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Fermat conjectured that any positive integer is a sum of four
squares of integers.

n = a2 + b2 + c2 + d2.

Euler proved the statement in rationals.
L. Euler, Demonstratio theorematis Fermatiani omnem numerum
sive integrum sive fractum esse summam quatuor pauciorumve
quadratorum, N. Comm. Ac. Petrop. 5 (1754/5), 1760., p. 13-58.
The statement in integers was proved by Lagrange, 1770



Representation by an arbitrary form
∑

i aiX
2
i .

H. Hasse, Über die Darstellbarkeit von Zahlen durch quadratische
Formen im Körper der rationalen Zahlen, J. Crelle, 1923

Hendrik Douwe Kloosterman, Over het splitsen van geheele
positieve getallen in een some van kwadraten, Thesis (1924)
Universiteit Leiden, published in Groningen.
Hendrik Douwe Kloosterman, On the representation of numbers in
the form ax2 + by 2 + cz2 + dt2, Acta Mathematica 49 (1926),
407-464 (key point : ‘fundamental lemma’).

There are local obstructions, which show up in the “singular
series”. Kloosterman establishes a Hardy-Littlewood formula for
the number of representations of n and then gives sufficient
conditions on the a, b, c , d so that any sufficiently big integer is
represented.



In this lecture I want to present a result in the spirit of Euler’s and
Hasse’s results. Namely :

In the field Q(x1, . . . , xn), n ≥ 2, and more generally in a function
field in n variables over Q, any positive rational function may be
written as a sum of 2n+1 squares.

This builds upon earlier work of Pfister over the reals. For n = 1,
an upper bound is 8.
The universal bound 2n+1 was predicted by U. Jannsen and myself
in 1991, building upon two conjectures which it took quite a few
years to turn into theorems.
The proof of the first, purely algebraic conjecture, is the outcome
on work on motivic cohomology (V. Voevodsky et al.)
The proof of the second, arithmetic, conjecture, is a chapter in
higher class field theory (U. Jannsen, S. Saito).



Questions around Hilbert’s 17th problem

In a field F

Characterize sums of squares

Decide if there exists an integer n = n(F ) such that each sum of
squares in F may be written as a sum of at most n squares.



Sums of squares in a field F

n + m = n+m

(in any ring)

n . m = nm

(in any commutative ring)

n / m = nm .

(in any field)



F = R(x)
f ≥ 0 on R wherever defined =⇒ f = 2

Proof : decomposition into simple factors and identity

(x2
1 + y 2

1 )(x2
2 + y 2

2 ) = (x1x2 − y1y2)2 + (x1y2 + x2y1)2

hence

2 . 2 = 2



F = Q

Characterisation of of sums of 2 squares (Fermat)

f ≥ 0 =⇒ f = 4 (Euler, 1770)

Proof : Conics over a finite field Fp have a rational point (counting
argument) and identity (in any commutative ring)

(x2
1 + y 2

1 + z2
1 + t2

1 )(x2
2 + y 2

2 + z2
2 + t2

2 ) =
(x1x2 + y1y2 + z1z2 + t1t2)2 + (x1y2 − y1x2 + t1z2 − z1t2)2 +
(x1z2 − z1x2 + y1t2 − t1y2)2 + (x1t2 − t1x2 + z1y2 − y1z2)2

hence
4 . 4 = 4

Characterisation of sums of 3 squares (Legendre 1798, Gauß)



F = R(x , y)
f ∈ R(x , y), f ≥ 0 on R2 wherever defined =⇒ f = 4
(Hilbert, 1893)

Proof (very long) : A version of what is now recognized as a
special case of Tsen’s theorem, and identity 4 . 4 = 4



1900 : Hilbert’s 17th problem

Kann jede rationale Funktion, die überall, wo sie definiert ist,
nichtnegative Werte annimmt, als Summe von Quadraten von
rationalen Funktionen dargestellt werden ?

Analogous question for f ∈ Q(x1, . . . , xn)

Natural question : for a sum of squares in such a field, is there an
upper bound on the number of squares required ?



F = Q(x)
f ∈ F , f ≥ 0 =⇒ f = 8
(Landau, 1906)
Tools :
8 . 8 = 8

(in any commutative ring)
and
in a totally imaginary number field, −1 = 4



E. Artin, O. Schreier, 1927

In a field, an element is a sum of squares if and only if it is positive
for each total order of the field.

(Zorn type of argument)



E. Becker (1979)
Let n be an even integer. In a field F , an element f is sum of n-th
powers if and only if
(1) It is a sum of squares, and
(2) for any Krull valuation v on the field F with formally real
residue field (i.e. −1 not a sum of squares in the residue field),
n divides the valuation of v(f ).

