from the numerical multizetas, these power series sum up to meromor-
phic functions with interesting properties, such as verifying simple difference
equations ([E14]).

Moreover, we have the implications :

ze• symmetrel ⇐⇒ zig• symmetril

za• symmetral ⇐⇒ zag• symmetral

and the conversion rule (213) translates into :

swap(zig•)
exactly

= mu(zag•,mono•) (216)

Here, mono• is an elementary, constant-valued mould : up to rational factors,
its values are ‘monozetas’ ζ(s), hence its name. So for the generating func-
tions, the conversion rule essentially reduces to the involution swap. Remark
that formula (216) uses the primary mould product mu (see §6.1). But due
to the elementary nature of mono•, the right-hand side of (216) may also be
written as an (exceptionnally commutative) product in GARI. Indeed :

mu(zag•,mono•) ≡ gari(zag•,mono•) ≡ gari(mono•, zag•)
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Thus, studying the formal multizetas boils down to finding and describ-
ing all the symmetral/symmetril pairs of (essential) swappees zag•/zig• with
values in the ring of formal power series.

5.3.3 Immediate bipartion and arduous tripartition.

As a natural element of GARI, the mould zag• splits into two and even three
factors :

zag• = gari(zag•
I+II
, zag•

III
) (zag•

III
∈ GARIo.l.

as/is) (217)

zag• = gari(zag•
I
, zag•

II
, zag•

III
) (zag•

II
∈ GARIe.l.

as/is) (218)

The factors zag•
I
, zag•

II
, zag•

I+II
are of type “e.l.”, meaning that their

components of even/odd length are even/odd functions of w. The factor
zag•

III
on the other hand is of type “o.l.”, meaning that its components of

even/odd length are odd/even functions of w. Under the algebra isomor-
phisms of §5.3.4 infra, bimoulds of type “e.l.” (resp. “o.l.”) correspond to
bimoulds that are (in both cases) even functions of w but whose only non-
zero components have even (resp. odd) lengths 77. Hence the abbreviations
e.l. (even-lengthed) and o.l. (odd-lengthed).

But there is a major difference between (217) and (218). The first factori-
sation is elementary, immediate, and indisputably canonical, with the zag•

III

factor given by :

gari(zag•III, zag•III) = gari(imne(invgari(zag•)), zag•) (219)

where imne denotes the elementary ARI/GARI automorphism:

imne := impar ◦ neg : A
(u1
v1

,...,
,...,

ur
vr

) 7→ (−1)r A
(−u1
−v1

,...,
,...,
−ur
−vr

)
(220)

Since all elements of GARI have exactly one square root, (219) determines
zag•

III
and then (217) determines zag•

I+II
by division.

The difficulty with the second, more precise factorisation (218), which
consists in disentangling the factors zag•

I
and zag•

II
, is not its existence,

which again is quite straightforward, but its canonicity : there are infinitely
many ways of detaching the ‘polar-trigonometric’ factor zag•

I
, which carries

the π2-dependence, from zag•
I+II

, and the ‘right’ choice will be sketched in
§5.3.6.

77this applies only to the factors zag•
I

and zag•
II

.
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These factorisations hold not only in the formal, but also in the genuine
case, and thus lead to two canonical splittings of the Q-ring of multizetas,
one immediate, the other more recondite :

Zeta = Zeta
I+II
⊗ Zeta

III
(221)

Zeta = Zeta
I
⊗ Zeta

II
⊗ Zeta

III
with Zeta

I
= Q[π2] (222)

The ring Zeta
III

(resp. Zeta
I+II

) is generated by all irreducibles of odd length
(resp. by those of even length, plus the odd man out ζ(2) = π2/6 ).

5.3.4 The free generation theorem.

The Q-ring Zeta of formal multizetas, as well as the three factor-rings I,II,III,
are polynomial rings, that is to say, they are freely generated on Q by a
countable system of ‘irreducibles’. This holds equally for the plain and the
more general modulated multizetas.

Although it has been open for the better part of the nineties, this free
generation theorem is a very simple affair. The only difficulty is to establish
the closure under the ari-bracket of the space ARIal/il of all alternal/alternil

bimoulds (with the subsidiary ‘parity’ condition). The neatest proof consists
in observing that the space ARIal/al of bialternal bimoulds is (trivially) a
subalgebra of ARI, and in using either of the two explicit isomorphisms:

adari(pal•) or adari(par•) : ARIal/al ⇒ ARIal/il (223)

where adari(pal•) (resp. adari(par•)) denotes the adjoint action in ARI of
the bisymmetral mould pal• (resp. par• ) constructed in §5.2.6.

Observe that, while these isomophisms make it certain that ARIent
al/il is

a subalgebra, they do not exchange the subalgebras ARIent
al/al and ARIent

al/il

of ‘entire-valued’ bimoulds (i.e. bimoulds with values in the ring of formal
power series). In fact, these two subalgebras are not isomorphic.

The general entire-valued, symmetral/symmetril pair of swappees zag•/zig•

is then obtained by postcomposition in GARI of a particular zag• ( e.g. the
‘genuine’, ‘numerical’ Zag• or its first factor Zag•I ) by the general element

of GARI
ent/#
as/is = expari(ARI

ent/#
al/il ). Here, ent means entire-valued as usual,

and # denotes an additional condition which depends on the ring of multize-
tas that is being considered : thus for the plain multizetas, # simply means
constant in the v-variables. For the modulated multizetas, see §5.3.5 below.
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The problem has thus been completely linearised, and the free genera-
tors of Zeta, or irreducibles (other than π2), are seen to be in one-to-one

correspondence with the generators of ARI
ent/#
al/il as a vector space.

But as a Lie algebra, ARI
ent/#
al/il has far more structure on it than the Q-ring

Zeta of formal multizetas, and its linear generators may be further analysed
– down to Lie generators. This is where the exciting work on multizetas
actually begins !

5.3.5 Generators and dimensions.

The Broadhurst-Kreimer conjectures.
Let us consider jointly the plain multizetas (without unit roots) and the
Eulerian multizetas (modulated by the unit roots ±1) – the former because
of their obvious importance; the latter because, contrary to appearences,
they are actually simpler. Let Ps,r (resp. Es,r) be the smallest number of
irreducibles of length r and weight s (:= s1+. . .+sr) needed to produce, jointly,
a complete system of irreducibles for the plain (resp. Eulerian) multizetas.

Relying on extensive numerical computations and some inspired guess-
work, Broadhurst and Kreimer have conjectured that the dimensions Ps,r
and Es,r for the ‘genuine’, as opposed to ‘formal’, multizetas could be read
off the generating functions :∏

s≥3,r≥1

(1− xsyr)Ps,r ?
= 1− x3y

1− x2
+

x12y2(1− y2)

(1− x4)(1− x6)
(224)

∏
s≥3,r≥1

(1− xsyr)Es,r ?
= 1− x3y

(1− x2)(1− xy)
(225)

The two series of relevant algebras.
For any p ≥ 1 let Zp be the subgroup {0, 1/p, . . . , (p − 1)/p} of Q/Z and

let ARIent/Zp denote the subalgebra of ARI (it is one !) which regroups all
bimoulds A• :
(i) with u-variables ranging through C
(ii) with v-variables ranging through Zp

(iii) with values in the ring of formal power series in u
(iv) with the self-correlation constraints :

A
( u1
qv1

,...,
,...,

ur
qvr

) ≡
∑

qv∗i =qvi

A
(
qu1
v∗1

,...,
,...,

qur
v∗r

)
(∀ q | p) (226)
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and in particular (for q=p) :

A(u1
0
,...,
,...,

ur
0

) ≡
∑
v∗i ∈Zp

A
(
qu1
v∗1

,...,
,...,

qur
v∗r

)
(227)

The subalgebras directly relevant to the study of the multizetas modu-

lated by unit roots of order p are ARI
ent/Zp
al/al and ARI

ent/Zp
al/il . For p = 1 their

elements are simply v-constant bimoulds.

