Essential hyperbolicity versus homoclinic bifurcations

Partial Hyperbolicity at IM-UFRJ, Rio 2011 Sylvain Crovisier

joint work with E. Pujals, ArXiv:1011.3836

Caracterize non-hyperbolicity

Goal: Find mechanisms that generate non-hyperbolicity:

Caracterize non-hyperbolicity

Goal: Find mechanisms that generate non-hyperbolicity:

- Simple configurations (on periodic orbits).
- Generate large sets of non-hyperbolic systems.

Caracterize non-hyperbolicity

Goal: Find mechanisms that generate non-hyperbolicity:

- Simple configurations (on periodic orbits).
- Generate large sets of non-hyperbolic systems.

More generally: split the dynamics through dichotomies phenomenon/mechanisms.

Hyperbolic diffeomorphisms: definition

M: compact boundaryless manifold.

Definition

$f \in \operatorname{Diff}(M)$ is hyperbolic if there exists $K_{0}, \ldots, K_{d} \subset M$ s.t.:

- each K_{i} is a hyperbolic invariant compact set

$$
T_{K} M=E^{s} \oplus E^{u}
$$

- for any $x \in M \backslash\left(\bigcup_{i} K_{i}\right)$, there exists $U \subset M$ open such that

$$
f(\bar{U}) \subset U \text { and } x \in U \backslash f(\bar{U})
$$

(Equivalent to "Axiom A + no cycle condition".)

Obstructions to hyperbolicity

Homoclinic tangency associated to a hyperbolic periodic point p.

Heterodimensional cycle associated to two hyperbolic periodic points p, q such that $\operatorname{dim}\left(E^{s}(p)\right) \neq \operatorname{dim}\left(E^{s}(q)\right)$.

Hyperbolicity conjecture

Conjecture (Palis)
Any $f \in \operatorname{Diff}(M)$ can be approximated by a hyperbolic diffeomorphism or by a diffeomorphism exhibiting a homoclinic bifurcation (tangency or cycle).

Hyperbolicity conjecture

Conjecture (Palis)
Any $f \in \operatorname{Diff}(M)$ can be approximated by a hyperbolic diffeomorphism or by a diffeomorphism exhibiting a homoclinic bifurcation (tangency or cycle).

This holds when $\operatorname{dim}(M)=1$. (Morse-Smale systems are dense.)

Hyperbolicity conjecture

Conjecture (Palis)
Any $f \in \operatorname{Diff}(M)$ can be approximated by a hyperbolic diffeomorphism or by a diffeomorphism exhibiting a homoclinic bifurcation (tangency or cycle).

This holds when $\operatorname{dim}(M)=1$. (Morse-Smale systems are dense.)
In higher dimensions, we consider the C^{1}-topology.
Theorem (Pujals-Sambarino)
The conjecture holds for C^{1}-diffeomorphisms of surfaces.

Hyperbolicity conjecture

Conjecture (Palis)
Any $f \in \operatorname{Diff}(M)$ can be approximated by a hyperbolic diffeomorphism or by a diffeomorphism exhibiting a homoclinic bifurcation (tangency or cycle).

This holds when $\operatorname{dim}(M)=1$. (Morse-Smale systems are dense.)
In higher dimensions, we consider the C^{1}-topology.
Theorem (Pujals-Sambarino)
The conjecture holds for C^{1}-diffeomorphisms of surfaces.
Remark. The conjecture also holds in the conservative setting.

Essential hyperbolicity far from homoclinic bifurcations

Theorem (Pujals, C-)
Any generic $f \in \operatorname{Diff}^{1}(M) \backslash$ Tangency \cup Cycle is essentially hyperbolic.

Essential hyperbolicity far from homoclinic bifurcations

Theorem (Pujals, C-)
Any generic $f \in \operatorname{Diff}^{1}(M) \backslash$ Tangency \cup Cycle is essentially hyperbolic.

Definition of essential hyperbolicity. There exist hyperbolic attractors A_{1}, \ldots, A_{k} and repellors $R_{1} \ldots, R_{\ell}$ s.t.:

- the union of the basins of the A_{i} is (open and) dense in M,
- the union of the basins of the R_{i} is (open and) dense in M,

Essential hyperbolicity far from homoclinic bifurcations

Theorem (Pujals, C-)
Any generic $f \in \operatorname{Diff}^{1}(M) \backslash$ Tangency \cup Cycle is essentially hyperbolic.

Definition of essential hyperbolicity. There exist hyperbolic attractors A_{1}, \ldots, A_{k} and repellors $R_{1} \ldots, R_{\ell}$ s.t.:

- the union of the basins of the A_{i} is (open and) dense in M,
- the union of the basins of the R_{i} is (open and) dense in M,

Remarks.

- The set of these diffeomorphisms is not open apriori.
- In the setting of the theorem, the dynamics outside the basins is partially hyperbolic.

Program of the lectures

Goal. Any generic $f \in \operatorname{Diff}^{1}(M) \backslash \overline{\text { Tangency } \cup \text { Cycle }}$ is essentially hyperbolic.

- Lecture 1. Overview of the proof.