Example : For n even, (
∑r

i=1 X n
i )m is a sum of nm-th powers in

Q(X1, . . . ,Xr ).
Ancester : Hilbert’s solution of Waring’s problem



E. Artin, 1927
Solution of Hilbert’s 17th problem :

If a polynomial P(x1, . . . , xn) ∈ R[x1, . . . , xn] is positive on Rn then
it is a sum of squares in R(x1, . . . , xn)

More generally, if X is an irreducible algebraic variety over the
reals, and if a rational function f on X is positive on the set X (R)
of real points wherever it is defined, then f is a sum of squares in
the field of functions R(X ).
Artin shows : f positive on X (R) implies f ∈ R(X ) positive for all
orderings.

Same statements with Q in place of R.



E. Witt, 1934

If X is an irreductible curve over R, then any rational function
f ∈ R(X ) which is positive on X (R) is a sum of 2 squares in R(X ).

Uses Tsen 1933 and computations of Weichold on the action of
complex conjugation on periods.



Tsen, 1936

Over C(x1, . . . , xn), and more generally over the function field
C(X ) of an n-dimensional variety X over the complex field C, any
form of degree d in at least d2 + 1 variables has a nontrivial zero.

1933 for n = 1

1936 for arbitrary n, rediscovered by S. Lang 1953

Recent far reaching extension : rationally connected varieties over
a function field (over C) in one variable (Graber, Harris, Starr)



E. Witt, 1937

Theory of quadratic forms over an arbitrary field
Simplification theorem
An early version of the notion of Grothendieck group (legend has it
that it was taught to him by his Chinese nanny) :
The Witt group W (F ) of nondegenerate quadratic forms over a
field F modulo hyperbolics. This is actually a ring.
Fundamental ideal IF ⊂W (F ) of even rank forms.
Powers I nF of this ideal. Generators : n-fold Pfister forms

〈〈a1, a2, ..., an〉〉, ai ∈ F×



A. Pfister

1965-1966 : Theory of multiplicative quadratic forms
In a field F, the set of nonzero values taken by

〈〈a1, a2, ..., an〉〉 = 〈1,−a1〉 ⊗ 〈1,−a2〉 ⊗ ...⊗ 〈1,−amn〉

is a subgroup of the multiplicative group F×.

In particular, in a field, m . m = m for any m = 2n.

Properties of the above forms : if isotropic, then hyperbolic.

Theorem (Arason–Pfister 1971) If the class of an anisotropic form
q over a field F lies in I nF , then the dimension of q is at least 2n.



A. Pfister

1967-1971
Let X be an irreducible R-variety of dimension n. If f ∈ R(X ) is
positive on X (R) wherever it is defined, then f is a sum of 2n

squares in R(X ).



J. W. S. Cassels, 1964

1 + x2
1 + · · ·+ x2

n is not a sum of n squares in R(x1, . . . , xn)

Cassels-Ellison-Pfister 1971

In R(x , y) a sum of 4 squares need not be a sum of 3 squares.
Proof uses elliptic curves.
Quite different proof, 1993, via Lefschetz theorem.

Long standing open problem : For n ≥ 3, is there a sum of 2n

squares in R(x1, . . . , xn) which cannot be written as a sum of a
smaller number of squares ?



Other long standing open problem : Over the function field R(X )
of a real surface X with X (R) = ∅, does any quadratic form in at
least 5 variables have a nontrivial zero ?

Known for forms in at least 7 variables

(Such a field has a number of common properties with totally
imaginary number fields)



Milnor, 1970

Definition of Milnor’s K-theory groups of a field

KM
0 (F ) = Z

KM
1 (F ) = F×

KM
2 (F ) = F× ⊗Z F×/{x ⊗ y , x + y = 1}

KM
n (F ) = F× ⊗Z · · · ⊗ F×/I

where I is the subgroup spanned by symbols for which two
coordinates add to 1.



Milnor, 1970

Questions/conjectures on the connexions between quadratic forms,
(Milnor) K -theory and Galois cohomology (Serre, Tate) of fields.
Natural homomorphisms

hn : KM
n (F )/2→ Hn

gal(F ,Z/2)

and
sn : KM

n (F )/2→ I nF/I n+F

Basic questions : Are these homomorphisms isomorphisms ?
Would imply existence of homomorphisms I nF → Hn

gal(F ,Z/2)
sending Pfister forms to symbols, classically known only for n ≤ 2,
and defined (Arason 1974) for n = 3.



Classic :

F×/F×2 ' H1
gal(F ,Z/2)

(description of quadratic extension of fields)

IF/I 2F ' F×/F×2

(signed determinant)

Homomorphism
I 2F/I 3F → H2

gal(F ,Z/2)

(Clifford, Hasse-Witt invariants)



Let Fs be a separable closure of F , for p prime distinct from charF
let µp ⊂ F×s be group of p-th roots of unity.
There is a natural homomorphism

KM
n (F )/p → Hn

gal(F , µ⊗n
p )

A conjecture of Bloch and Kato (1980/1982) predicts that this is
an isomorphism.
Algebraic number theory (class field theory) enough to prove this
for F a number field (Milnor).
Bloch showed stability of conjecture under F 7→ F (t).



