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Caracterize non-hyperbolicity

Goal: Find mechanisms that generate non-hyperbolicity:

– Simple configurations (on periodic orbits).

– Generate large sets of non-hyperbolic systems.

More generally: split the dynamics through dichotomies
phenomenon/mechanisms.
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Hyperbolic diffeomorphisms: definition

M: compact boundaryless manifold.

Definition
f ∈ Diff(M) is hyperbolic if there exists K0, . . . ,Kd ⊂ M s.t.:

– each Ki is a hyperbolic invariant compact set

TK M = E s ⊕ Eu,

– for any x ∈ M \ (
⋃

i Ki ), there exists U ⊂ M open such that

f (U) ⊂ U and x ∈ U \ f (U).

(Equivalent to “Axiom A + no cycle condition”.)



Obstructions to hyperbolicity
Homoclinic tangency associated to a hyperbolic periodic point p.

p

Heterodimensional cycle associated to two hyperbolic periodic
points p, q such that dim(E s(p)) 6= dim(E s(q)).

p q



Hyperbolicity conjecture

Conjecture (Palis)

Any f ∈ Diff(M) can be approximated by a hyperbolic
diffeomorphism or by a diffeomorphism exhibiting a homoclinic
bifurcation (tangency or cycle).

This holds when dim(M) = 1. (Morse-Smale systems are dense.)

In higher dimensions, we consider the C 1-topology.

Theorem (Pujals-Sambarino)

The conjecture holds for C 1-diffeomorphisms of surfaces.

Remark. The conjecture also holds in the conservative setting.
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Essential hyperbolicity far from homoclinic bifurcations

Theorem (Pujals, C-)

Any generic f ∈ Diff1(M) \ Tangency∪Cycle is essentially
hyperbolic.

Definition of essential hyperbolicity. There exist hyperbolic
attractors A1, . . . ,Ak and repellors R1 . . . ,R` s.t.:

– the union of the basins of the Ai is (open and) dense in M,

– the union of the basins of the Ri is (open and) dense in M,

Remarks.

– The set of these diffeomorphisms is not open apriori.

– In the setting of the theorem, the dynamics outside the basins
is partially hyperbolic.
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Program of the lectures

Goal. Any generic f ∈ Diff1(M) \ Tangency∪Cycle is essentially
hyperbolic.

– Lecture 1. Overview of the proof.

Finiteness of attractors.

– Lecture 2. Classes of the dynamics.

Chain-hyperbolicity, strong laminations.

– Lecture 3. Non-hyperbolic attractors.

Perturbation and creation of strong connections.



Decomposition of the dynamics / quasi-attractors

The chain-recurrent set R(f ): the set of x ∈ M s.t. for any ε > 0,
there exists a ε-pseudo-orbit x = x0, x1, . . . , xn = x , n ≥ 1.

The chain-recurrence classes: the equivalence classes of the relation
“for any ε > 0, there is a periodic ε-pseudo-orbit containing x , y”.

I This gives a partition of R(f ) into compact invariant subsets.

A quasi-attractor is a chain-recurrence class having a basis of
neighborhoods U which satisfy f (U) ⊂ U.

I There always exist quasi-attractors.

For f ∈ Diff1(M) generic:
1) Any chain-recurrence class which contains a periodic orbit O
coincides with the homoclinic class H(O) := W s(O) |∩ W u(O).
(The other chain-recurrence classes are called aperiodic classes.)

2) The union of the basins of the quasi-attractors is dense in M.
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Partial hyperbolicity far from homoclinic tangencies...

Theorem (C-, Sambarino, D. Yang)

Any generic f ∈ Diff1(M) \ Tangency is partially hyperbolic:

I For aperiodic classes, TM = E s ⊕ E c ⊕ Eu with dim(E c) = 1
and dim(E s), dim(Eu) ≥ 1.

I For homoclinic classes, TM = E s ⊕ E c
1 ⊕ · · · ⊕ E c

` ⊕ Eu.
For each i one has dim(E c

i ) = 1 and the class has periodic
points with Lyapunov exponent along E c

i arbitrarily close to 0.

... and far from heterodimensional cycles

If moreover f /∈ Cycle, then for each homoclinic class,

I each central bundle E c
i is thin-trapped by f or f −1,

I there are at most two central bundles.

The class is chain-hyperbolic. (Cf. the second lecture.)
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Strong connexions

Let H(O) be a homoclinic class with a splitting
TM = E cs ⊕ E cu = (E ss ⊕ E c)⊕ E cu, where dim(E c) = 1.

How does the strong stable lamination intersect the class?

Theorem (Bonatti, C-)

If W ss(x) ∩ H(O) = {x} for any x ∈ H(O), then H(O) is
contained in a (loc. invariant) submanifold tangent to E c ⊕ E cu.

