Essential hyperbolicity versus homoclinic bifurcations

Partial Hyperbolicity at IM-UFRJ, Rio 2011 Sylvain Crovisier

joint work with E. Pujals, ArXiv:1011.3836

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Caracterize non-hyperbolicity

Goal: Find mechanisms that generate non-hyperbolicity:

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Caracterize non-hyperbolicity

Goal: Find mechanisms that generate non-hyperbolicity:

- Simple configurations (on periodic orbits).
- Generate large sets of non-hyperbolic systems.

Caracterize non-hyperbolicity

Goal: Find mechanisms that generate non-hyperbolicity:

- Simple configurations (on periodic orbits).
- Generate large sets of non-hyperbolic systems.

More generally: split the dynamics through dichotomies phenomenon/mechanisms.

Hyperbolic diffeomorphisms: definition

M: compact boundaryless manifold.

Definition

 $f \in \text{Diff}(M)$ is hyperbolic if there exists $K_0, \ldots, K_d \subset M$ s.t.:

- each K_i is a hyperbolic invariant compact set

$$T_K M = E^s \oplus E^u,$$

- for any $x \in M \setminus (\bigcup_i K_i)$, there exists $U \subset M$ open such that

$$f(\overline{U}) \subset U$$
 and $x \in U \setminus f(\overline{U})$.

(Equivalent to "Axiom A + no cycle condition".)

Obstructions to hyperbolicity

Homoclinic tangency associated to a hyperbolic periodic point *p*.

Heterodimensional cycle associated to two hyperbolic periodic points p, q such that $\dim(E^s(p)) \neq \dim(E^s(q))$.

Conjecture (Palis)

Any $f \in \text{Diff}(M)$ can be approximated by a hyperbolic diffeomorphism or by a diffeomorphism exhibiting a homoclinic bifurcation (tangency or cycle).

Conjecture (Palis)

Any $f \in \text{Diff}(M)$ can be approximated by a hyperbolic diffeomorphism or by a diffeomorphism exhibiting a homoclinic bifurcation (tangency or cycle).

This holds when dim(M) = 1. (Morse-Smale systems are dense.)

Conjecture (Palis)

Any $f \in \text{Diff}(M)$ can be approximated by a hyperbolic diffeomorphism or by a diffeomorphism exhibiting a homoclinic bifurcation (tangency or cycle).

This holds when $\dim(M) = 1$. (Morse-Smale systems are dense.)

In higher dimensions, we consider the C^1 -topology.

Theorem (Pujals-Sambarino)

The conjecture holds for C^1 -diffeomorphisms of surfaces.

Conjecture (Palis)

Any $f \in \text{Diff}(M)$ can be approximated by a hyperbolic diffeomorphism or by a diffeomorphism exhibiting a homoclinic bifurcation (tangency or cycle).

This holds when dim(M) = 1. (Morse-Smale systems are dense.)

In higher dimensions, we consider the C^1 -topology.

Theorem (Pujals-Sambarino)

The conjecture holds for C^1 -diffeomorphisms of surfaces.

Remark. The conjecture also holds in the conservative setting.

Essential hyperbolicity far from homoclinic bifurcations

Theorem (Pujals, C-) Any generic $f \in \text{Diff}^1(M) \setminus \overline{\text{Tangency} \cup \text{Cycle}}$ is essentially hyperbolic.

Essential hyperbolicity far from homoclinic bifurcations

Theorem (Pujals, C-) Any generic $f \in \text{Diff}^1(M) \setminus \overline{\text{Tangency} \cup \text{Cycle}}$ is essentially hyperbolic.

Definition of essential hyperbolicity. There exist hyperbolic attractors A_1, \ldots, A_k and repellors $R_1 \ldots, R_\ell$ s.t.:

- the union of the basins of the A_i is (open and) dense in M,
- the union of the basins of the R_i is (open and) dense in M,

Essential hyperbolicity far from homoclinic bifurcations

Theorem (Pujals, C-) Any generic $f \in \text{Diff}^1(M) \setminus \overline{\text{Tangency} \cup \text{Cycle}}$ is essentially hyperbolic.

Definition of essential hyperbolicity. There exist hyperbolic attractors A_1, \ldots, A_k and repellors $R_1 \ldots, R_\ell$ s.t.:

- the union of the basins of the A_i is (open and) dense in M,
- the union of the basins of the R_i is (open and) dense in M,

Remarks.

- The set of these diffeomorphisms is not open apriori.
- In the setting of the theorem, the dynamics outside the basins is partially hyperbolic.