For n = 1, known, this is referred to as Kummer theory :

F×/F×p ' H1
gal(F , µp)

This uses Hilbert’s theorem 90 in the Emmy Noether version

H1
gal(F ,F×s ) = 0.

The Hilbert version says : if E/F is a finite cyclic extension, with
Galois group G =< σ >, the only elements in E with norm 1 in F
are those of the obvious shape σ(y)/y , y ∈ E×.

A consequence of Hilbert’s theorem 90 is

H2(F , µr ) ↪→ H2(F , µrs)



The Bloch-Kato conjectures implies

Hn+1
gal (F , µ⊗n

r ) ↪→ Hn+1
gal (F , µ⊗n

rs ).

For E/F cyclic with Galois group < σ >, Hilbert’s version of
Hilbert’s theorem 90 suggests exact sequences

KM
n (E )

1−σ→ KM
n (E )

NormE/F→ KM
n (F )



Algebraic K-theory, Milnor and Bloch-Kato conjectures, and
motivic cohomology



Merkur’ev, 1981
Proof of Milnor’s conjecture for n = 2 :

KM
2 (F )/2 ' H2

gal(F ,Z/2)

and
KM

2 (F )/2 ' I 2F/I 3F

hence
I 2F/I 3F ' H2

gal(F ,Z/2)



Merkur’ev and Suslin, 1982
Proof of Bloch-Kato’s conjecture for n = 2

KM
2 (F )/p ' H2

gal(F , µ⊗2
p )

for any integer p prime to char F .

For E/F cyclic, establish the exact sequence (Hilbert 90 for cyclic
extensions)

KM
2 (E )

1−σ→ KM
2 (E )

NormE/F→ KM
2 (F )

Solved old problem : any central simple algebra over a field is split
over a solvable extension of the ground field.



Tools :
Quillen’s higher algebraic K -theory, Riemann-Roch theorem for
higher algebraic K -theory (Gillet).
Algebraic varieties involved : conics, Severi-Brauer varieties
(twisted form of projective space).
One variant of the proof used less algebraic K -theory, it built upon
the case of number fields.
In the Merkurjev case, a key point is the exactness of the sequence

K2F (C )→ ⊕x∈C0F (x)× → F×

for C a conic over a field F
For x in C0, map {f , g} ∈ K2F (C ) to the class of
(−1)vx (f )vx (g)(f vx (g)/g vx (f )) in F (x)×. The map F (x)× → F× is
the norm map.



After work by Rost (1986) and Merkurjev–Suslin (1990) for n = 3
then by Rost for n = 4, a proof of Milnor’s conjecture

hn : KM
n (F )/2 ' Hn

gal(F ,Z/2)

for any n was announced by Voevodsky in 1996. The complete
proof, which builds upon a formidable work mixing up algebraic
geometry and homotopy theory appeared in 2002.
As for the isomorphism

sn : KM
n (F )/2 ' I nF/I n+F

it was published by Orlov, Vishik and Voevodsky in 2007.



The proof uses ideas and results by M. Rost.
Motivic cohomology, as envisioned in 1982/83 by A. Beilinson and
by S. Lichtenbaum, and as developed by Suslin, Voevodsky and
others, now replaces algebraic K -theory.
The algebraic varieties to which the theory is applied are still pretty
simple varieties, namely Pfister quadrics, defined by a quadratic
form

〈〈a1, a2, ..., an〉〉 = 〈1,−a1〉 ⊗ 〈1,−a2〉 ⊗ ...⊗ 〈1,−an〉

(more precisely, Pifster neighbours).



Things are actually not so simple, one uses the motivic
cohomology of simplicial schemes associated to these varieties.
The proof also involves the definition and study of Steenrod
operations in the context of motivic cohomology. This builds upon
the homotopy theory of schemes (Voevodsky and Morel).



Along the way, tools were developed which could be used to prove
the more general Bloch–Kato conjecture

KM
n (F )/p → Hn

gal(F , µ⊗n
p ).

It was reduced to a generalized “Hilbert’s theorem 90”, which reads

Hn+1
ét (F ,Z(p)(n)) = 0,

This is the hypercohomology of a certain complex of sheaves Z(n)
over (the big Zariski site of) Spec(F ).



Connexion with Milnor K-theory :

Hn
Zar (F ,Z(n)) ' KM

n (F )

and with Galois cohomology :

Hn
ét(F ,Z/p(n)) = Hn

ét(F , µ⊗n
p ).