Finiteness of attractors.

- Lecture 2. Classes of the dynamics.

Chain-hyperbolicity, strong laminations.

- Lecture 3. Non-hyperbolic attractors.

Perturbation and creation of strong connections.

Decomposition of the dynamics / quasi-attractors

The chain-recurrent set $\mathcal{R}(f)$: the set of $x \in M$ s.t. for any $\varepsilon>0$, there exists a ε-pseudo-orbit $x=x_{0}, x_{1}, \ldots, x_{n}=x, n \geq 1$.

The chain-recurrence classes: the equivalence classes of the relation "for any $\varepsilon>0$, there is a periodic ε-pseudo-orbit containing x, y ".

- This gives a partition of $\mathcal{R}(f)$ into compact invariant subsets.

Decomposition of the dynamics / quasi-attractors

The chain-recurrent set $\mathcal{R}(f)$: the set of $x \in M$ s.t. for any $\varepsilon>0$, there exists a ε-pseudo-orbit $x=x_{0}, x_{1}, \ldots, x_{n}=x, n \geq 1$.

The chain-recurrence classes: the equivalence classes of the relation "for any $\varepsilon>0$, there is a periodic ε-pseudo-orbit containing x, y ".

- This gives a partition of $\mathcal{R}(f)$ into compact invariant subsets.

A quasi-attractor is a chain-recurrence class having a basis of neighborhoods U which satisfy $f(\bar{U}) \subset U$.

- There always exist quasi-attractors.

Decomposition of the dynamics / quasi-attractors

The chain-recurrent set $\mathcal{R}(f)$: the set of $x \in M$ s.t. for any $\varepsilon>0$, there exists a ε-pseudo-orbit $x=x_{0}, x_{1}, \ldots, x_{n}=x, n \geq 1$.

The chain-recurrence classes: the equivalence classes of the relation "for any $\varepsilon>0$, there is a periodic ε-pseudo-orbit containing x, y ".

- This gives a partition of $\mathcal{R}(f)$ into compact invariant subsets.

A quasi-attractor is a chain-recurrence class having a basis of neighborhoods U which satisfy $f(\bar{U}) \subset U$.

- There always exist quasi-attractors.

For $f \in \operatorname{Diff}^{1}(M)$ generic:

1) Any chain-recurrence class which contains a periodic orbit O coincides with the homoclinic class $H(O):=\overline{W^{s}(O) \pitchfork W^{u}(O)}$.
(The other chain-recurrence classes are called aperiodic classes.)
2) The union of the basins of the quasi-attractors is dense in M.

Partial hyperbolicity far from homoclinic tangencies...

Theorem (C-, Sambarino, D. Yang)
Any generic $f \in \operatorname{Diff}^{1}(M) \backslash$ Tangency is partially hyperbolic:

- For aperiodic classes, $T M=E^{s} \oplus E^{c} \oplus E^{u}$ with $\operatorname{dim}\left(E^{c}\right)=1$ and $\operatorname{dim}\left(E^{s}\right), \operatorname{dim}\left(E^{u}\right) \geq 1$.
- For homoclinic classes, $T M=E^{s} \oplus E_{1}^{c} \oplus \cdots \oplus E_{\ell}^{c} \oplus E^{u}$. For each i one has $\operatorname{dim}\left(E_{i}^{c}\right)=1$ and the class has periodic points with Lyapunov exponent along E_{i}^{c} arbitrarily close to 0 .

Partial hyperbolicity far from homoclinic tangencies...

Theorem (C-, Sambarino, D. Yang)
Any generic $f \in \operatorname{Diff}^{1}(M) \backslash$ Tangency is partially hyperbolic:

- For aperiodic classes, $T M=E^{s} \oplus E^{c} \oplus E^{u}$ with $\operatorname{dim}\left(E^{c}\right)=1$ and $\operatorname{dim}\left(E^{s}\right), \operatorname{dim}\left(E^{u}\right) \geq 1$.
- For homoclinic classes, $T M=E^{s} \oplus E_{1}^{c} \oplus \cdots \oplus E_{\ell}^{c} \oplus E^{u}$. For each i one has $\operatorname{dim}\left(E_{i}^{c}\right)=1$ and the class has periodic points with Lyapunov exponent along E_{i}^{c} arbitrarily close to 0 .
... and far from heterodimensional cycles
If moreover $f \notin \overline{\text { Cycle, }}$, then for each homoclinic class,
- each central bundle E_{i}^{c} is thin-trapped by f or f^{-1},
- there are at most two central bundles.

The class is chain-hyperbolic. (Cf. the second lecture.)

Strong connexions

Let $H(O)$ be a homoclinic class with a splitting
$T M=E^{c s} \oplus E^{c u}=\left(E^{s s} \oplus E^{c}\right) \oplus E^{c u}$, where $\operatorname{dim}\left(E^{c}\right)=1$.
How does the strong stable lamination intersect the class?