Program of the lectures

Goal. Any generic $f \in \text{Diff}^1(M) \setminus \overline{\text{Tangency} \cup \text{Cycle}}$ is essentially hyperbolic.

- Lecture 1. Overview of the proof.

Finiteness of attractors.

- Lecture 2. Classes of the dynamics.

Chain-hyperbolicity, strong laminations.

- Lecture 3. Non-hyperbolic attractors.

Perturbation and creation of strong connections.

Decomposition of the dynamics / quasi-attractors

The *chain-recurrent set* $\mathcal{R}(f)$: the set of $x \in M$ s.t. for any $\varepsilon > 0$, there exists a ε -pseudo-orbit $x = x_0, x_1, \ldots, x_n = x, n \ge 1$.

The *chain-recurrence classes*: the equivalence classes of the relation "for any $\varepsilon > 0$, there is a periodic ε -pseudo-orbit containing x, y".

• This gives a partition of $\mathcal{R}(f)$ into compact invariant subsets.

Decomposition of the dynamics / quasi-attractors

The *chain-recurrent set* $\mathcal{R}(f)$: the set of $x \in M$ s.t. for any $\varepsilon > 0$, there exists a ε -pseudo-orbit $x = x_0, x_1, \ldots, x_n = x$, $n \ge 1$.

The *chain-recurrence classes*: the equivalence classes of the relation "for any $\varepsilon > 0$, there is a periodic ε -pseudo-orbit containing x, y".

• This gives a partition of $\mathcal{R}(f)$ into compact invariant subsets.

・ロト ・ 日 ・ モ ト ・ モ ・ うへぐ

A *quasi-attractor* is a chain-recurrence class having a basis of neighborhoods U which satisfy $f(\overline{U}) \subset U$.

There always exist quasi-attractors.

Decomposition of the dynamics / quasi-attractors

The *chain-recurrent set* $\mathcal{R}(f)$: the set of $x \in M$ s.t. for any $\varepsilon > 0$, there exists a ε -pseudo-orbit $x = x_0, x_1, \ldots, x_n = x, n \ge 1$.

The *chain-recurrence classes*: the equivalence classes of the relation "for any $\varepsilon > 0$, there is a periodic ε -pseudo-orbit containing x, y".

• This gives a partition of $\mathcal{R}(f)$ into compact invariant subsets.

A *quasi-attractor* is a chain-recurrence class having a basis of neighborhoods U which satisfy $f(\overline{U}) \subset U$.

There always exist quasi-attractors.

For $f \in \text{Diff}^1(M)$ generic:

1) Any chain-recurrence class which contains a periodic orbit O coincides with the *homoclinic class* $H(O) := W^s(O) \oplus W^u(O)$. (The other chain-recurrence classes are called *aperiodic classes*.) 2) The union of the basins of the quasi-attractors is dense in M.

Partial hyperbolicity far from homoclinic tangencies...

Theorem (C-, Sambarino, D. Yang)

Any generic $f \in \text{Diff}^1(M) \setminus \overline{\text{Tangency}}$ is partially hyperbolic:

- For aperiodic classes, TM = E^s ⊕ E^c ⊕ E^u with dim(E^c) = 1 and dim(E^s), dim(E^u) ≥ 1.
- For homoclinic classes, TM = E^s ⊕ E^c₁ ⊕ · · · ⊕ E^c_ℓ ⊕ E^u.
 For each i one has dim(E^c_i) = 1 and the class has periodic points with Lyapunov exponent along E^c_i arbitrarily close to 0.

Partial hyperbolicity far from homoclinic tangencies...

Theorem (C-, Sambarino, D. Yang)

Any generic $f \in \text{Diff}^1(M) \setminus \overline{\text{Tangency}}$ is partially hyperbolic:

- For aperiodic classes, TM = E^s ⊕ E^c ⊕ E^u with dim(E^c) = 1 and dim(E^s), dim(E^u) ≥ 1.
- For homoclinic classes, TM = E^s ⊕ E^c₁ ⊕ · · · ⊕ E^c_ℓ ⊕ E^u. For each i one has dim(E^c_i) = 1 and the class has periodic points with Lyapunov exponent along E^c_i arbitrarily close to 0.

... and far from heterodimensional cycles

If moreover $f \notin \overline{Cycle}$, then for each homoclinic class,

- each central bundle E_i^c is thin-trapped by f or f^{-1} ,
- there are at most two central bundles.

The class is *chain-hyperbolic*. (Cf. the second lecture.)