Eulerian multizetas and generators of ARI
ent/Z2

al/al .

For r = 1 and d even we set :

belaw1
1,d = ud1 (resp. (2−d − 1)ud1)) if v1 = 0 (resp. v1 = 1/2) (228)

and for r ≥ 1 and d even we set :

bela•r,d := belam•r,xaxi with xa(t) := td ; xi(0) := 0 ; xi(1/2) := 1 (229)

(i) All bimoulds bela•r,d (for r = 1, 2, 3 . . . and d = 2, 4, 6 . . . ) are non-zero,
bialternal,and self-correlated.

(ii) They freely generate a sub-algebra ARI
ent/Z2

al/al of ARI
ent/Z2

al/al consisting of

all bimoulds of type al/al that possess an extension of type al/il .

Eulerian multizetas and generators of ARI
ent/Z2

al/il .

(i) Each bialternal bela•r,d has a canonical counterpart or ‘extension’ bema•r,d,
of alternal/alternil type, self-correlated, and with a first non-zero component
(i.e. the one of length r) equal to the single non-zero component of bela•r,d.

(ii) These bema•r,d freely generate the algebra ARI
ent/Z2

al/il .

(iii) The Eulerian irreducibles correspond one-to-one to the bialternals span-

ning ARI
ent/Z2

al/al . More precisely, the number Es,r of independent irreducibles

of weight s and length r coincides with the dimension of the cell of ARI
ent/Z2

al/al

consisting of bimoulds of length r and total degree d = s− r.
(iv) This establishes the Broadhurst-Kreimer conjecture (225) for the formal
Eulerian multizetas 78.

Plain multizetas and generators of ARI
ent/Z1

al/il .

(i) For each even d there is a canonical pair of alternal/alternil swappees

78Instead of Eulerian multizetas, Broadhurst and Kreimer speak of ‘Euler sums’.
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ma•d/mi•d with initial components maw1 := ud1 , maw1 := vd1 and with a total
of d non-zero components.

(ii) It is conjectured that the ma•d freely generate ARI
ent/Z1

al/il .

This conjecture (formulated in a different, less flexible framework) has
been around for quite a while now, but it is rather crude and can be consid-
erably sharpened, by reasoning on bialternals. Indeed :

Plain multizetas and generators of ARI
ent/Z1

al/al .

We require three integer sequences α, β, γ (with α(d) ≡ β(d) + γ(d− 2)) :∑
α(d) xd := x6 (1− x2)−1 (1− x4)−1 (230)∑
β(d) xd := x6 (1− x2)−1 (1− x6)−1 (231)∑
γ(d) xd := x8 (1− x4)−1 (1− x6)−1 (232)

and three series of bialternals :

ekma•d/ekmi•d d even ≥ 2

doma•d,b/domi•d,b d even ≥ 10, 1 ≤ b ≤ β(d)

carma•d,c/carmi•d,c d even ≥ 8, 1 ≤ c ≤ γ(d)

of total degree d and with a single non-zero component of length respectively
1,2,4 . The definition of the first two pairs is straightforward:

ekmaw1
d := ud1 ; ekmiw1

d := vd1 (233)

domaw1,w2

d,b := fa(u1, u2) (ga(u1, u2))b−1 (ha(u1, u2))d/2−3b (234)

domiw1,w2

d,b := fi(v1, v2) (gi(v1, v2))b−1 (hi(v1, v2))d/2−3b (235)

with

fa(u1, u2) := u1u2(u1 − u2)(u1 + u2)(2u1 + u2)(2u2 + u1)

ga(u1, u2) := (u1 + u2)2u2
1u

2
2 ; ha(u1, u2) := u2

1 + u1u2 + u2
2

fi(v1, v2) := v1v2(v1 − v2)(v1 + v2)(2v1 − v2)(2v2 − v1)

gi(v1, v2) := (v1 − v2)2v2
1v

2
2 ; hi(v1, v2) := v2

1 − v1v2 + v2
2

The definition of the last pair, carma•/carmi•, is more roundabout. Ob-
serve first that the ekma•d are not free in ARI, but bound (for each degree d)
by exactly γ(d) independent relations of the form :∑
d1+d2=d+2

Rd1,d2
c [ekma•d1 , ekma•d2 ] = 0• (1 ≤ c ≤ γ(d) , Rd1,d2

c ∈ Q) (236)
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which result from the expansions :

[ekma•d1 , ekma•d2 ] =
∑

1≤b≤β(d1+d2)

Kb
d1,d2

doma•d1+d2,b
(Kb

d1,d2
∈ Q) (237)

Next, consider the moulds :

vima•d,c :=
∑

d1+d2=d+2

Rd1,d2
c [ma•d1 ,ma•d2 ] 6= 0• (238)

with Rd1,d2
c as in (100). By construction :

(a) vima•d,c is of alternal/alternil type
(b) its components of length 1,2,3 vanish
(c) its (non-vanishing) component of length 4 defines a bialternal mould,
which is precisely the sought-after mould carma•d,c

Now, the crude conjecture at the end of the last para can be replaced by
the much sharper, but also more tractable statements :

(i) The moulds ekma•d are free under the ari-bracket upto the contraints (100).
More precisely, the number P ∗s,r of linearly independent bialternals of length
r , degree d (and weight s := d + r) generated by the ekma•d is given by the
BK-like formula:∏

s≥3,r≥1

(1− xsyr)P ∗s,r = 1− x3y

1− x2
+

x12y2

(1− x4)(1− x6)
(239)

(ii) The moulds carma•d,k are free under the ari-bracket. As a consequence,
the number P ∗∗s,r of linearly independent bialternals of length r , degree d (and
weight s := d+r) generated by the carma•d,k is given by the BK-like formula :

∏
s≥3,r≥1

(1− xsyr)P ∗∗s,r = 1− x12y4

(1− x4)(1− x6)
(240)

(iii) In combination, the ekma•d and carma•d,k generate the bialternal algebra

ARI
ent/Z1

al/al , freely upto the sole constraints (100). As a consequence, the total

number Ps,r of linearly independent bialternals of length r , degree d (and
weight s := d+ r ) is given by the BK formula (224).

Unlike in the Eulerian case, the three above statements have been estab-
lished only upto length r = 7 (∀d) and remain conjectural beyond that. But
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the supporting evidence is overwhelming ([E16]) and and in any case they
have the merit of completely removing the weirdness of the artificial-looking
corrective term x12y2(1− y2)/((1− x4)(1− x6)) in the BK-formula : the ex-
planation is simply that to each ‘missing’ bialternal of length 2 (– there just
aren’t ‘enough’ doma•/domi• around –) there answers, under the transparent
mechanism (100)+(101)+(102), a ‘stop-gap’ bialternal of length 4 (– namely
the ‘unexpected’ carma•/carmi•–).