Strong connexions

Let $H(O)$ be a homoclinic class with a splitting $T M=E^{c s} \oplus E^{c u}=\left(E^{s s} \oplus E^{c}\right) \oplus E^{c u}$, where $\operatorname{dim}\left(E^{c}\right)=1$.
How does the strong stable lamination intersect the class?
Theorem (Bonatti, C-)
If $W^{s s}(x) \cap H(O)=\{x\}$ for any $x \in H(O)$, then $H(O)$ is contained in a (loc. invariant) submanifold tangent to $E^{c} \oplus E^{c u}$.

Strong connexions

Let $H(O)$ be a homoclinic class with a splitting $T M=E^{c s} \oplus E^{c u}=\left(E^{s s} \oplus E^{c}\right) \oplus E^{c u}$, where $\operatorname{dim}\left(E^{c}\right)=1$.

How does the strong stable lamination intersect the class?
Theorem (Bonatti, C-)
If $W^{\text {ss }}(x) \cap H(O)=\{x\}$ for any $x \in H(O)$, then $H(O)$ is contained in a (loc. invariant) submanifold tangent to $E^{c} \oplus E^{c u}$.

Definition. If $W^{s s}(x) \cap H(O) \neq\{x\}$ for some $x \in H(O)$ that is periodic and belongs to a transitive hyperbolic set containing O, one says that $H(O)$ has a strong connection.

- if one can choose K with a weak stable exponent, then there exists a C^{1}-perturbation of f with a heterodimensional cycle.

Topology inside center-stable leaves

Consider $H(O)$ a homoclinic class satisfying:

- there is a splitting $T M=\left(E^{s s} \oplus E^{c}\right) \oplus E^{c u}, \operatorname{dim}\left(E^{c}\right)=1$,
- $E^{c s}=E^{s s} \oplus E^{c}$ and $E^{c u}$ are thin trapped by f and f^{-1} resp.

Theorem (C-, Pujals)
If $H(O)$ has no strong connection and is not contained in a (loc. invariant) submanifold tangent to $E^{c} \oplus E^{c u}$, then the intersection of $H(O)$ with the center-stable plaques is totally disconnected.

Remark. This applies to hyperbolic sets.

Extremal bundles

Consider $H(O)$ with a splitting $T M=E^{c s} \oplus E^{c u}$ s.t.

- $E^{c s}, E^{c u}$ are thin trapped by f and f^{-1} respectively,
$-\operatorname{dim}\left(E^{c u}\right)=1$.
Theorem (C-, Pujals, Sambarino)
If f is C^{1}-generic and one of the following cases holds:
$-\operatorname{dim}\left(E^{c s}\right)=1$,
- $E^{c s}$ is uniformly contracted,
- inside the center-stables plaques, $H(O)$ is totally disconnected, then $E^{c u}$ is uniformly expanded.

Extremal bundles: corollaries

Corollary. For generic $f \in \operatorname{Diff}^{1}(M) \backslash \overline{\text { Tangency } \cup \text { Cycle: }}$

- Any homoclinic class $H(O)$ is either a sink/source or a part. hyperbolic set with non-degenenerated bundles E^{s}, E^{u}.
- If $H(O)$ has a non-uniform bundle $E^{c s}=E^{s} \oplus E^{c}$, then there exists $x \neq y$ in $H(O)$ such that $W^{s s}(x)=W^{s s}(y)$.
- The number of sinks/sources is finite.

Finiteness of attractors

Proposition

For a generic $f \in \operatorname{Diff}^{1}(M) \backslash \overline{\text { Tangency } \cup \text { Cycle }}$, the set of non-trivial quasi-attractors is finite.

Conclusion

We have seen that generically in $\operatorname{Diff}^{1}(M) \backslash \overline{\text { Tangency } \cup \text { Cycle }}$,

- the union of the basins of the quasi-attractors is dense in M,
- quasi-attractors are finite.

It remain to prove that quasi-attractors are hyperbolic.

- Lecture 2. Quasi attractors (in fact all classes) are chain-hyperbolic and have nice properties.
- Lecture 3. One can perturb non-hyperbolic quasi-attractors to create a heterodimensional cycle.

Essential hyperbolicity versus homoclinic bifurcations (2)

Program of the lectures

Goal. Any generic $f \in \operatorname{Diff}^{1}(M) \backslash \overline{\text { Tangency } \cup \text { Cycle }}$ is essentially hyperbolic.

- Lecture 1. Overview of the proof.

Finiteness of quasi-attractors.

- Lecture 2. Classes of the dynamics.

Chain-hyperbolicity, strong laminations.

- Lecture 3. Non-hyperbolic attractors.

Perturbation and creation of strong connections.

Partial hyperbolicity far from homoclinic bifurcations

Recall. Generically the dynamics splits into homoclinic and aperiodic classes.

Theorem 1
Any generic $f \in \operatorname{Diff}^{1}(M) \backslash \overline{\text { Tangency } \cup \text { Cycle }}$ is part. hyperbolic:

- For aperiodic classes, $T M=E^{s} \oplus E^{c} \oplus E^{u}$ with $\operatorname{dim}\left(E^{c}\right)=1$ and $\operatorname{dim}\left(E^{s}\right), \operatorname{dim}\left(E^{u}\right) \geq 1$.
- For homoclinic classes, $T M=E^{c s} \oplus E^{c u}$, where $E^{c s}$ and $E^{c u}$ are thin trapped by f and f^{-1} respectively. If $E^{c s}$ is not uniformly contracted, then $E^{c s}=E^{s} \oplus E^{c}$ s.t.
$-\operatorname{dim}\left(E^{c}\right)=1$ and E^{s} is uniformly contracted,
- the class has periodic points with Lyapunov exponent along E^{c} arbitrarily close to 0 .