Strong connexions

Let H(O) be a homoclinic class with a splitting $TM = E^{cs} \oplus E^{cu} = (E^{ss} \oplus E^c) \oplus E^{cu}$, where dim $(E^c) = 1$.

How does the strong stable lamination intersect the class?

Strong connexions

Let H(O) be a homoclinic class with a splitting $TM = E^{cs} \oplus E^{cu} = (E^{ss} \oplus E^c) \oplus E^{cu}$, where dim $(E^c) = 1$.

How does the strong stable lamination intersect the class?

Theorem (Bonatti, C-)

If $W^{ss}(x) \cap H(O) = \{x\}$ for any $x \in H(O)$, then H(O) is contained in a (loc. invariant) submanifold tangent to $E^c \oplus E^{cu}$.

Strong connexions

Let H(O) be a homoclinic class with a splitting $TM = E^{cs} \oplus E^{cu} = (E^{ss} \oplus E^c) \oplus E^{cu}$, where dim $(E^c) = 1$.

How does the strong stable lamination intersect the class?

Theorem (Bonatti, C-)

If $W^{ss}(x) \cap H(O) = \{x\}$ for any $x \in H(O)$, then H(O) is contained in a (loc. invariant) submanifold tangent to $E^c \oplus E^{cu}$.

Definition. If $W^{ss}(x) \cap H(O) \neq \{x\}$ for some $x \in H(O)$ that is periodic and belongs to a transitive hyperbolic set containing O, one says that H(O) has a strong connection.

▶ if one can choose K with a weak stable exponent, then there exists a C¹-perturbation of f with a heterodimensional cycle.

Topology inside center-stable leaves

Consider H(O) a homoclinic class satisfying:

- there is a splitting $TM = (E^{ss} \oplus E^c) \oplus E^{cu}$, dim $(E^c) = 1$,
- $E^{cs} = E^{ss} \oplus E^c$ and E^{cu} are thin trapped by f and f^{-1} resp.

Theorem (C-, Pujals)

If H(O) has no strong connection and is not contained in a (loc. invariant) submanifold tangent to $E^c \oplus E^{cu}$, then the intersection of H(O) with the center-stable plaques is totally disconnected.

Remark. This applies to hyperbolic sets.

Extremal bundles

Consider H(O) with a splitting $TM = E^{cs} \oplus E^{cu}$ s.t.

 $- E^{cs}, E^{cu}$ are thin trapped by f and f^{-1} respectively,

$$- \dim(E^{cu}) = 1.$$

Theorem (C-, Pujals, Sambarino)

If f is C^1 -generic and one of the following cases holds:

$$- \dim(E^{cs}) = 1,$$

- E^{cs} is uniformly contracted,

- inside the center-stables plaques, H(O) is totally disconnected,

then E^{cu} is uniformly expanded.

Corollary. For generic $f \in \text{Diff}^1(M) \setminus \overline{\text{Tangency} \cup \text{Cycle}}$:

- Any homoclinic class H(O) is either a sink/source or a part. hyperbolic set with non-degenenerated bundles E^s, E^u .
- If H(O) has a non-uniform bundle $E^{cs} = E^s \oplus E^c$, then there exists $x \neq y$ in H(O) such that $W^{ss}(x) = W^{ss}(y)$.

- The number of sinks/sources is finite.

Finiteness of attractors

Proposition

For a generic $f \in \text{Diff}^1(M) \setminus \overline{\text{Tangency} \cup \text{Cycle}}$, the set of non-trivial quasi-attractors is finite.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Conclusion

We have seen that generically in $\text{Diff}^1(M) \setminus \overline{\text{Tangency} \cup \text{Cycle}}$,

- the union of the basins of the quasi-attractors is dense in M,
- quasi-attractors are finite.

It remain to prove that quasi-attractors are hyperbolic.

- Lecture 2. Quasi attractors (in fact all classes) are chain-hyperbolic and have nice properties.
- Lecture 3. One can perturb non-hyperbolic quasi-attractors to create a heterodimensional cycle.

Essential hyperbolicity versus homoclinic bifurcations (2)

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

Program of the lectures

Goal. Any generic $f \in \text{Diff}^1(M) \setminus \overline{\text{Tangency} \cup \text{Cycle}}$ is essentially hyperbolic.

- Lecture 1. Overview of the proof.

Finiteness of quasi-attractors.

- Lecture 2. Classes of the dynamics.

Chain-hyperbolicity, strong laminations.

- Lecture 3. Non-hyperbolic attractors.

Perturbation and creation of strong connections.