Definition. If W ss(x) ∩ H(O) 6= {x} for some x ∈ H(O) that is
periodic and belongs to a transitive hyperbolic set containing O,
one says that H(O) has a strong connection.

I if one can choose K with a weak stable exponent, then there
exists a C 1-perturbation of f with a heterodimensional cycle.
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Topology inside center-stable leaves

Consider H(O) a homoclinic class satisfying:

– there is a splitting TM = (E ss ⊕ E c)⊕ E cu, dim(E c) = 1,

– E cs = E ss ⊕ E c and E cu are thin trapped by f and f −1 resp.

Theorem (C-, Pujals)

If H(O) has no strong connection and is not contained in a (loc.
invariant) submanifold tangent to E c ⊕ E cu, then the intersection
of H(O) with the center-stable plaques is totally disconnected.

Remark. This applies to hyperbolic sets.



Extremal bundles

Consider H(O) with a splitting TM = E cs ⊕ E cu s.t.

– E cs ,E cu are thin trapped by f and f −1 respectively,

– dim(E cu) = 1.

Theorem (C-, Pujals, Sambarino)

If f is C 1-generic and one of the following cases holds:

– dim(E cs) = 1,

– E cs is uniformly contracted,

– inside the center-stables plaques, H(O) is totally disconnected,

then E cu is uniformly expanded.



Extremal bundles : corollaries

Corollary. For generic f ∈ Diff1(M) \ Tangency∪Cycle:

– Any homoclinic class H(O) is either a sink/source or a part.
hyperbolic set with non-degenenerated bundles E s ,Eu.

– If H(O) has a non-uniform bundle E cs = E s ⊕ E c , then there
exists x 6= y in H(O) such that W ss(x) = W ss(y).

– The number of sinks/sources is finite.



Finiteness of attractors

Proposition

For a generic f ∈ Diff1(M) \ Tangency∪Cycle, the set of
non-trivial quasi-attractors is finite.



Conclusion

We have seen that generically in Diff1(M) \ Tangency∪Cycle,

– the union of the basins of the quasi-attractors is dense in M,

– quasi-attractors are finite.

It remain to prove that quasi-attractors are hyperbolic.

I Lecture 2. Quasi attractors (in fact all classes) are
chain-hyperbolic and have nice properties.

I Lecture 3. One can perturb non-hyperbolic quasi-attractors to
create a heterodimensional cycle.



Essential hyperbolicity versus homoclinic
bifurcations (2)



Program of the lectures

Goal. Any generic f ∈ Diff1(M) \ Tangency∪Cycle is essentially
hyperbolic.

– Lecture 1. Overview of the proof.

Finiteness of quasi-attractors.

– Lecture 2. Classes of the dynamics.

Chain-hyperbolicity, strong laminations.

– Lecture 3. Non-hyperbolic attractors.

Perturbation and creation of strong connections.



Partial hyperbolicity far from homoclinic bifurcations

Recall. Generically the dynamics splits into homoclinic and
aperiodic classes.

Theorem 1
Any generic f ∈ Diff1(M) \ Tangency∪Cycle is part. hyperbolic:

I For aperiodic classes, TM = E s ⊕ E c ⊕ Eu with dim(E c) = 1
and dim(E s), dim(Eu) ≥ 1.

I For homoclinic classes, TM = E cs ⊕ E cu, where E cs and E cu

are thin trapped by f and f −1 respectively.

If E cs is not uniformly contracted, then E cs = E s ⊕ E c s.t.

– dim(E c) = 1 and E s is uniformly contracted,
– the class has periodic points with Lyapunov exponent along E c

arbitrarily close to 0.



Topological dynamics along invariant bundle

K an inv. compact set with a dom. splitting TM = E cs ⊕ E cu.

Definition. A trapped plaque families tangent to E cs is a
continuous family of embedded plaques Dx , x ∈ K , such that:

– Dx contains x and is tangent to to E cs
x ,

– The closure of f (Dx) is contained in Df (x).

Definition. The bundle E cs is thin-trapped if there exists trapped
plaque families tangent to E cs with arbitrarily small diameters.

Example. If E cs is uniformly contracted, it is thin-trapped.
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Thm 1: How to use “far from homoclinic tangencies”?

Theorem (Wen)

Consider f ∈ Diff1(M) \ Tangency and a sequence of hyperbolic
periodic orbits (On) with the same stable dimension ds .
Then Λ = ∪nOn has a dom. splitting TΛM = E ⊕ F with
dim(E ) = ds .

I This allows to build dominated splittings.

Corollary (Wen)

If µ is an ergodic invariant probability, the support hat a dom.
splitting TM = E ⊕ E c ⊕ F with dim(E c) ≤ 1. The Lyapunov
exponents of µ are 0 along E c and non-zero along E and F .
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Thm 1: Decomposition of non-uniform bundles

Consider a generic f ∈ Diff1(M) \ Tangency and an invariant
compact set Λ with a splitting TΛM = E ⊕< F .