Topological dynamics along invariant bundle

K an inv. compact set with a dom. splitting $T M=E^{c s} \oplus E^{c u}$.
Definition. A trapped plaque families tangent to $E^{c s}$ is a continuous family of embedded plaques $\mathcal{D}_{x}, x \in K$, such that:

- \mathcal{D}_{x} contains x and is tangent to to $E_{x}^{c s}$,
- The closure of $f\left(\mathcal{D}_{x}\right)$ is contained in $\mathcal{D}_{f(x)}$.

Topological dynamics along invariant bundle

K an inv. compact set with a dom. splitting $T M=E^{c s} \oplus E^{c u}$.
Definition. A trapped plaque families tangent to $E^{c s}$ is a continuous family of embedded plaques $\mathcal{D}_{x}, x \in K$, such that:

- \mathcal{D}_{x} contains x and is tangent to to $E_{x}^{c s}$,
- The closure of $f\left(\mathcal{D}_{x}\right)$ is contained in $\mathcal{D}_{f(x)}$.

Definition. The bundle $E^{c s}$ is thin-trapped if there exists trapped plaque families tangent to $E^{c s}$ with arbitrarily small diameters.

Example. If $E^{c s}$ is uniformly contracted, it is thin-trapped.

Thm 1: How to use "far from homoclinic tangencies"?

Theorem (Wen)
Consider $f \in \operatorname{Diff}^{1}(M) \backslash \overline{\text { Tangency }}$ and a sequence of hyperbolic periodic orbits $\left(O_{n}\right)$ with the same stable dimension d_{s}.
Then $\Lambda=\overline{\cup_{n} O_{n}}$ has a dom. splitting $T_{\Lambda} M=E \oplus F$ with $\operatorname{dim}(E)=d_{s}$.

Thm 1: How to use "far from homoclinic tangencies"?

Theorem (Wen)
Consider $f \in \operatorname{Diff}^{1}(M) \backslash \overline{\text { Tangency }}$ and a sequence of hyperbolic periodic orbits $\left(O_{n}\right)$ with the same stable dimension d_{s}.
Then $\Lambda=\overline{\cup_{n} O_{n}}$ has a dom. splitting $T_{\Lambda} M=E \oplus F$ with $\operatorname{dim}(E)=d_{s}$.

- This allows to build dominated splittings.

Thm 1: How to use "far from homoclinic tangencies"?

Theorem (Wen)
Consider $f \in \operatorname{Diff}^{1}(M) \backslash \overline{\text { Tangency }}$ and a sequence of hyperbolic periodic orbits $\left(O_{n}\right)$ with the same stable dimension d_{s}.
Then $\Lambda=\overline{\cup_{n} O_{n}}$ has a dom. splitting $T_{\Lambda} M=E \oplus F$ with $\operatorname{dim}(E)=d_{s}$.

- This allows to build dominated splittings.

Corollary (Wen)
If μ is an ergodic invariant probability, the support hat a dom. splitting $T M=E \oplus E^{c} \oplus F$ with $\operatorname{dim}\left(E^{c}\right) \leq 1$. The Lyapunov exponents of μ are 0 along E^{c} and non-zero along E and F.

Thm 1: Decomposition of non-uniform bundles

Consider a generic $f \in \operatorname{Diff}^{1}(M) \backslash \overline{\text { Tangency }}$ and an invariant compact set \wedge with a splitting $T_{\Lambda} M=E \oplus<F$.

Proposition (Decomposition principle)

If E is not uniformly contracted then one of the following holds:
$-\Lambda \subset H(p)$ for some periodic p with $\operatorname{dim}\left(E^{s}(p)\right)<\operatorname{dim}(E)$.
$-\Lambda \subset H(p)$ for some periodic p with $\operatorname{dim}\left(E^{s}(p)\right)=\operatorname{dim}(E)$. $H(p)$ contains periodic orbits with a weak stable exponent.

- Λ contains K partially hyperbolic: $T_{K} M=E^{s} \oplus_{<} E^{c} \oplus_{<} E^{u}$, with $\operatorname{dim}\left(E^{c}\right)=1, \operatorname{dim}\left(E^{s}\right)<\operatorname{dim}(E)$. Any measure on K has a zero Lyapunov exponent along E^{c}.

Thm 1: Decomposition of non-uniform bundles

Consider a generic $f \in \operatorname{Diff}^{1}(M) \backslash \overline{\text { Tangency }}$ and an invariant compact set \wedge with a splitting $T_{\Lambda} M=E \oplus<F$.