5.3.6 Canonical-explicit decomposition into irreducibles.

Let δn be the upper dilation operator on bimoulds and let τ s denote the
homogeneous projector that retains only the u-homogeneous part of total
u-degree s− r :

δn M
(u1
v1

,...,
,...,

ur
vr

)
:= n−r M

(u1/n
v1

,...,
,...,

ur/n
vr

)
(241)

τ s M
(u1
v1

,...,
,...,

ur
vr

)
:= M

(u1
v1

,...,
,...,

ur
vr

)||u-part of degree s− r (242)

There exists an explicit bimould loma•/lomi• :
– of alternal/alternil type
– with components depending on the ui’s alone and regular at the origin
– carrying only rational coefficients, ie with components in Q[[u1, . . . , ur]]
– with a length-1 component equal to 1/(1− u2

1)
– with a length-2 component that is a rational function of u1, u2

– with length-r components that are meromorphic functions of u1, . . . , ur
and possess a ‘minimal’ and yet (for r ≥ 3) infinite number of elementary
multipoles over the multi-integers.

This bimould loma•/lomi• possesses innumerable properties. A whole book,
mostly devoted to it, is currently being written. It (the bimould !) holds the
key to the arcanes of multizeta aritmetics, mainly because the “numerical”
Zag• and its factors can be reconstituded from it, by means of the following
relations, which involve the anti-action arit of ARI on BIMU and the anti-
action garit of GARI on BIMU :

garit(Zag•
II
) :=

∑
r even

B n1,...,nr
? arit(δnr loma•) . . . arit(δn1 loma•) (243)

garit(Zag•
III

) :=
∑
r odd

C n1,...,nr
? arit(δnr loma•) . . . arit(δn1 loma•) (244)

garit(Zag•
II+III

) :=
∑
r≥1

D n1,...,nr
? arit(δnr loma•) . . . arit(δn1 loma•) (245)

95



garit(τ sZag•
II
) :=

∑
r even

B s1,...,sr arit(τ sr loma•) . . . arit(τ s1 loma•)(246)

garit(τ sZag•
III

) :=
∑
r odd

C s1,...,sr arit(τ sr loma•) . . . arit(τ s1 loma•) (247)

garit(τ sZag•
II+III

) :=
∑
r≥1

D s1,...,sr arit(τ sr loma•) . . . arit(τ s1 loma•) (248)

In the first system of relations the summation extends to all integers
ni ≥ 1 but the sums are absolutely convergent. All three moulds B•? , C

•
? , D

•
?

are symmetral, of perinomal type79, and assume rational values.

In the second system of relations the summation extends to all odd in-
tegers si ≥ 3 but the sums are finite since s1 + · · · + sr = s. The three
new moulds B•, C•, D• are once again symmetral and of perinomal type, but
a priori transcendental. The third mould D• in particular constitutes (to-
gether with π2 which comes from the factor I) a complete and free80 system
of irreducibles for the formal multizetas. This also leads to the construction
of abstract numerical derivations – by all accounts an extremely promising
development ([E16],[E17]).

6 Reminders and Complements.

6.1 Moulds/bimoulds/comoulds. Basic symmetries and
operations.

6.1.1 Main operations on moulds and bimoulds.

Moulds are functions of a variable number of variables : they depend on
sequences ω := (ω1, . . . , ωr) of arbitrary length r = r(ω). The sum ‖ω‖ of a
sequence is simply

∑r
1 ωi. Sequences are systematically written in boldface,

with upper indexation when such is called for, and with the product denoting
concatenation: e.g. ω = ω1.ω2. The elements ωi which make up these
sequences are written in normal print, with lower indexation. The sequences
themselves are affixed to the moulds as upper indices A• = {Aω}, since
moulds are meant to be contracted

A•, B• 7→< A•, B• >:=
∑

Aω Bω

79This is a new class of functions, which are omnipresent in multizeta arithmetics. Their
properties are reminiscent of polynomial, periodic, and modular functions all at once !

80free, of course, up to the symmetrality relations, but one can most easily derive from
it a system of absolute irreducibles.
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with dual objects (often differential operators or elements of an associative
algebra), the so-called co-moulds B• = {Bω}, which carry their own indices
in lower position.

Basic mould operations :
Moulds may be added, multiplied, composed.
Mould addition is what you expect : components of equal length get added.
Mould multiplication (mu or ×) is associative, but non-commutative :

C• = A• ×B• ⇐⇒ Cω =
∑

ω = ω1. ω2

Aω
1

Bω
2

(249)

(This includes the trivial decompositions ω = ω.∅ and ω = ∅.ω).

Mould composition (◦) too is associative and non-commutative :

C• = (A• ◦B•) ⇐⇒ Cω =
∑

ω = ω1 . . . ωs

A‖ω
1‖,...,‖ωs‖Bω

1

. . . Bω
s

(250)

with a sum extending to all possible decompositions of ω into s ≤ r(ω) non-
empty factor sequences ωi

The operations (+,×, ◦) on moulds interact in exactly the same way as their
namesakes for power series. Thus (A• ×B•) ◦ C• ≡ (A• ◦ C•)× (B• ◦ C•)

Basic bimould operations :
Bimoulds are moulds with indices of the form wi = (ui

vi
). Some twenty-odd

operations are defined on them. All are defined via four types of contractions
w 7→ dw, bw,we,wc (see §5.1 ) which add the ui’s and subtract the vi’s in
a “symplectic” way, ie respecting both

∑
uivi and

∑
dui ∧ dvi . We always

use the following short-hand for u-sums and v-differences :
u12 = u1 + u2, u123 = u1 + u2 + u3, . . . , v1:2 := v1 − v2, etc

The main operations on bimoulds are
– the ordinary mould multiplication mu, giving rise to the algebra BIMU
– the Lie bracket ari, giving rise to the Lie algebra ARI
– the associative, non-commutative law gari, giving rise to the group GARI
– the anti-action arit of ARI in BIMU 81

– the anti-action garit of GARI in BIMU 82

But there also exist no less than five sets of operations that run parallel to
ari, gari, arit, garit. There is also an interesting and useful structure of Lie

81it should be carefully distinguished from the adjoint action adari of ARI on itself.
82it should be carefully distinguished from the adjoint action adgari of GARI on ARI.
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super-algebra SUARI which mirrors that of ARI. These are neither artefacts
nor idle constructions. They all play an important part in unravelling the
arithmetics of multizetas, and more generally in investigating dimorphy.

6.1.2 Main symmetries for moulds and bimoulds.

Most useful moulds fall into a few basic symmetry types.
A mould A• is said to be symmetral (resp. alternal) iff :∑

ω∈sha(ω1,ω2)

Aω = Aω
1

Aω
2

(resp. 0) ∀ω1 6= ∅ ,∀ω2 6= ∅ (251)

A mould A• is said to be symmetrel (resp. alternel) iff :∑
ω∈she(ω1,ω2)

Aω = Aω
1

Aω
2

(resp. 0) ∀,ω1 6= ∅ ,∀ω2 6= ∅ (252)

Here sha(ω1,ω2) (resp. she(ω1,ω2 )) denotes the set of all sequences ω
obtained from ω1 and ω2 under ordinary (resp. contracting) shuffling. In a
contracting shuffle, two adjacent indices ωi and ωj stemming from ω1 and
ω2 respectively may coalesce into ωij := ωi+ωj.