Partial hyperbolicity far from homoclinic bifurcations

Recall. Generically the dynamics splits into homoclinic and aperiodic classes.

Theorem 1

Any generic $f \in \text{Diff}^1(M) \setminus \overline{\text{Tangency} \cup \text{Cycle}}$ is part. hyperbolic:

- For aperiodic classes, TM = E^s ⊕ E^c ⊕ E^u with dim(E^c) = 1 and dim(E^s), dim(E^u) ≥ 1.
- ▶ For homoclinic classes, $TM = E^{cs} \oplus E^{cu}$, where E^{cs} and E^{cu} are thin trapped by f and f^{-1} respectively.

If E^{cs} is not uniformly contracted, then $E^{cs} = E^s \oplus E^c$ s.t.

- dim $(E^c) = 1$ and E^s is uniformly contracted,
- the class has periodic points with Lyapunov exponent along E^c arbitrarily close to 0.

Topological dynamics along invariant bundle

K an inv. compact set with a dom. splitting $TM = E^{cs} \oplus E^{cu}$.

Definition. A trapped plaque families tangent to E^{cs} is a continuous family of embedded plaques \mathcal{D}_x , $x \in K$, such that:

- \mathcal{D}_x contains x and is tangent to to E_x^{cs} ,
- The closure of $f(\mathcal{D}_x)$ is contained in $\mathcal{D}_{f(x)}$.

Topological dynamics along invariant bundle

K an inv. compact set with a dom. splitting $TM = E^{cs} \oplus E^{cu}$.

Definition. A trapped plaque families tangent to E^{cs} is a continuous family of embedded plaques \mathcal{D}_x , $x \in K$, such that:

- \mathcal{D}_x contains x and is tangent to to E_x^{cs} ,
- The closure of $f(\mathcal{D}_x)$ is contained in $\mathcal{D}_{f(x)}$.

Definition. The bundle E^{cs} is thin-trapped if there exists trapped plaque families tangent to E^{cs} with arbitrarily small diameters.

Example. If E^{cs} is uniformly contracted, it is thin-trapped.

Thm 1: How to use "far from homoclinic tangencies"?

Theorem (Wen)

Consider $f \in \text{Diff}^1(M) \setminus \overline{\text{Tangency}}$ and a sequence of hyperbolic periodic orbits (O_n) with the same stable dimension d_s . Then $\Lambda = \overline{\bigcup_n O_n}$ has a dom. splitting $T_{\Lambda}M = E \oplus F$ with $\dim(E) = d_s$.

Thm 1: How to use "far from homoclinic tangencies"?

Theorem (Wen)

Consider $f \in \text{Diff}^1(M) \setminus \overline{\text{Tangency}}$ and a sequence of hyperbolic periodic orbits (O_n) with the same stable dimension d_s . Then $\Lambda = \overline{\bigcup_n O_n}$ has a dom. splitting $T_{\Lambda}M = E \oplus F$ with $\dim(E) = d_s$.

This allows to build dominated splittings.

Thm 1: How to use "far from homoclinic tangencies"?

Theorem (Wen)

Consider $f \in \text{Diff}^1(M) \setminus \overline{\text{Tangency}}$ and a sequence of hyperbolic periodic orbits (O_n) with the same stable dimension d_s . Then $\Lambda = \overline{\bigcup_n O_n}$ has a dom. splitting $T_{\Lambda}M = E \oplus F$ with $\dim(E) = d_s$.

This allows to build dominated splittings.

Corollary (Wen)

If μ is an ergodic invariant probability, the support hat a dom. splitting $TM = E \oplus E^c \oplus F$ with dim $(E^c) \le 1$. The Lyapunov exponents of μ are 0 along E^c and non-zero along E and F.

Thm 1: Decomposition of non-uniform bundles

Consider a generic $f \in \text{Diff}^1(M) \setminus \overline{\text{Tangency}}$ and an invariant compact set Λ with a splitting $T_{\Lambda}M = E \oplus_{<} F$.

Proposition (Decomposition principle)

If E is not uniformly contracted then one of the following holds:

- $\Lambda \subset H(p)$ for some periodic p with dim $(E^{s}(p)) < \dim(E)$.
- $\Lambda \subset H(p)$ for some periodic p with dim $(E^{s}(p)) =$ dim(E). H(p) contains periodic orbits with a weak stable exponent.
- Λ contains K partially hyperbolic: $T_K M = E^s \oplus_{<} E^c \oplus_{<} E^u$, with dim $(E^c) = 1$, dim $(E^s) < \dim(E)$. Any measure on K has a zero Lyapunov exponent along E^c .