Proposition (Decomposition principle)

If E is not uniformly contracted then one of the following holds:
$-\Lambda \subset H(p)$ for some periodic p with $\operatorname{dim}\left(E^{s}(p)\right)<\operatorname{dim}(E)$.
$-\Lambda \subset H(p)$ for some periodic p with $\operatorname{dim}\left(E^{s}(p)\right)=\operatorname{dim}(E)$. $H(p)$ contains periodic orbits with a weak stable exponent.

- Λ contains K partially hyperbolic: $T_{K} M=E^{s} \oplus_{<} E^{c} \oplus_{<} E^{u}$, with $\operatorname{dim}\left(E^{c}\right)=1, \operatorname{dim}\left(E^{s}\right)<\operatorname{dim}(E)$. Any measure on K has a zero Lyapunov exponent along E^{c}.
- In the two first cases, the bundle E splits $E=E^{\prime} \oplus<E^{c}$.

Thm 1: Decomposition of non-uniform bundles

Consider a generic $f \in \operatorname{Diff}^{1}(M) \backslash \overline{\text { Tangency }}$ and an invariant compact set \wedge with a splitting $T_{\Lambda} M=E \oplus<F$.

Proposition (Decomposition principle)

If E is not uniformly contracted then one of the following holds:
$-\Lambda \subset H(p)$ for some periodic p with $\operatorname{dim}\left(E^{s}(p)\right)<\operatorname{dim}(E)$.
$-\Lambda \subset H(p)$ for some periodic p with $\operatorname{dim}\left(E^{s}(p)\right)=\operatorname{dim}(E)$. $H(p)$ contains periodic orbits with a weak stable exponent.

- Λ contains K partially hyperbolic: $T_{K} M=E^{s} \oplus_{<} E^{c} \oplus_{<} E^{u}$, with $\operatorname{dim}\left(E^{c}\right)=1, \operatorname{dim}\left(E^{s}\right)<\operatorname{dim}(E)$. Any measure on K has a zero Lyapunov exponent along E^{c}.
- In the two first cases, the bundle E splits $E=E^{\prime} \oplus<E^{c}$.
- In the third, one finds a periodic orbit in $H(p)$ which spends most of its time close to K. (Analyze the topol. central dyn.)

Chain-hyperbolic homoclinic classes: definition

Definition. A homoclinic class $H(O)$ is chain-hyperbolic if:

- there is a dominated splitting $T M=E^{c s} \oplus E^{c u}$,
- there are some plaque families $\mathcal{D}^{c s}, \mathcal{D}^{c u}$ tangent to $E^{c s}, E^{c u}$ that are trapped by f and f^{-1} resp.
$-\mathcal{D}_{O}^{c s} \subset W^{s}(O)$ and $\mathcal{D}_{O}^{c u} \subset W^{u}(O)$.
Examples.
- The homoclinic classes of generic $f \in \operatorname{Diff}^{1}(M) \backslash \overline{\text { Tangency } \cup \text { Cycle }}$.
- Some non-hyperbolic robustly transitive diffeomorphisms (Shub, Mañé, Bonatti-Viana,...).

Chain-hyperbolic homoclinic classes: properties

Let $H(O)$ be a chain-hyperbolic homoclinic class.
Proposition (Robustness)
(If $\mathrm{H}(\mathrm{O})$ is a chain-recurrence class,)
$H\left(O_{g}\right)$ is chain-hyperbolic for any $g \in \operatorname{Diff}^{1}(M)$ close to f.
Proposition (Local product structure)
The plaques $\mathcal{D}^{c s}, \mathcal{D}^{c u}$ are resp. contained in the chain-stable and the chain-unstable sets of $H(O)$.
For x, y close, $\mathcal{D}_{x}^{c s} \cap \mathcal{D}_{y}^{c u}$ belongs to $H(O)$.

Chain-hyperbolic homoclinic classes: properties

Let $H(O)$ be a chain-hyperbolic homoclinic class.
Proposition (Robustness)
(If $\mathrm{H}(\mathrm{O})$ is a chain-recurrence class,)
$H\left(O_{g}\right)$ is chain-hyperbolic for any $g \in \operatorname{Diff}^{1}(M)$ close to f.

Proposition (Local product structure)

The plaques $\mathcal{D}^{c s}, \mathcal{D}^{c u}$ are resp. contained in the chain-stable and the chain-unstable sets of $H(O)$.
For x, y close, $\mathcal{D}_{x}^{c s} \cap \mathcal{D}_{y}^{c u}$ belongs to $H(O)$.
This justifies the name "chain-hyperbolicity" however $H(O)$ can robustly contain periodic points of different stable dimension!

Chain-hyp. homoclinic classes: pointwise continuation

Start with f and a chain-hyperbolic class $H(O)$ s.t.
$T M=E^{c s} \oplus E^{c u}=\left(E^{s} \oplus E^{c}\right) \oplus E^{u}$ and $\operatorname{dim}\left(E^{c}\right)=1$.
By perturbation, any points has one or two continuations:
Proposition
If $f \in \operatorname{Diffr} \backslash \overline{\text { strong connexions, }}$, there exists a lift dynamics (\tilde{H}, \tilde{f}) such that for each $g C^{r}$-close to f there is a semi-conjugacy $\pi_{g}: \tilde{H} \rightarrow H\left(O_{g}\right)$ satisfying:

- for each $\tilde{x} \in \tilde{H}$ the points $\pi_{f}(\tilde{x}), \pi_{g}(\tilde{x})$ are close,
- for each $x \in H\left(O_{g}\right)$ one has $\# \pi_{g}^{-1}(x) \leq 2$.