The definition of symmetral/ alternal carries over, unchanged, to the case of
bimoulds. The definition of symmetril/ alternil for bimoulds resembles that
of symmetrel/alternel for moulds except that the contractions ωi + ωj get
replaced by wi ⊗ wj with:

A...,wi⊗wj ,... := v−1
i:j A

..., wi/j , ... + v−1
j:i A

..., wj/i, ...

and vi:j := vi−vj , wi/j := (
ui + uj
vi

)

6.1.3 Arborification and co-arborification.

Straightforward mould expansions
∑
ω A

ω Bω , which typically pair a sym-
metral or alternal mould A• with a cosymmetral comould B• ( or a symmetrel
or alternel mould A• with a cosymmetrel comould B•) often fail to converge
absolutely, ie

∑
ω ‖Aω Bω‖ = +∞, although the underlying series may well

be convergent. Fortunately, there is an extremely general method for restor-
ing convergence. In essence, it replaces expansions indexed by totally ordered
sequences ω by others whose indices are arborescent sequences ω≺ or ω≺≺ ,
like this :∑

ω

Aω Bω 7→
∑
ω≺

Aω
≺
Bω≺ (ordinary arborification) (253)∑

ω

Aω Bω 7→
∑
ω≺≺

Aω
≺≺
Bω≺≺ (contracting arborification)(254)
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The dual arborification/coarborification transforms :

arborification =⇒
ordinary : Aω

≺
:=

∑
ω≺<ω Aω (complete definition)

contracting : Aω
≺≺

:=
∑
ω≺≺ <<ω Aω (complete definition)

coarborification =⇒
ordinary : Bω :=

∑
ω≺<ω Bω≺ (mere constraint)

contracting : Bω :=
∑
ω≺≺ <<ω Bω≺≺ (mere constraint)

are devised in such a way as to :

(1) leave the expansions formally unchanged : they amount to a simple re-
distribution of terms.

(2) drastically reduce the size of the comould part : it typically gets divided
by a factor of order r! := r(ω)!

(3) prevent a concomitant increase of the mould part : it typically retains
the same order of magnitude, despite being changed into a sum of almost r!
similar terms !

But whereas the reduction (2) is automatic and universal, the non-increase
(3) relies on specific identities, of an algebraic or combinatorial nature, which
can never be taken for granted, and yet tend to take place, with providential
regularity, whenever we require them !

For the coaborification rule, we refer to [E5] or [EV3].

The ordinary (resp contracting) arborification rule boils down to summing
all the terms Aω with totally ordered sequences ω whose order is compatible
with the arborecent order of ω≺ ( resp with that of ω≺≺ , but allowing con-
tractions of consecutive elements ωi). The following example should make
this amply clear. Assume :

ω4

↗
ω≺ ( or ω≺≺ ) := ω1 → ω2 → ω3

Then the arborification rules means :

Aω
≺

:= Aω1, ω2, ω3, ω4 + Aω1, ω2, ω4, ω3 + Aω1, ω4, ω2, ω3

Aω
≺≺

:= Aω1, ω2, ω3, ω4 + Aω1, ω2, ω4, ω3 + Aω1, ω4, ω2, ω3 + Aω1, ω2, ω3+ω4 + Aω1, ω2+ω4,ω3

:= Aω
≺

+ Aω1, ω2, ω3+ω4 + Aω1, ω2+ω4,ω3

99



6.1.4 Some elementary yet useful moulds.

Constant-type moulds.

mould value symmetry associated series

1• 1 if r = 0 (0 otherwise) symmetral 1

I• 1 if r = 1 (0 otherwise) alternal x

log• (−1)r−1

r
alternel log(1 + x)

exp•a
ar

r!
symmetral e a x

tu•a
(−1)r

r!
Γ(r−a)
Γ(−a)

symmetrel (1 + x)a

Difference-type flat moulds.

sad∅ := 1

sad t1,...,tr := 1 if t1 < t2 < · · · < tr

sad t1,...,tr := 0 otherwise

lad∅ := 0

lad t1,...,tr := (−1)q
p! q!

(p+ q + 1)!
= (−1)q

p! q!

r!

with p :=
∑
ti<ti+1

1 and q :=
∑
ti>ti+1

1

Difference-type polar moulds.
Relevant to the construction of w.-b. averages and w.-b. monomials.

tas∅a,b := 1

tas t1a,b :=
a− b

(a− t1)(t1 − b)

tas t1,...,tra,b :=
a− b

(a− t1)(t1 − t2) . . . (tr−1 − tr)(tr − b)

tas∅? := 0

tas t1? :=
1

(−t1)(t1)

tas t1,...,tr? :=
1

(−t1)(t1 − t2) . . . (tr−1 − tr)(tr)
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Identities :

tas•a,b × tas•b,c = tas•a,c
tas•a,b × tas•b,a = 1•

Sum-type flat moulds.
We use the auxiliary notations :

x := (x1, . . . , xr)

x̌i := x1 + · · ·+ xi

x̂i := xi + · · ·+ xr

‖x‖ := x1 + · · ·+ xr = x̂1 = x̌r

σ(x) := +1 if x > 0 (resp − 1 if x < 0)

δ := dirac

sofox± := (−1)r σ±(x̌1) . . . σ±(x̌r)

antisofoxa := (−1)r σ±(x̌1) . . . σ±(x̌r)

sefox± := (−1)r−1σ±(x̌1) . . . σ±(x̌r−1) σ∓(x̌r)

antisefox± := (−1)r−1σ∓(x̌1) σ±(x̌r−1) . . . σ±(x̌r)

lefox± := (−1)rσ±(x̌1) . . . σ±(x̌r−1) δ(x̌r)

antilefox± := (−1)rδ(x̌1) σ±(x̌r−1) . . . σ±(x̌r)

Sum-type polar moulds.
Relevant to the construction of the organic averages and alien derivations.
As usual ω̌i := ω1 + · · ·+ ωi and ω̂i := ωi + · · ·+ ωr.

saω :=
∏i=r

i=1
ωi
ω̌i

musaω := (−1)r
∏i=r

i=1
ωi
ω̂i

romoωa :=
∏i=r

i=1(a ωi
ω̌i
− 1) antiromoωa :=

∏i=r
i=1(a ωi

ω̂i
− 1)

remoωa := a ωr
ω̌r

∏i=r−1
i=1 (a ωi

ω̌i
− 1) antiremoωa := a ω1

ω̂1

∏i=r
i=2(a ωi

ω̂i
− 1)

redomω :=
(−1)r

2

ω1 + ωr
ω1 + · · ·+ ωr

redo•a := − �−1 ( romo•1−a ×� I• × antiromo•a )

= − �−1 ( romo•1−a ×� I• × (1• + I•)−1 × (romo•1−a)
−1 )
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somo•a,b := remo•a × antiromo•1−b (255)

:= romo•a × antiremo•1−b (256)

= romo•a/b × remo•b (257)

somo•
[a
c
b
d

]
:= somo•c−b

d−b ,
a−b
d−b

(258)

somo•
[ b
a

0
1

]
:= somo•a,b (259)

Identities :

remo•a × antiromo•1−a = 1• (260)

romo•a × antiremo•1−a = 1• (261)

multplicative inverse : somo•
[a
c
b
d

]
↔ somo•

[ c
a
b
d

]
( a , c exchanged )

composition inverse : somo•
[a
c
b
d

]
↔ somo•

[ b
d
a
c

]
( columns exchanged )

sequence reversal : somo•
[a
c
b
d

]

anti↔ somo•
[ c
a
d
b

]
( rows exchanged )

multplication : somo•a1,a2
× somo•a2,a3

= somo•a1,a3

composition : somo•a1,b1
◦ somo•a2,b2

= somo•(a2−b2)a1+b2 , (a2−b2)b1+b2

multplication : somo•
[a0
a2

b1
b2

]
× somo•

[a1
a0

b1
b2

]
= somo•

[a1
a2

b1
b2

]

composition : somo•
[a1
a2

b1
b2

]
◦ somo•

[ b1
b2

c1
c2

]
= somo•[a1

a2

c1
c2

]

Symmetry types.
All the above moulds fall into one or the other of the main symmetry types.
Alternal : lad•, tas•?