Proposition (Decomposition principle)

If E is not uniformly contracted then one of the following holds:

– Λ ⊂ H(p) for some periodic p with dim(E s(p)) < dim(E ).

– Λ ⊂ H(p) for some periodic p with dim(E s(p)) = dim(E ).
H(p) contains periodic orbits with a weak stable exponent.

– Λ contains K partially hyperbolic: TK M = E s ⊕< E c ⊕< Eu,
with dim(E c) = 1, dim(E s) < dim(E ).
Any measure on K has a zero Lyapunov exponent along E c .

I In the two first cases, the bundle E splits E = E ′ ⊕< E c .

I In the third, one finds a periodic orbit in H(p) which spends
most of its time close to K . (Analyze the topol. central dyn.)
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Chain-hyperbolic homoclinic classes: definition

Definition. A homoclinic class H(O) is chain-hyperbolic if:

– there is a dominated splitting TM = E cs ⊕ E cu,

– there are some plaque families Dcs ,Dcu tangent to E cs ,E cu

that are trapped by f and f −1 resp.

– Dcs
O ⊂W s(O) and Dcu

O ⊂W u(O).

Examples.

I The homoclinic classes of generic
f ∈ Diff1(M) \ Tangency∪Cycle.

I Some non-hyperbolic robustly transitive diffeomorphisms
(Shub, Mañé, Bonatti-Viana,...).



Chain-hyperbolic homoclinic classes: properties

Let H(O) be a chain-hyperbolic homoclinic class.

Proposition (Robustness)

(If H(O) is a chain-recurrence class,)
H(Og ) is chain-hyperbolic for any g ∈ Diff1(M) close to f .

Proposition (Local product structure)

The plaques Dcs ,Dcu are resp. contained in the chain-stable and
the chain-unstable sets of H(O).
For x , y close, Dcs

x ∩ Dcu
y belongs to H(O).

This justifies the name “chain-hyperbolicity” however H(O) can
robustly contain periodic points of different stable dimension!
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Chain-hyp. homoclinic classes: pointwise continuation

Start with f and a chain-hyperbolic class H(O) s.t.
TM = E cs ⊕ E cu = (E s ⊕ E c)⊕ Eu and dim(E c) = 1.

By perturbation, any points has one or two continuations:

Proposition

If f ∈ Diffr \ strong connexions, there exists a lift dynamics (H̃, f̃ )
such that for each g C r -close to f there is a semi-conjugacy
πg : H̃ → H(Og ) satisfying:

– for each x̃ ∈ H̃ the points πf (x̃), πg (x̃) are close,

– for each x ∈ H(Og ) one has #π−1
g (x) ≤ 2.



Quasi-attractors

For generic f ∈ Diff1(M) \ Tangency∪Cycle, if they exist,

non-hyperbolic quasi-attractors are:

– homoclinic classes,

– chain-hyperbolic with a splitting E cs ⊕ Eu = (E s ⊕ E c)⊕ Eu,

– saturated by unstable leaves,

– not contained in a submanifold: they contain two different
points x , y with a same strong-stable leaf.

Goal. By perturbation, find p, q periodic in H(O) such that
W ss(p) and W u(q) intersect.
(This will give a heterodimensional cycle, hence a contradiction.)



Quasi-attractors: geometry of the unstable lamination

H(O): quasi-attractor for a generic f 6∈ Tangency∪Cycle.
One looks at pairs (x , y) where x 6= y in H(O) have a same strong
stable leaf.

I One can compare W u
loc(x) with the projection Πss(W u

loc(y))
through strong stable holonomy.

Possible cases:

– transversal: for some pair (x , y),
W u

loc(x) and Πss(W u
loc(y)) cross,

– jointly integrable: for some pair (x , y),
W u

loc(x) and Πss(W u
loc(y)) coincide,

– stricly non-transversal: for any pair (x , y),
W u

loc(x) and Πss(W u
loc(y)) do not cross and do not coincide.



Boundary points

Definition. A stable boundary point x ∈ H(O) is a point which is
accumulated by H(O) in only one component of Dcs

x \W ss(x).

Theorem. If the transversal case does not holds, then any stable
boundary point belongs to the unstable manifold of a periodic
point of H(O).



Conclusion

Any non-hyperbolic quasi-attractor satisfies one of the following
case robustly:

– Unstable case. There exists px , py periodic in H(O) and
x ∈W u(px), y ∈W u(py ) distinct which share a
same strong stable leaf.

– Stable case. There exists q periodic in H(O) and x , y ∈W s(q)
distinct which share a same strong stable leaf.

Tomorow, one will perturb to create a strong connexion.
⇒ all quasi-attractors are hyperbolic.