Quasi-attractors

For generic $f \in \operatorname{Diff}^{1}(M) \backslash \overline{\text { Tangency } \cup \text { Cycle }}$, if they exist, non-hyperbolic quasi-attractors are:

- homoclinic classes,
- chain-hyperbolic with a splitting $E^{c s} \oplus E^{u}=\left(E^{s} \oplus E^{c}\right) \oplus E^{u}$,
- saturated by unstable leaves,
- not contained in a submanifold: they contain two different points x, y with a same strong-stable leaf.

Goal. By perturbation, find p, q periodic in $H(O)$ such that $W^{s s}(p)$ and $W^{u}(q)$ intersect.
(This will give a heterodimensional cycle, hence a contradiction.)

Quasi-attractors: geometry of the unstable lamination

$H(O)$: quasi-attractor for a generic $f \notin \overline{\text { Tangency } \cup \text { Cycle }}$.
One looks at pairs (x, y) where $x \neq y$ in $H(O)$ have a same strong stable leaf.

- One can compare $W_{\text {loc }}^{u}(x)$ with the projection $\Pi^{\text {ss }}\left(W_{\text {loc }}^{u}(y)\right)$ through strong stable holonomy.

Possible cases:

- transversal: for some pair (x, y), $W_{\text {loc }}^{u}(x)$ and $\Pi^{s s}\left(W_{\text {loc }}^{u}(y)\right)$ cross,
- jointly integrable: for some pair (x, y), $W_{\text {loc }}^{u}(x)$ and $\Pi^{s s}\left(W_{\text {loc }}^{u}(y)\right)$ coincide,
- stricly non-transversal: for any pair (x, y), $W_{\text {loc }}^{u}(x)$ and $\Pi^{s s}\left(W_{\text {loc }}^{u}(y)\right)$ do not cross and do not coincide.

Boundary points

Definition. A stable boundary point $x \in H(O)$ is a point which is accumulated by $H(O)$ in only one component of $\mathcal{D}_{x}^{c s} \backslash W^{s s}(x)$.

Theorem. If the transversal case does not holds, then any stable boundary point belongs to the unstable manifold of a periodic point of $H(O)$.

Conclusion

Any non-hyperbolic quasi-attractor satisfies one of the following case robustly:

- Unstable case. There exists p_{x}, p_{y} periodic in $H(O)$ and $x \in W^{u}\left(p_{x}\right), y \in W^{u}\left(p_{y}\right)$ distinct which share a same strong stable leaf.
- Stable case. There exists q periodic in $H(O)$ and $x, y \in W^{s}(q)$ distinct which share a same strong stable leaf.

Conclusion

Any non-hyperbolic quasi-attractor satisfies one of the following case robustly:

- Unstable case. There exists p_{x}, p_{y} periodic in $H(O)$ and $x \in W^{u}\left(p_{x}\right), y \in W^{u}\left(p_{y}\right)$ distinct which share a same strong stable leaf.
- Stable case. There exists q periodic in $H(O)$ and $x, y \in W^{s}(q)$ distinct which share a same strong stable leaf.

Tomorow, one will perturb to create a strong connexion.
\Rightarrow all quasi-attractors are hyperbolic.

Essential hyperbolicity versus homoclinic bifurcations (3)

Program of the lectures

Goal. Any generic $f \in \operatorname{Diff}^{1}(M) \backslash \overline{\text { Tangency } \cup \text { Cycle }}$ is essentially hyperbolic.

- Lecture 1. Overview of the proof.

Finiteness of the quasi-attractors.

- Lecture 2. Classes of the dynamics.

Chain-hyperbolicity, strong laminations.

- Lecture 3. Non-hyperbolic attractors.

Perturbation and creation of strong connections.

Non-hyperbolic quasi-attractor

Take a quasi-attractor $H(O)$ which is a homoclinic class s.t.
$-T M=E^{c s} \oplus E^{u}$ and $E^{c s}=E^{s} \oplus E^{c}, \operatorname{dim}\left(E^{c}\right)=1$.

- $E^{c s}$ is thin-trapped.

Theorem. There exists g close to f such that

- either a submanifold tangent to $E^{c} \oplus E^{u}$ contains $H\left(O_{g}\right)$,
- or $H\left(O_{g}\right)$ has a strong connexion: it contains periodic points p, q such that $W^{s s}(p)$ and $W^{u}(q)$ intersect.

Non-hyperbolic quasi-attractor

Take a quasi-attractor $H(O)$ which is a homoclinic class s.t.
$-T M=E^{c s} \oplus E^{u}$ and $E^{c s}=E^{s} \oplus E^{c}, \operatorname{dim}\left(E^{c}\right)=1$.