Symmetral : exp•a, sad•, tas•a,b, sa•, musa•

Alternel : log•, lefo•±, redo•±, redom•

Symmetrel : tu•a, sofo•±, sefo•±, romo•a, remo•a

Moulds something• and antisomething• have the same symmetry type.

Smooth arborification.
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All the above moulds possess the property of smooth arborification (meaning
that their arborified variants admit essentially the same type of bounds) the
only exception being the moulds log• and tu•a for a /∈ Z and in particular for
a = 1/2. This is in relation to the fact that the standard alien derivations
(which admit log• as their left-lateral mould) and the standard or median
convolution average (which admits tu•1/2 as its right- and left-lateral mould)
are not well-behaved.
Of course, for alternal or symmetral (resp alternel or symmetrel) moulds, one
should take the ordinary (resp contracting) form of arborification.

Form-preserving arborification.
All the sum-type moulds listed above, ie all those moulds whose definition in-
volves forward sums x̂i or ω̂i (resp backward sums x̌i or ω̌i) have the stronger
and very useful property of form-preserving arborification. This means that
they retain their outward analytical expression, except that the sums x̂i or
ω̂i (resp x̌i or ω̌i) are now relative to the arborescent (resp antiarborescent)
order. The same holds for the difference-type moulds tas•a,∞ and tas•∞,b.

6.2 Resurgent functions.

Minors/majors :
Real-majors and natural-majors

ϕ̂(ζ) = − 1

2πi

(
ϕ̌real(e

πiζ)− ϕ̌real(e
−πiζ)

)
(262)

ϕ̂(ζ) = ϕ̌nat(ζ)− ϕ̌nat(e
−2πiζ) (263)

ϕ̌real(ζ) ≡ 2πi ϕ̌nat(e
−πiζ) (264)

The formulae below use real-majors.

Standard Borel transform : ϕ(z)→
�
ϕ (ζ) =

(
ϕ̂(ζ), ϕ̌(ζ)

)
ϕ̂(ζ) =

1

2πi

∫ c+i∞

c−i∞
exp(zζ)ϕ(z) dz (1� c ; arg ζ = 0) (265)

ϕ̌(ζ) =

∫ +∞

+u

exp(−zζ)ϕ(z) dz (1� u ; | arg ζ| ≤ π) (266)

Standard Laplace transform :
�
ϕ (ζ) =

(
ϕ̂(ζ), ϕ̌(ζ)

)
→ ϕ(z)

ϕ(z) =

∫ +∞

+0

exp(−zζ) ϕ̂(ζ) dζ (for
�
ϕ integrable at 0•)(267)

ϕ(z) =
1

2πi

∫ eπi∞

e−πi∞
exp(zζ) ϕ̌(ζ) dζ (for any

�
ϕ ; arg z = 0) (268)
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Elementary (standard) Borel/Laplace transforms :

ϕ(z) = z−σ (for σ ∈ C− N?)

ϕ̂(ζ) = ζσ−1/Γ(σ)

ϕ̌(ζ) = ζσ−1Γ(1− σ) (269)

ϕ(z) = z−n (for n ∈ N?)

ϕ̂(ζ) = ζn−1/Γ(n)

ϕ̌(ζ) = (−1)n ζn−1 log ζ /Γ(n) (270)

6.3 Alien derivations.

∆ω ϕ̂(ζ) :=
∑
εi=±

d
( ε1
ω1

,...,
,...,

εr
ωr

)
ϕ̂

( ε1
ω1

,...,
,...,

εr
ωr

)
(ζ + ω) (271)

Standard alien derivations (weights d=dun) :

d
( ε1
ω1

,...,
,...,

εr
ωr

)
:= εr

p! q!

(p+ q + 1)!

p := #{1 ≤ i < r ; εi = +}
q := #{1 ≤ i < r ; εi = −}

(272)

Lateral moulds : redun• = −ledun• = log•. See §6.1.4.

Organic alien derivations (weights d=dom) :

dun
( ε1
ω1

...

...
εr
ωr

)
:= εr

2πi
p! q!
r!

with p := #{εi = + , i ≤ r − 1}
and q := #{εi = − , i ≤ r − 1}

dom
( ε1
ω1

...

...
εr
ωr

)
:= εr

2

ωp+1

ω1+···+ωr if (ε1, . . . , εr) = ((+)p, (−)q, εr)

:= εr
2

ωq+1

ω1+···+ωr if (ε1, . . . , εr) = ((−)q, (+)p, εr)

:= 0 otherwise

(273)

Lateral moulds : redom• = −ledom•. See §6.1.4.

Co-organic alien derivations (weights d=don) :
Is capable of various definitions. Here, we define it via its :
Lateral moulds : redon• = −ledon• = redo•1/2. See §6.1.4.
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6.4 Convolution averages.

(m.ϕ̂)(ζ) :=
∑
εi=±

m
( ε1
ω1

,...,
,...,

εr
ωr

)
ϕ̂

( ε1
ω1

,...,
,...,

εr
ωr

)
(ζ) (274)

Standard convolution average (weights m=mun) :

m
( ε1
ω1

,...,
,...,

εr
ωr

)
:=

(2p)! (2q)!

4p+q (p+ q)! p! q!
(p := nb of + ; q := nb of − )

(275)
Lateral moulds : remun• = lemun• = tu•1/2. See §6.1.4.

Organic convolution average (weights m=mon) :

m
( ε1
ω1

,...,
,...,

εr
ωr

)
:= m

( ε1
ω1

,...,
,...,

εr−1
ωr−1

)
.
(

1− 1

2

ωr
ω1 + · · ·+ ωr

)
if εr−1 = εr (276)

m
( ε1
ω1

,...,
,...,

εr
ωr

)
:= m

( ε1
ω1

,...,
,...,

εr−1
ωr−1

)
.
1

2

ωr
ω1 + · · ·+ ωr

if εr−1 6= εr (277)

Lateral moulds : remon• = lemon• = remo•1/2. See §6.1.4.

6.5 Comparative tables.

We take advantage of the relations :

mε̄1,...,ε̄r ≡ + mε1,...,εr ; dε̄1,...,ε̄r ≡ − dε1,...,εr (278)

to register only the weights whose sequence ε ends with εr = +. Also, to
further simplify, we assume all gaps ωi to be of equal length.