Thm 1: Decomposition of non-uniform bundles

Consider a generic $f \in \text{Diff}^1(M) \setminus \overline{\text{Tangency}}$ and an invariant compact set Λ with a splitting $T_{\Lambda}M = E \oplus_{<} F$.

Proposition (Decomposition principle)

If E is not uniformly contracted then one of the following holds:

- $\Lambda \subset H(p)$ for some periodic p with dim $(E^{s}(p)) < \dim(E)$.
- $\Lambda \subset H(p)$ for some periodic p with dim $(E^{s}(p)) = dim(E)$. H(p) contains periodic orbits with a weak stable exponent.
- Λ contains K partially hyperbolic: $T_K M = E^s \oplus_{<} E^c \oplus_{<} E^u$, with dim $(E^c) = 1$, dim $(E^s) < \dim(E)$. Any measure on K has a zero Lyapunov exponent along E^c .

▶ In the two first cases, the bundle *E* splits $E = E' \oplus_{<} E^{c}$.

Thm 1: Decomposition of non-uniform bundles

Consider a generic $f \in \text{Diff}^1(M) \setminus \overline{\text{Tangency}}$ and an invariant compact set Λ with a splitting $T_{\Lambda}M = E \oplus_{<} F$.

Proposition (Decomposition principle)

If E is not uniformly contracted then one of the following holds:

- $\Lambda \subset H(p)$ for some periodic p with dim $(E^{s}(p)) < \dim(E)$.
- $\Lambda \subset H(p)$ for some periodic p with dim $(E^{s}(p)) = dim(E)$. H(p) contains periodic orbits with a weak stable exponent.
- Λ contains K partially hyperbolic: $T_K M = E^s \oplus_{<} E^c \oplus_{<} E^u$, with dim $(E^c) = 1$, dim $(E^s) < \dim(E)$. Any measure on K has a zero Lyapunov exponent along E^c .
- ▶ In the two first cases, the bundle *E* splits $E = E' \oplus_{<} E^{c}$.
- In the third, one finds a periodic orbit in H(p) which spends most of its time close to K. (Analyze the topol. central dyn.)

Chain-hyperbolic homoclinic classes: definition

Definition. A homoclinic class H(O) is chain-hyperbolic if:

- there is a dominated splitting $TM = E^{cs} \oplus E^{cu}$,
- there are some plaque families $\mathcal{D}^{cs}, \mathcal{D}^{cu}$ tangent to E^{cs}, E^{cu} that are trapped by f and f^{-1} resp.

$$- \mathcal{D}^{cs}_O \subset W^s(O)$$
 and $\mathcal{D}^{cu}_O \subset W^u(O)$.

Examples.

- The homoclinic classes of generic $f \in \text{Diff}^1(M) \setminus \overline{\text{Tangency} \cup \text{Cycle}}$.
- Some non-hyperbolic robustly transitive diffeomorphisms (Shub, Mañé, Bonatti-Viana,...).

Chain-hyperbolic homoclinic classes: properties

Let H(O) be a chain-hyperbolic homoclinic class.

Proposition (Robustness)

(If H(O) is a chain-recurrence class,) $H(O_g)$ is chain-hyperbolic for any $g \in \text{Diff}^1(M)$ close to f.

Proposition (Local product structure)

The plaques $\mathcal{D}^{cs}, \mathcal{D}^{cu}$ are resp. contained in the chain-stable and the chain-unstable sets of H(O). For x, y close, $\mathcal{D}_x^{cs} \cap \mathcal{D}_y^{cu}$ belongs to H(O).

Chain-hyperbolic homoclinic classes: properties

Let H(O) be a chain-hyperbolic homoclinic class.

Proposition (Robustness)

(If H(O) is a chain-recurrence class,) $H(O_g)$ is chain-hyperbolic for any $g \in \text{Diff}^1(M)$ close to f.

Proposition (Local product structure)

The plaques $\mathcal{D}^{cs}, \mathcal{D}^{cu}$ are resp. contained in the chain-stable and the chain-unstable sets of H(O). For x, y close, $\mathcal{D}_x^{cs} \cap \mathcal{D}_y^{cu}$ belongs to H(O).

This justifies the name "chain-hyperbolicity" however H(O) can robustly contain periodic points of different stable dimension!

Chain-hyp. homoclinic classes: pointwise continuation

Start with f and a chain-hyperbolic class H(O) s.t. $TM = E^{cs} \oplus E^{cu} = (E^s \oplus E^c) \oplus E^u$ and $\dim(E^c) = 1$.