Conclusion

Any non-hyperbolic quasi-attractor satisfies one of the following
case robustly:

– Unstable case. There exists px , py periodic in H(O) and
x ∈W u(px), y ∈W u(py ) distinct which share a
same strong stable leaf.

– Stable case. There exists q periodic in H(O) and x , y ∈W s(q)
distinct which share a same strong stable leaf.

Tomorow, one will perturb to create a strong connexion.
⇒ all quasi-attractors are hyperbolic.



Essential hyperbolicity versus homoclinic
bifurcations (3)



Program of the lectures

Goal. Any generic f ∈ Diff1(M) \ Tangency∪Cycle is essentially
hyperbolic.

– Lecture 1. Overview of the proof.

Finiteness of the quasi-attractors.

– Lecture 2. Classes of the dynamics.

Chain-hyperbolicity, strong laminations.

– Lecture 3. Non-hyperbolic attractors.

Perturbation and creation of strong connections.



Non-hyperbolic quasi-attractor

Take a quasi-attractor H(O) which is a homoclinic class s.t.

– TM = E cs ⊕ Eu and E cs = E s ⊕ E c , dim(E c) = 1.

– E cs is thin-trapped.

Theorem. There exists g close to f such that

– either a submanifold tangent to E c ⊕ Eu contains H(Og ),

– or H(Og ) has a strong connexion: it contains periodic points
p, q such that W ss(p) and W u(q) intersect.

Remark.

– If f is C 1-generic and E c is not uniform, then this gives
heterodimensional cycles.

– The result also applies to hyperbolic sets with a
one-codimensional strong stable bundle.

– If f is C r , r > 1, then g is C 1+α-close for some α > 0.
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The goal

One of the following cases holds robustly:

– Unstable case. There exists px , py periodic in H(O) and
x ∈W u(px), y ∈W u(py ) distinct which share a
same strong stable leaf.

– Stable case. There exists q periodic in H(O) and x , y ∈W s(q)
distinct which share a same strong stable leaf.

In the unstable case,

– either one builds g and a periodic point q such that W ss(q)
meets W u(py ),

– or one finds g such that xg 6∈W ss(yg ).

In the stable case, one breaks the joint integrability close to (x , y).
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Unstable case: return time dichotomy

Consider closest returns f n(x) of x (or y) to x :

– the return comes along E c
px

.

– If N is the time spent close to px before visiting x ,

d(f n(x), x) ' λN
c , for λc = central eigenvalue of px .

Fix K > 1 large. Two cases occur:

I Fast returns. there are n large such that n ≤ K .N.

I Slow returns. there are n large such that n ≥ K .N.



The fast return case

There are large closest return f n(x) such that n ≤ K .N.
One set a ' K−1| log λc | and b ' a(1− K−1).

Lemma
There exist returns at time n large such that f n(x) ∈ B(x , e−an)
and f m(x) 6∈ B(x , e−bn) for any 0 < m < n.

Some perturbation g at f −1(x) satisfies gn(W ss(x)) ⊂W ss(x).
⇒ There is q ∈W ss(x) periodic such that W ss(q) meets W u(py ).

The perturbation is C 1+α-small, where 1 + α = a/b = K
K−1 .
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The slow return case

There are large closest returns f n(x) such that n ≥ K .N.
One perturbs in B(f −1(x), λN

c ), moving x and “keeping” Πss(y).

– x moves by λ
(1+α)N
c , for a perturbation C 1+α small.

– d(y , yg ) ≤ λ−n
u , where λu bounds Eu from below.

– d(Πss(y),Πss(yg )) ≤ λ−βn
u , where Πss is β-Hölder.

– d(Πss
f (yg ),Πss

g (yg )) ≤ σ−n, where σ bounds E s/E c .

For K large, one has

σ−n + λ−βn
u < λ

(1+α)N
c .
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The stable case

Fix x , y ∈W s(q), some disc D ⊂W s(q) transverse to W u(q).

One linearizes f at q and the foliated disc D.

For n ≥ 1 large,

– the angle between Eu
x or Eu

y with Eu
q is ≤ σn, where σ < 1

bounds the domination E c/Eu.

– one changes Eu
x by an angle λαn

s where λs < 1 bounds the
contraction from below.

For m ≥ 1 large, one compares the intersections x ′, y ′ of f −m(D)
with W u(x) and W u(y).

I y ′ crosses W ss(x ′) during the perturbation.
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Conclusion

For C 1-generic diffeomorphisms.

I Far from homoclinic tangencies ⇒ partial hyperbolicity with a
dominated sum of one-dimensional center bundles.

I Far from heterodimensional cycles ⇒ chain-hyperbolicity, at
most two central bundles.

I On quasi-attractors ⇒ geometrical properties on the unstable
lamination ⇒ uniform hyperbolicity.

What about the other chain-recurrence classes?
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