As the following tables show, the weights of well-behaved operators (be
they alien derivations or convolution averages) tend to be very small when
the sign sequences are strongly alternating, ie when they correspond to oft-
crossing paths.
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. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
object average average derivation derivation derivation
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
species uniform organic uniform organic organic
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
nature “bad” “good” “bad” “good” “good”
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
name mun mun dun don dom
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
(+) 1/2 1/2 1 1 1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
sums 1/2 1/2 1 1 1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
(+,+) 3/8 3/8 1/2 1/2 1/2
(−,+) ∗ 1/8 1/8 1/2 1/2 1/2
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
sums 1/2 1/2 1 1 1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
(+,+,+) 5/16 5/16 1/3 1/3 1/3
(−,+,+) 1/16 5/48 1/6 1/6 1/6
(+,−,+) ∗ 1/16 1/48 1/6 1/6 1/6
(−,−,+) 1/16 1/16 1/3 1/3 1/3
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
sums 1/2 1/2 1 1 1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
(+,+,+,+) 35/128 35/128 1/4 1/4 1/4
(−,+,+,+) 5/128 35/384 1/12 5/48 1/8
(+,−,+,+) 5/128 7/384 1/12 1/24 0
(−,−,+,+) 3/128 7/128 1/12 5/48 1/8
(+,+,−,+) 5/128 1/128 1/12 5/48 1/8
(−,+,−,+) ∗ 3/128 1/384 1/12 1/24 0
(+,−,−,+) 3/128 5/384 1/12 5/48 1/8
(−,−,−,+) 5/128 5/128 1/4 1/4 1/4
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
sums 1/2 1/2 1 1 1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
(+,+,+,+,+) 63/256 63/256 1/5 1/5 1/5
(−,+,+,+,+) 7/256 21/256 1/20 37/480 1/10
(+,−,+,+,+) 7/256 21/1280 1/20 11/480 0
(−,−,+,+,+) 3/256 63/1280 1/30 1/16 1/10
(+,+,−,+,+) 7/256 9/1280 1/20 11/480 0
(−,+,−,+,+) 3/256 3/1280 1/30 1/120 0
(+,−,−,+,+) 3/256 3/256 1/30 7/240 0
(−,−,−,+,+) 3/256 9/256 1/20 37/480 1/10
(+,+,+,−,+) 7/256 1/256 1/20 37/480 1/10
(−,+,+,−,+) 3/256 1/768 1/30 7/240 0
(+,−,+,−,+) ∗ 3/256 1/3840 1/30 1/120 0
(−,−,+,−,+) 3/256 1/1280 1/20 11/480 0
(+,+,−,−,+) 3/256 7/1280 1/30 1/16 1/10
(−,+,−,−,+) 3/256 7/3840 1/20 11/480 0
(+,−,−,−,+) 3/256 7/768 1/20 37/480 1/10
(−,−,−,−,+) 7/256 7/256 1/5 1/5 1/5
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
sums 1/2 1/2 1 1 1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
name mun mun dun don dom
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
(+,+,+,+,+,+) 231/1024 231/1024 1/6 1/6 1/6
(−,+,+,+,+,+) 21/1024 77/1024 1/30 71/1152 1/12
(+,−,+,+,+,+) 21/1024 77/5120 1/30 23/1440 0
(−,−,+,+,+,+) 7/1024 231/5120 1/60 29/640 1/12
(+,+,−,+,+,+) 21/1024 33/5120 1/30 11/960 0
(−,+,−,+,+,+) 7/1024 11/5120 1/60 23/5760 0
(+,−,−,+,+,+) 7/1024 11/1024 1/60 47/2880 0
(−,−,−,+,+,+) 5/1024 33/1024 1/60 29/640 1/12
(+,+,+,−,+,+) 21/1024 11/3072 1/30 23/1440 0
(−,+,+,−,+,+) 7/1024 11/9216 1/60 11/1920 0
(+,−,+,−,+,+) 7/1024 11/46080 1/60 1/720 0
(−,−,+,−,+,+) 5/1024 11/15360 1/60 23/5760 0
(+,+,−,−,+,+) 7/1024 77/15360 1/60 47/2880 0
(−,+,−,−,+,+) 5/1024 77/46080 1/60 11/1920 0
(+,−,−,−,+,+) 5/1024 77/9216 1/60 13/576 0
(−,−,−,−,+,+) 7/1024 77/3072 1/30 71/1152 1/12
(+,+,+,+,−,+) 21/1024 7/3072 1/30 71/1152 1/12
(−,+,+,+,−,+) 7/1024 7/9216 1/60 13/576 0
(+,−,+,+,−,+) 7/1024 7/46080 1/60 11/1920 0
(−,−,+,+,−,+) 5/1024 7/15360 1/60 47/2880 0
(+,+,−,+,−,+) 7/1024 1/15360 1/60 23/5760 0
(−,+,−,+,−,+) ∗ 5/1024 1/46080 1/60 1/720 0
(+,−,−,+,−,+) 5/1024 1/9216 1/60 11/1920 0
(−,−,−,+,−,+) 7/1024 1/3072 1/30 23/1440 0
(+,+,+,−,−,+) 7/1024 3/1024 1/60 29/640 1/12
(−,+,+,−,−,+) 5/1024 1/1024 1/60 47/2880 0
(+,−,+,−,−,+) 5/1024 1/5120 1/60 23/5760 0
(−,−,+,−,−,+) 7/1024 3/5120 1/30 11/960 0
(+,+,−,−,−,+) 5/1024 21/5120 1/60 29/640 1/12
(−,+,−,−,−,+) 7/1024 7/5120 1/30 23/1440 0
(+,−,−,−,−,+) 7/1024 7/1024 1/30 71/1152 1/12
(−,−,−,−,−,+) 21/1024 21/1024 1/6 1/6 1/6
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
sums 1/2 1/2 1 1 1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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6.6 Difference between “good” and “bad”.

We first set some notations :

cnb(r1, r2) :=

k=r2∑
k=0

(−1)k
r2!

k! (r2 − k)!
(r2 − k)r1 (279)

In particular :

cnb(r, 1) = 1 (280)

cnb(r, r) = r! (281)

cnb(r, r?) ≥ 2 if 1 < r? < r (282)

cnb(r, r?) = 0 if r < r? (283)

Then we set :

f(r0, r1) =

r2=r1∑
r2=1

f(r0 + r2) cnb(r1, r2) (284)

Next, let ω≺≺r0,r1 (resp. ω��r0,r1) be the arborescent (resp. antiarborescent)
sequence obtained by suffixing (resp. prefixing) the totally non-ordered se-
quence (ω′1, . . . , ω

′
r1

) to the totally ordered sequence (ω1, . . . , ωr0).

Assume now that F • is some constant-type mould like tu•a (§6.1.4 supra),
ie a mould whose values depend solely on the sequence length r, so that
F ω1,...,ωr ≡ f(r). In view of what precedes, it is clear that after a contracting
arborification or antiarborification we get :

Fω≺≺r0,r1 ≡ Fω��r0,r1 ≡ f(r0, r1) with f(r0, r1) as in (284) (285)

If we take F • := tu•a with a ∈ Z, then tu•a is well-behaved and indeed we
can see (trivially for a < 0, less so for a > 0) that:

lim sup
r1 → +∞

( log|f(r0, r1)|
r0 + r1

)
< +∞ (∀ r0 fixed and ≥ 1) (286)

But if a /∈ Z, then tu•a is not well-behaved and we can show that:

lim sup
r1 = +∞

( log|f(r0, r1)|
r0 + r1

)
= +∞ (∀ r0 fixed and ≥ 1) (287)

and in fact :

lim sup
r1 → +∞

( log|f(r0, r1)|
(r0 + r1) log(r0 + r1)

)
> 0 (∀ r0 fixed and ≥ 1) (288)
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6.7 Resurgence monomials.

6.7.1 Hyperlogarithms, perilogarithms, paralogarithms.

Perilogarithms have indices $i = (ωi, ω
?
i ) ∈ (C?,C?).

Hyperlogarithms have indices ωi ∈ C?.
Perilogarithms have indices $i = (ωi, ω

?
i ) ∈ (C?,C?) with ωi ω

?
i ∈ R+.