By perturbation, any points has one or two continuations:

Proposition

If $f \in \text{Diff}^r \setminus \overline{\text{strong connexions}}$, there exists a lift dynamics (\tilde{H}, \tilde{f}) such that for each $g \ C^r$ -close to f there is a semi-conjugacy $\pi_g : \tilde{H} \to H(O_g)$ satisfying:

- for each $\tilde{x} \in \tilde{H}$ the points $\pi_f(\tilde{x}), \pi_g(\tilde{x})$ are close,

- for each $x \in H(O_g)$ one has $\#\pi_g^{-1}(x) \leq 2$.

Quasi-attractors

For generic $f \in \text{Diff}^1(M) \setminus \overline{\text{Tangency} \cup \text{Cycle}}$, if they exist, *non-hyperbolic quasi-attractors are:*

- homoclinic classes,
- chain-hyperbolic with a splitting $E^{cs} \oplus E^u = (E^s \oplus E^c) \oplus E^u$,
- saturated by unstable leaves,
- not contained in a submanifold: they contain two different points x, y with a same strong-stable leaf.

Goal. By perturbation, find p, q periodic in H(O) such that $W^{ss}(p)$ and $W^{u}(q)$ intersect.

(This will give a heterodimensional cycle, hence a contradiction.)

Quasi-attractors: geometry of the unstable lamination

H(O): quasi-attractor for a generic $f \notin \overline{\text{Tangency} \cup \text{Cycle}}$. One looks at pairs (x, y) where $x \neq y$ in H(O) have a same strong stable leaf.

► One can compare W^u_{loc}(x) with the projection Π^{ss}(W^u_{loc}(y)) through strong stable holonomy.

Possible cases:

- transversal: for some pair (x, y), $W_{loc}^{u}(x)$ and $\Pi^{ss}(W_{loc}^{u}(y))$ cross,
- jointly integrable: for some pair (x, y), $W_{loc}^{u}(x)$ and $\Pi^{ss}(W_{loc}^{u}(y))$ coincide,
- stricly non-transversal: for any pair (x, y), $W_{loc}^{u}(x)$ and $\Pi^{ss}(W_{loc}^{u}(y))$ do not cross and do not coincide.

Definition. A stable boundary point $x \in H(O)$ is a point which is accumulated by H(O) in only one component of $\mathcal{D}_x^{cs} \setminus W^{ss}(x)$.

Theorem. If the transversal case does not holds, then any stable boundary point belongs to the unstable manifold of a periodic point of H(O).

Any non-hyperbolic quasi-attractor satisfies one of the following case robustly:

- Unstable case. There exists p_x, p_y periodic in H(O) and $x \in W^u(p_x), y \in W^u(p_y)$ distinct which share a same strong stable leaf.
- Stable case. There exists q periodic in H(O) and $x, y \in W^{s}(q)$ distinct which share a same strong stable leaf.

Any non-hyperbolic quasi-attractor satisfies one of the following case robustly:

- Unstable case. There exists p_x, p_y periodic in H(O) and $x \in W^u(p_x), y \in W^u(p_y)$ distinct which share a same strong stable leaf.
- Stable case. There exists q periodic in H(O) and $x, y \in W^{s}(q)$ distinct which share a same strong stable leaf.

Tomorow, one will perturb to create a strong connexion.

 \Rightarrow all quasi-attractors are hyperbolic.

Essential hyperbolicity versus homoclinic bifurcations (3)

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

Program of the lectures

Goal. Any generic $f \in \text{Diff}^1(M) \setminus \overline{\text{Tangency} \cup \text{Cycle}}$ is essentially hyperbolic.

- Lecture 1. Overview of the proof.

Finiteness of the quasi-attractors.

- Lecture 2. Classes of the dynamics.

Chain-hyperbolicity, strong laminations.

- Lecture 3. Non-hyperbolic attractors.

Perturbation and creation of strong connections.

Non-hyperbolic quasi-attractor

Take a quasi-attractor H(O) which is a homoclinic class s.t.

- $TM = E^{cs} \oplus E^u$ and $E^{cs} = E^s \oplus E^c$, $\dim(E^c) = 1$.
- E^{cs} is thin-trapped.

Theorem. There exists g close to f such that

- either a submanifold tangent to $E^c \oplus E^u$ contains $H(O_g)$,
- or $H(O_g)$ has a strong connexion: it contains periodic points p, q such that $W^{ss}(p)$ and $W^u(q)$ intersect.