- $E^{c s}$ is thin-trapped.

Theorem. There exists g close to f such that

- either a submanifold tangent to $E^{c} \oplus E^{u}$ contains $H\left(O_{g}\right)$,
- or $H\left(O_{g}\right)$ has a strong connexion: it contains periodic points p, q such that $W^{s s}(p)$ and $W^{u}(q)$ intersect.

Remark.

- If f is C^{1}-generic and E^{c} is not uniform, then this gives heterodimensional cycles.
- The result also applies to hyperbolic sets with a one-codimensional strong stable bundle.
- If f is $C^{r}, r>1$, then g is $C^{1+\alpha}$-close for some $\alpha>0$.

The goal

One of the following cases holds robustly:

- Unstable case. There exists p_{x}, p_{y} periodic in $H(O)$ and $x \in W^{u}\left(p_{x}\right), y \in W^{u}\left(p_{y}\right)$ distinct which share a same strong stable leaf.
- Stable case. There exists q periodic in $H(O)$ and $x, y \in W^{s}(q)$ distinct which share a same strong stable leaf.

The goal

One of the following cases holds robustly:

- Unstable case. There exists p_{x}, p_{y} periodic in $H(O)$ and $x \in W^{u}\left(p_{x}\right), y \in W^{u}\left(p_{y}\right)$ distinct which share a same strong stable leaf.
- Stable case. There exists q periodic in $H(O)$ and $x, y \in W^{s}(q)$ distinct which share a same strong stable leaf.

In the unstable case,

- either one builds g and a periodic point q such that $W^{s s}(q)$ meets $W^{u}\left(p_{y}\right)$,
- or one finds g such that $x_{g} \notin W^{s s}\left(y_{g}\right)$.

In the stable case, one breaks the joint integrability close to (x, y).

Unstable case: return time dichotomy

Consider closest returns $f^{n}(x)$ of $x($ or $y)$ to x :

- the return comes along $E_{p_{x}}^{c}$.
- If N is the time spent close to p_{x} before visiting x,

$$
d\left(f^{n}(x), x\right) \simeq \lambda_{c}^{N}, \quad \text { for } \lambda_{c}=\text { central eigenvalue of } p_{x}
$$

Fix $K>1$ large. Two cases occur:

- Fast returns. there are n large such that $n \leq K . N$.
- Slow returns. there are n large such that $n \geq K . N$.

The fast return case

There are large closest return $f^{n}(x)$ such that $n \leq K . N$. One set $a \simeq K^{-1}\left|\log \lambda_{c}\right|$ and $b \simeq a\left(1-K^{-1}\right)$.

Lemma
There exist returns at time n large such that $f^{n}(x) \in B\left(x, e^{-a n}\right)$ and $f^{m}(x) \notin B\left(x, e^{-b n}\right)$ for any $0<m<n$.

The fast return case

There are large closest return $f^{n}(x)$ such that $n \leq K . N$.
One set $a \simeq K^{-1}\left|\log \lambda_{c}\right|$ and $b \simeq a\left(1-K^{-1}\right)$.
Lemma
There exist returns at time n large such that $f^{n}(x) \in B\left(x, e^{-a n}\right)$ and $f^{m}(x) \notin B\left(x, e^{-b n}\right)$ for any $0<m<n$.

Some perturbation g at $f^{-1}(x)$ satisfies $g^{n}\left(W^{s s}(x)\right) \subset W^{s s}(x)$. \Rightarrow There is $q \in W^{s s}(x)$ periodic such that $W^{s s}(q)$ meets $W^{u}\left(p_{y}\right)$.

The fast return case

There are large closest return $f^{n}(x)$ such that $n \leq K . N$.
One set $a \simeq K^{-1}\left|\log \lambda_{c}\right|$ and $b \simeq a\left(1-K^{-1}\right)$.
Lemma
There exist returns at time n large such that $f^{n}(x) \in B\left(x, e^{-a n}\right)$ and $f^{m}(x) \notin B\left(x, e^{-b n}\right)$ for any $0<m<n$.

Some perturbation g at $f^{-1}(x)$ satisfies $g^{n}\left(W^{s s}(x)\right) \subset W^{s s}(x)$. \Rightarrow There is $q \in W^{s s}(x)$ periodic such that $W^{s s}(q)$ meets $W^{u}\left(p_{y}\right)$.

The perturbation is $C^{1+\alpha}$-small, where $1+\alpha=a / b=\frac{K}{K-1}$.

The slow return case

There are large closest returns $f^{n}(x)$ such that $n \geq K . N$. One perturbs in $B\left(f^{-1}(x), \lambda_{c}^{N}\right)$, moving x and "keeping" $\Pi^{s s}(y)$.

The slow return case

There are large closest returns $f^{n}(x)$ such that $n \geq$ K.N.
One perturbs in $B\left(f^{-1}(x), \lambda_{c}^{N}\right)$, moving x and "keeping" $\Pi^{s s}(y)$.

- x moves by $\lambda_{c}^{(1+\alpha) N}$, for a perturbation $C^{1+\alpha}$ small.