Perilogarithms have indices $i = (ωi, c
2ω̄i) ∈ (C?,C?).

Usually c is fixed, so that only ωi is mentioned.

6.7.2 D- or ∆-friendly monomials and monics.

Monics depend only on the indices ωi or $i.
Monomials depend on a variable z as well.
D-friendly monomials behave simply under ordinary z-differentiation, but
less so under alien z-differentiation: their alien derivatives necessarily in-
volve a number of so-called D-friendly monics.
∆-friendly monomials behave simply under alien z-differentiation, but less
so under ordinary z-differentiation: their ordinary derivatives necessarily in-
volve a number of so-called ∆-friendly monics.
D-friendly (resp ∆-friendly) monomials all carry a calligraphic V (resp U)
in their names while the corresponding monics carry an upper-case V (resp.
U), sometimes supplemented by a suitable string of pre- or suffixes.

6.7.3 Total closure.

The monomials, as functions of z, are acted upon by one ordinary derivation
D := ∂z but by infinitely many independent alien derivations ∆ωi or their
exponential-carrying variants ∆∆ω := e−ωz∆ω. The latter have the advantage
of commuting with the ordinary derivation D, but at the cost of introducing
an exponential factor and thus ceasing to act internally on the ring of formal
power series of z−1.
To highlight the D ↔ ∆ duality, it is sometimes convenient to (formally)
regroup all alien derivations under one single symbol:

∆ :=
∑

∆ω ; ∆∆ :=
∑

∆∆ω
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We also require the following mould derivations :

�A$ := ‖ω‖A$ := (
∑

ωi)A
$

�?A$ := ‖ω?‖A$ := (
∑

ω?i )A
$

�ωi := [∂ωi ,�]

�?
ωi

:= [∂ω?i ,�
?]

6.7.4 Hyperlogarithmic monomials and monics.

∆-friendly monomials U•(z) , Ue•(z) symmetral
∆-friendly monics U• alternal
∆-friendly monics US• , SU• symmetral

D-friendly monomials V•(z) , Ve•(z) symmetral
D-friendly monics V • alternal
D-friendly monics VS• , SV • symmetral

6.7.5 Basic relations.

Ue•(z) = exp(z�) . U•(z)
Ve•(z) = exp(z�) . V•(z)

U•(z) = V•(z) ◦ U•
V•(z) = U•(z) ◦ V •

1• = U• ◦ V • = V • ◦ U•
1• = US• × SU• = VS• × SV •

U• = US• × I• × SU• if all ωi ∈ R+

V • = VS• × I• × SV • if all ωi ∈ R+

6.7.6 More relations.

∂ωi U•(z) = −U•(z)× (
�i

�
U•)− z�i U•(z) (289)

z ∂z U•(z) = −z�U•(z)− U•(z)× U• (290)

∂ωi Ue•(z) = −Ue•(z)× (exp(z�).
�i

�
. U•) (291)

z ∂z Ue•(z) = −U•(z)× (exp(z�).U•) (292)
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∂ωi U
• = + (

�i

�
U•)× U• − U• × (

�i

�
U•) (293)

∂ωi US
• = + (

�i

�
U•)× US• (294)

∂ωi SU
• = −U• × (

�i

�
SU•) (295)

∂ω :=
∑
ωi∂ωi

∂ω U
• = 0 (296)

∂ω US
• = +U• × US• (297)

∂ω SU
• = −SU• × U• (298)

6.7.7 Ordinary and alien differentiation. The D ↔ ∆ duality .

(z ∂z + z�) U•(z) = −U•(z)× U• (299)

(z ∂z + z�) V•(z) = −V•(z)× I• (300)

∆ U•(z) = I• × U•(z) (301)

∆ V•(z) = V • × V•(z) (302)

with � standing as usual for multiplication by ‖ • ‖ =
∑
ωi and

Iω1 := 1 ; Iω1,...,ωr := 0 if r 6= 1 (303)

6.7.8 Perilogarithmic monomials and monics.

Perilogarithms have indices $ := ($1, . . . , $r) with $i = (ωi, ω
?
i ) ∈ (C?,C?)

but with products ωi ω
?
i ∈ R+.

Antipodal involution :

# : #M$1,...,$r := M$?r ,...,$
?
1 with $? = (ω?i , ωi) if $ = (ωi, ω

?
i )

∆-friendly perilogarithms :

primary secundary type

monomials Ua• U•,Ue• symmetral
monics U• UR•, UL• alternal
monics USS•, SSU• US•, SU• symmetral
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D-frienly perilogarithms :

primary secundary type

monomials Va• V•,Ve• symmetral
monics V • VR•, VL• alternal
monics VSS•, SSV • VS•, SV • symmetral

6.7.9 Basic relations.

Ue•(z) = exp( z� + z−1 �?). Ua•(z) (304)

U•(z) = exp( z−1 �?). Ua•(z) (305)

1• = USS• × SSU• = US• × SU• (306)

UR• = USS• × (�? SSU•) (307)

UL• = USS• × (�SSU•) (308)

USS• = US• × #US• (309)

SSU• = #SU• × SU• (310)

SU• = Ua•(1) (311)

6.7.10 Integral formulae for the ∆-friendly monomials and mon-
ics.

The main ingredients of the integral formulae are the SPA or “Standard
Path Averaging” (see §3.6.4) and the CCI or “Common Core Integrand”:

CCI :=
1

(2πi)r
exp(−

∑
ωiti −

∑
ω?i /ti)

(tr − tr−1) . . . (t3 − t2)(t2 − t1)
(312)
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and

Monomials :

Ua$(z) = SPA
∫∞

0
CCI (t1 − z)−1 dt1 . . . dtr

Ue$(z) = e‖ω‖ z+‖ω
?‖ z−1 Ua$(z)

U$(z) = e‖ω
?‖ z−1 Ua$(z)

Monics :

U$ = SPA
∫∞

0
CCI (

∑
ωi) dt1 . . . dtr

= SPA
∫∞

0
CCI (

∑
ω?i /t

2
i ) dt1 . . . dtr

UL$ = SPA
∫∞

0
CCI (

∑
ωi/ti) dt1 . . . dtr

UR$ = SPA
∫∞

0
CCI (

∑
ω?i /ti) dt1 . . . dtr

SU$ = SPA
∫∞

0
CCI (t1 − 1)−1 dt1 . . . dtr

US$ = SPA
∫∞

0
CCI (1− tr)−1 dt1 . . . dtr

SSU$ = SPA
∫∞

0
CCI (1/t1) dt1 . . . dyr

USS$ = SPA
∫∞

0
CCI (−1/tr) dt1 . . . dtr

6.7.11 More relations for the ∆-friendly perilogarithms.

Monomials:

∂ωi Ua•(z) = −Ua•(z)× �i

�
U• − z�iUa•(z) (313)

∂ω?i Ua
•(z) = +z−1 Ua•(z)× USS• ×�?

iSSU
• − z−1 �?

i Ua•(z) (314)

z ∂z Ua•(z) = (−z� + z−1 �?)Ua•(z)− Ua•(z)× (U• + z−1 UR•) (315)

Monics:

∂ωiU
• = +(

�i

�
U•)× U• − U• × (

�i

�
U•)−�i UR

• (316)

∂ω?i U
• = +� ((�?

i USS
•)× SSU•) (317)

∂ωiUSS
• = +(

�i

�
U•)× USS• (318)

∂ω?i USS
• = +USS• × (

�?
i

�?
#U•) (319)

∂ωi SSU
• = −SSU• × (

�i

�
U•) (320)

∂ω?i SSU
• = −(

�?
i

�?
#U•)× SSU• (321)
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∂ωi US
• = +(

�i

�
U•)× US• −�i US

• (322)

∂ω?i US
• = +US• × (�?

i
#US•)× SU• (323)

∂ωi
#US• = +SU• × (�i US

•)× #US• (324)

∂ω?i
#US• = + #US• × (

�?
i

�?
#U•)−�?

i
#US• (325)

∂ωi SU
• = −SU• × (

�i

�
U•)−�i SU

• (326)

∂ω?i SU
• = + #US• × (�?

i
#SU•)× SU• (327)

∂ωi
#SU• = + #SU• × (�i SU

•)× US• (328)

∂ω?i
#SU• = −(

�?
i

�?
#U•)× #SU• −�?

i
#SU• (329)

6.7.12 Yet more relations for the ∆-friendly perilogarithms.

The partial differentiation rules relative to

∂ω :=
∑

ωi∂ωi and ∂ω? :=
∑

ω?i ∂ω?i

though deducible from the above, are also worth mentioning.