Non-hyperbolic quasi-attractor

Take a quasi-attractor H(O) which is a homoclinic class s.t.

- $TM = E^{cs} \oplus E^u$ and $E^{cs} = E^s \oplus E^c$, $\dim(E^c) = 1$.
- E^{cs} is thin-trapped.

Theorem. There exists g close to f such that

- either a submanifold tangent to $E^c \oplus E^u$ contains $H(O_g)$,
- or $H(O_g)$ has a strong connexion: it contains periodic points p, q such that $W^{ss}(p)$ and $W^u(q)$ intersect.

Remark.

- If f is C^1 -generic and E^c is not uniform, then this gives heterodimensional cycles.
- The result also applies to hyperbolic sets with a one-codimensional strong stable bundle.
- If f is C^r, r > 1, then g is $C^{1+\alpha}$ -close for some $\alpha > 0$.

The goal

One of the following cases holds robustly:

- Unstable case. There exists p_x, p_y periodic in H(O) and $x \in W^u(p_x), y \in W^u(p_y)$ distinct which share a same strong stable leaf.
- Stable case. There exists q periodic in H(O) and $x, y \in W^{s}(q)$ distinct which share a same strong stable leaf.

The goal

One of the following cases holds robustly:

- Unstable case. There exists p_x, p_y periodic in H(O) and $x \in W^u(p_x)$, $y \in W^u(p_y)$ distinct which share a same strong stable leaf.
- Stable case. There exists q periodic in H(O) and $x, y \in W^{s}(q)$ distinct which share a same strong stable leaf.

In the unstable case,

- either one builds g and a periodic point q such that W^{ss}(q) meets W^u(p_y),
- or one finds g such that $x_g \notin W^{ss}(y_g)$.

In the stable case, one breaks the joint integrability close to (x, y).

Unstable case: return time dichotomy

Consider closest returns $f^n(x)$ of x (or y) to x:

- the return comes along $E_{p_x}^c$.
- If N is the time spent close to p_x before visiting x,

 $d(f^n(x), x) \simeq \lambda_c^N$, for λ_c = central eigenvalue of p_x .

Fix K > 1 large. Two cases occur:

- ▶ Fast returns. there are *n* large such that $n \leq K.N$.
- Slow returns. there are *n* large such that $n \ge K.N$.

The fast return case

There are large closest return $f^n(x)$ such that $n \leq K.N$. One set $a \simeq K^{-1} |\log \lambda_c|$ and $b \simeq a(1 - K^{-1})$.

Lemma

There exist returns at time n large such that $f^n(x) \in B(x, e^{-an})$ and $f^m(x) \notin B(x, e^{-bn})$ for any 0 < m < n.

The fast return case

There are large closest return $f^n(x)$ such that $n \leq K.N$. One set $a \simeq K^{-1} |\log \lambda_c|$ and $b \simeq a(1 - K^{-1})$.

Lemma

There exist returns at time n large such that $f^n(x) \in B(x, e^{-an})$ and $f^m(x) \notin B(x, e^{-bn})$ for any 0 < m < n.

Some perturbation g at $f^{-1}(x)$ satisfies $g^n(W^{ss}(x)) \subset W^{ss}(x)$. \Rightarrow There is $q \in W^{ss}(x)$ periodic such that $W^{ss}(q)$ meets $W^u(p_v)$.

The fast return case

There are large closest return $f^n(x)$ such that $n \leq K.N$. One set $a \simeq K^{-1} |\log \lambda_c|$ and $b \simeq a(1 - K^{-1})$.

Lemma

There exist returns at time n large such that $f^n(x) \in B(x, e^{-an})$ and $f^m(x) \notin B(x, e^{-bn})$ for any 0 < m < n.

Some perturbation g at $f^{-1}(x)$ satisfies $g^n(W^{ss}(x)) \subset W^{ss}(x)$. \Rightarrow There is $q \in W^{ss}(x)$ periodic such that $W^{ss}(q)$ meets $W^u(p_v)$.

The perturbation is $C^{1+\alpha}$ -small, where $1 + \alpha = a/b = \frac{K}{K-1}$.

There are large closest returns $f^n(x)$ such that $n \ge K.N$. One perturbs in $B(f^{-1}(x), \lambda_c^N)$, moving x and "keeping" $\Pi^{ss}(y)$.

There are large closest returns $f^n(x)$ such that $n \ge K.N$. One perturbs in $B(f^{-1}(x), \lambda_c^N)$, moving x and "keeping" $\Pi^{ss}(y)$.