The slow return case

There are large closest returns $f^{n}(x)$ such that $n \geq$ K.N.
One perturbs in $B\left(f^{-1}(x), \lambda_{c}^{N}\right)$, moving x and "keeping" $\Pi^{s s}(y)$.

- x moves by $\lambda_{c}^{(1+\alpha) N}$, for a perturbation $C^{1+\alpha}$ small.
$-d\left(y, y_{g}\right) \leq \lambda_{u}^{-n}$, where λ_{u} bounds E^{u} from below.
$-d\left(\Pi^{s s}(y), \Pi^{s s}\left(y_{g}\right)\right) \leq \lambda_{u}^{-\beta n}$, where $\Pi^{s s}$ is β-Hölder.
- $d\left(\Pi_{f}^{s s}\left(y_{g}\right), \Pi_{g}^{s s}\left(y_{g}\right)\right) \leq \sigma^{-n}$, where σ bounds E^{s} / E^{c}.

The slow return case

There are large closest returns $f^{n}(x)$ such that $n \geq$ K.N.
One perturbs in $B\left(f^{-1}(x), \lambda_{c}^{N}\right)$, moving x and "keeping" $\Pi^{s s}(y)$.

- x moves by $\lambda_{c}^{(1+\alpha) N}$, for a perturbation $C^{1+\alpha}$ small.
$-d\left(y, y_{g}\right) \leq \lambda_{u}^{-n}$, where λ_{u} bounds E^{u} from below.
$-d\left(\Pi^{s s}(y), \Pi^{s s}\left(y_{g}\right)\right) \leq \lambda_{u}^{-\beta n}$, where $\Pi^{s s}$ is β-Hölder.
- $d\left(\Pi_{f}^{s s}\left(y_{g}\right), \Pi_{g}^{s s}\left(y_{g}\right)\right) \leq \sigma^{-n}$, where σ bounds E^{s} / E^{c}.

For K large, one has

$$
\sigma^{-n}+\lambda_{u}^{-\beta n}<\lambda_{c}^{(1+\alpha) N}
$$

The stable case

Fix $x, y \in W^{s}(q)$, some disc $D \subset W^{s}(q)$ transverse to $W^{u}(q)$.

The stable case

Fix $x, y \in W^{s}(q)$, some disc $D \subset W^{s}(q)$ transverse to $W^{u}(q)$.
One linearizes f at q and the foliated disc D.

The stable case

Fix $x, y \in W^{s}(q)$, some disc $D \subset W^{s}(q)$ transverse to $W^{u}(q)$.
One linearizes f at q and the foliated disc D.
For $n \geq 1$ large,

- the angle between E_{x}^{u} or E_{y}^{u} with E_{q}^{u} is $\leq \sigma^{n}$, where $\sigma<1$ bounds the domination E^{c} / E^{u}.
- one changes E_{x}^{u} by an angle $\lambda_{s}^{\alpha n}$ where $\lambda_{s}<1$ bounds the contraction from below.

The stable case

Fix $x, y \in W^{s}(q)$, some disc $D \subset W^{s}(q)$ transverse to $W^{u}(q)$.
One linearizes f at q and the foliated disc D.
For $n \geq 1$ large,

- the angle between E_{x}^{u} or E_{y}^{u} with E_{q}^{u} is $\leq \sigma^{n}$, where $\sigma<1$ bounds the domination E^{c} / E^{u}.
- one changes E_{x}^{u} by an angle $\lambda_{s}^{\alpha n}$ where $\lambda_{s}<1$ bounds the contraction from below.

For $m \geq 1$ large, one compares the intersections x^{\prime}, y^{\prime} of $f^{-m}(D)$ with $W^{u}(x)$ and $W^{u}(y)$.

- y^{\prime} crosses $W^{s s}\left(x^{\prime}\right)$ during the perturbation.

Conclusion

For C^{1}-generic diffeomorphisms.

- Far from homoclinic tangencies \Rightarrow partial hyperbolicity with a dominated sum of one-dimensional center bundles.

Conclusion

For C^{1}-generic diffeomorphisms.

- Far from homoclinic tangencies \Rightarrow partial hyperbolicity with a dominated sum of one-dimensional center bundles.
- Far from heterodimensional cycles \Rightarrow chain-hyperbolicity, at most two central bundles.

Conclusion

For C^{1}-generic diffeomorphisms.

- Far from homoclinic tangencies \Rightarrow partial hyperbolicity with a dominated sum of one-dimensional center bundles.
- Far from heterodimensional cycles \Rightarrow chain-hyperbolicity, at most two central bundles.
- On quasi-attractors \Rightarrow geometrical properties on the unstable lamination \Rightarrow uniform hyperbolicity.

Conclusion

For C^{1}-generic diffeomorphisms.

- Far from homoclinic tangencies \Rightarrow partial hyperbolicity with a dominated sum of one-dimensional center bundles.
- Far from heterodimensional cycles \Rightarrow chain-hyperbolicity, at most two central bundles.
- On quasi-attractors \Rightarrow geometrical properties on the unstable lamination \Rightarrow uniform hyperbolicity.

What about the other chain-recurrence classes?