∂ω Ua•(z) = −Ua•(z)× U• − z�Ua•(z) (330)

∂ω? Ua•(z) = + z−1 Ua•(z)× UR• − z−1 �Ua•(z) (331)

∂ω U
• = ∂ω? U

• = � ((�? USS•)× SSU• = −�UR•

∂ω USS
• = ∂ω? USS

• = +U• × USS• = USS• ×#U•

∂ω SSU
• = ∂ω? SSU

• = −SSU• × U• = −#U•SSU•

∂ω US
• = +U• × US• −�US• (332)

∂ω? US
• = +US• × (�? #US•)×#SU• (333)

∂ω SU
• = −SU• × U• −�SU• (334)

∂ω? SU
• = +#US• × (�? #SU•)× SU• (335)

6.7.13 A glimpse of the D-friendly perilogarithms.

Their inductive definition is :

(z ∂z + z�− z−1 �?) Va•(z) = −Va•(z)× Ja•(z) (336)
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with an elementary, one-component mould Ja•:

Ja$1(z) = Ja
($1
τ1

)
(z) := 1 if τ1 = 0

:= cz−1 if τ1 = 1

Ja$1,...,$r(z) = Ja
($1
τ1

,...,
,...,

$r
τr

)
(z) := 0 if r 6= 1

6.7.14 From D- to ∆-friendly .

Ua•(z) = Va• ◦ U• (337)

which is short-hand for

Ua$(z) =
∑

{ $
1...$s=$

s≥1 , τi∈{0,1}
}

Va( ‖$
1‖

τ1

,...,
,...,
‖$s‖
τs

)
(z) U

($
1

τ1
)
. . . U ($

s

τs
) (338)

with

U$ = U
($
τ0

)
:= U$ if τ0 = 0

:= UR$ if τ0 = 1

6.7.15 Resurgence equations.

∆U• = I• × U• ( with indices $i) (339)

∆V• = V • × V• ( with indices $i = (
$i

τi
)) (340)

The endearingly simple relation I• = V • ◦ U• connecting the ∆- and D-
friendly hyperlogarithmic monics carries over to the perilogarithmic monics,
but with doubled storeyed indices ωi = (ωi

τi
), with a double-storeyed U• and

a double-storeyed mould composition ◦ defined as above.

6.7.16 Paralogarithmic monomials and monics.

We now replace tha antipodal involution :

(#M)$1,...,$r := M c2$̄r,...,c2$̄1 (341)

by the more convenient variant :

(]M)$1,...,$r := M $̄r,...,$̄1 (342)
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and we get :

]SSU•c = SSU•c (343)
]USS•c = USS•c (344)

]U•c = SSU•c × U•c × USS•c (345)
]UR•c = SSU•c × UL•c × USS•c (346)
]UL•c = SSU•c × UR•c × USS•c (347)

(]Ua)•c(z)× (Ua)•c(c
2/z) ≡ SSU•c (348)

The integral formulae remain unchanged, except that the extreme factors
(y1−1)−1 and (1−yr)−1 become (y1−c)−1 and (c−yr)−1. One should always
integrate along the axes Arg(ωi yi) = Arg(ω̄i/yi) = 0 and heed the “SPA”
rules of mutual bypassing whenever several consecutive Arg(ωi) coincide.
The partial differentiation rules for the perilogarithms particularise to the
paralogarithms.

PS. I wish to thank D. Sauzin for checking the formulae of §6.7.

6.8 Acceleration operators and acceleration kernels.

Acceleration/pseudoacceleration kernels:

Acceleration z1 → z2 with z1 � z2 and z1 ≡ F (z2):

CF (ζ2, ζ1) :=
1

2πi

∫ c+∞

c−i∞
e z2 ζ2−z1 ζ1 dz2

CF (ζ2, ζ1) :=

∫ +u

+∞
e −z2 ζ2+z1 ζ1 dz2 with u� 1

Pseudoacceleration z1 → z0 with z0 = z1 + F (z1) and 1� F (z)� z :

CI+F (ζ1, ζ0) := CF (ζ1 − ζ0, ζ0) (0 < ζ0 < ζ1)

CI+F (ζ1, ζ0) := CF (ζ1 − ζ0, ζ0) (0 < ζ0 < ζ1)
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Acceleration integrals:

Acceleration of minors : infinite interval

ϕ̂2(ζ2) =

∫ +∞

+0

CF (ζ2, ζ1) ϕ̂1(ζ1) dζ1

Acceleration of majors : infinite loop

ϕ̌2(ζ2) =
1

2πi

∫ ∞2

∞1

CF (ζ2, ζ1) ϕ̌1(ζ1) dζ1

Deceleration of minors : finite loop

ζ1ϕ̂1(ζ1) =
1

2πi

∫ 02

01

ζ2 ϕ̂2(ζ2)CF (ζ2, ζ1) dζ2

Deceleration of majors : finite interval

ζ1ϕ̌1(ζ1) =

∫ +v

+0

ζ2 ϕ̌2(ζ2)CF (ζ2, ζ1) dζ2

Pseudoacceleration integrals:

Pseudodeceler. of minors : finite interval

ϕ̂1(ζ1) =

∫ ζ1

0

CI+F (ζ1, ζ0)ϕ̂0(ζ0) dζ0

=

∫ ζ1

0

CF (ζ1 − ζ0, ζ0)ϕ̂0(ζ0) dζ0

Pseudodeceler. of majors : finite loop

ϕ̌1(ζ1) =
1

2πi

∫ v2

v1

CI+F (ζ1, ζ0)ϕ̌0(ζ0) dζ0

=
1

2πi

∫ v2

v1

CF (ζ1 − ζ0, ζ0)ϕ̌0(ζ0) dζ0

Pseudoacceler. of minors : finite loop

ζ0ϕ̂0(ζ0) =
1

2πi

∫ 02

01

ζ1ϕ̂1(ζ1)CI+F (ζ1, ζ0) dζ1

=
1

2πi

∫ 02

01

ζ1ϕ̂1(ζ1)CF (ζ1 − ζ0, ζ0)dζ1

Pseudoacceler. of majors : finite interval

ζ0ϕ̌0(ζ0) =

∫ v

ζ0

ζ1ϕ̌1(ζ1)CI+F (ζ1, ζ0) dζ1

=

∫ v

ζ0

ζ1ϕ̌1(ζ1)CF (ζ1 − ζ0, ζ0) dζ1
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