- x moves by $\lambda_c^{(1+\alpha)N}$, for a perturbation $C^{1+\alpha}$ small.

There are large closest returns $f^n(x)$ such that $n \ge K.N$. One perturbs in $B(f^{-1}(x), \lambda_c^N)$, moving x and "keeping" $\Pi^{ss}(y)$.

- x moves by $\lambda_c^{(1+\alpha)N}$, for a perturbation $C^{1+\alpha}$ small.
- $-d(y, y_g) \leq \lambda_u^{-n}$, where λ_u bounds E^u from below.
- $d(\Pi^{ss}(y), \Pi^{ss}(y_g)) \le \lambda_u^{-\beta n}$, where Π^{ss} is β -Hölder.
- $\ d(\Pi_f^{ss}(y_g), \Pi_g^{ss}(y_g)) \le \sigma^{-n}, \text{ where } \sigma \text{ bounds } E^s/E^c.$

There are large closest returns $f^n(x)$ such that $n \ge K.N$. One perturbs in $B(f^{-1}(x), \lambda_c^N)$, moving x and "keeping" $\Pi^{ss}(y)$.

- x moves by $\lambda_c^{(1+\alpha)N}$, for a perturbation $C^{1+\alpha}$ small.
- $-d(y, y_g) \leq \lambda_u^{-n}$, where λ_u bounds E^u from below.
- $d(\Pi^{ss}(y), \Pi^{ss}(y_g)) \le \lambda_u^{-\beta n}$, where Π^{ss} is β -Hölder.
- $d(\prod_{f}^{ss}(y_g), \prod_{g}^{ss}(y_g)) \leq \sigma^{-n}$, where σ bounds E^s/E^c .

For K large, one has

$$\sigma^{-n} + \lambda_u^{-\beta n} < \lambda_c^{(1+\alpha)N}.$$

Fix $x, y \in W^{s}(q)$, some disc $D \subset W^{s}(q)$ transverse to $W^{u}(q)$.

Fix $x, y \in W^{s}(q)$, some disc $D \subset W^{s}(q)$ transverse to $W^{u}(q)$. One linearizes f at q and the foliated disc D.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Fix $x, y \in W^{s}(q)$, some disc $D \subset W^{s}(q)$ transverse to $W^{u}(q)$.

One linearizes f at q and the foliated disc D.

For $n \ge 1$ large,

- the angle between E_x^u or E_y^u with E_q^u is $\leq \sigma^n$, where $\sigma < 1$ bounds the domination E^c/E^u .
- one changes E_x^u by an angle $\lambda_s^{\alpha n}$ where $\lambda_s < 1$ bounds the contraction from below.

Fix $x, y \in W^{s}(q)$, some disc $D \subset W^{s}(q)$ transverse to $W^{u}(q)$.

One linearizes f at q and the foliated disc D.

For $n \geq 1$ large,

- the angle between E_x^u or E_y^u with E_q^u is $\leq \sigma^n$, where $\sigma < 1$ bounds the domination E^c/E^u .
- one changes E_x^u by an angle $\lambda_s^{\alpha n}$ where $\lambda_s < 1$ bounds the contraction from below.

For $m \ge 1$ large, one compares the intersections x', y' of $f^{-m}(D)$ with $W^u(x)$ and $W^u(y)$.

• y' crosses $W^{ss}(x')$ during the perturbation.

For C^1 -generic diffeomorphisms.

► Far from homoclinic tangencies ⇒ partial hyperbolicity with a dominated sum of one-dimensional center bundles.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

For C^1 -generic diffeomorphisms.

- ► Far from homoclinic tangencies ⇒ partial hyperbolicity with a dominated sum of one-dimensional center bundles.
- ► Far from heterodimensional cycles ⇒ chain-hyperbolicity, at most two central bundles.

For C^1 -generic diffeomorphisms.

- ► Far from homoclinic tangencies ⇒ partial hyperbolicity with a dominated sum of one-dimensional center bundles.
- ► Far from heterodimensional cycles ⇒ chain-hyperbolicity, at most two central bundles.
- On quasi-attractors ⇒ geometrical properties on the unstable lamination ⇒ uniform hyperbolicity.

For C^1 -generic diffeomorphisms.

- ► Far from homoclinic tangencies ⇒ partial hyperbolicity with a dominated sum of one-dimensional center bundles.
- ► Far from heterodimensional cycles ⇒ chain-hyperbolicity, at most two central bundles.
- ► On quasi-attractors ⇒ geometrical properties on the unstable lamination ⇒ uniform hyperbolicity.

What about the other chain-recurrence classes?