H1
ét(F ,Z(0)) = H1

gal(F ,Z) = 0

H2
ét(F ,Z(1)) = H1

ét(F ,F×s ) = 0

H3
ét(F ,Z(1)) = Br(F )



The proof of the general case (Voevodsky 2010) involves the work
of a number of people (Suslin, Rost, Weibel).
The proof involves “norm varieties”, to play the rôle of
Severi–Brauer varieties and of Pfister neighbours.
That such varieties with the desired properties exist is due to
Markus Rost. To study them, he devised certain “degree formulas”.



Fix a prime l and a symbol α = {a1, . . . , an} in KM
n (F )/l .

One wants a smooth projective variety X over F , of dimension d ,
with the following properties :
(1) d = ln−1 − 1
(2) deg(sd(X )) 6= 0 mod l2.
(3) The image of the symbol α vanishes in KM

n (F (X ))/l .

Here sd(X ) ∈ CHd(X ) is a certain characteristic class associated
to the tangent bundle of X , and which is known (Milnor) to have
degree divisible by l .



These investigations have generated a whole new theory, algebraic
cobordism (Levine-Morel).

Here is an old and very special case of a “degree formula” : Let
f : X → Y be a morphism between conics. If the degree of f is
even, then the conic Y has a rational point.



(Some) higher class field theory



Classical class field theory was brought to bear on problems
concerning quadratic forms.
Hasse proved the Hasse principle for quadratic forms, both for
existence of a nontrivial zero and for isomorphy of two quadratic
forms.
The latter result may be rephrased as an injection

W (k) ↪→
∏
v∈Ω

W (kv )



One can revisit Landau’s result from this point of view.
Exact sequence based on the euclidean algorithm (Milnor, who
mentions Tate’s rewriting of some of Gauss’ arguments)

0→W (k)→W (k(t))→ ⊕P∈k[t] monic irreducibleW (k[t]/P)→ 0.

Compare this sequence over a number field k and over each
completion kv

Yields injection W (k(t)) ↪→
∏

v W (kv (t))
Recall f is a sum of 2n squares in a field F if and only if the forms
f . < 1, 1 >⊗n and < 1, 1 >⊗n are isomorphic.
Finally, < 1, 1 >⊗8 is hyperbolic over each Qp, and
f . < 1, 1 >⊗n'< 1, 1 >⊗n over R if f is positive.



K. Kato 1986

Conjectural generalisation of class field theory of number fields :
higher class field theory of function fields over number fields.

Gives a proof for the function field of curves

A consequence :
If X is an absolutely irreducible curve over Q, if f ∈ Q(X ) is
positive on X (R), then it is a sum of 8 squares in Q(X ).
The proof uses Merkurjev ’s result on the Milnor conjecture.



Which generalization of classical class field theory ?
In classical class field theory, for any number field k there is a basic
exact sequence for Brauer groups

0→ Br(k)→ ⊕v∈ΩBr(kv )→ Q/Z→ 0

which contains among others Gauss’ quadratic reciprocity law.
The Brauer group of a field may be viewed as the second Galois
cohomology group of the field with values in the group Q/Z(1) of
roots of unity.



K. Kato (1986) had the vision that for the function field F = k(X )
of an n-dimensional variety X over a number field k there should
exist similar but longer sequences, which would start at
Hn+2

gal (F ,Q/Z(n + 1)) (n + 2 being essentially the highest degree
for nontrivial cohomology). Here Q/Z(n + 1) is Q/Z(1) with a
twisted action of the Galois group of F .
A special case of the conjectures predicts that the natural map

Hn+2
gal (k(X ),Q/Z(n + 1))→

∏
v∈Ω

Hn+2
gal (kv (X ),Q/Z(n + 1))

is injective. For n = 0, this is Br(k) ↪→
∏

v∈Ω Br(kv ).



In a 1996 paper, K. Kato proved the conjectures for curves. The
case of surfaces was proved by U. Jannsen in 1990. The case of
varieties of arbitrary dimension was announced by him in 1991.
The paper containing the proof of the entire set of Kato
conjectures over a number field appeared in 2009.
Among other things the proof uses resolution of singularities and
Deligne’s results on the Weil conjectures (notion of weight
filtration on l-adic cohomology groups of open varieties over a
number field).
The case of function fields over a finite field was simutlaneously
examined by U. Jannsen and S. Saito. In arbitrary dimension, the
conjectures (prime to characteristic) have been established by
M. Kerz and S. Saito (2010).



Back to the theorem (CT-Jannsen 1991) announced at the
beginning of the lecture.

Let F = Q(x1, . . . , xn) and Fv = Qv (x1, . . . , xn).
Jannsen-Saito (coefficients Q/Z(n + 1)) together with Voevodsky
(Hn+2(F ,Z/2) ↪→ Hn+2(F ,Q/Z(n + 1))) and
Orlov-Vishik-Voevodsky give an injection

I n+2F/I n+3F →
∏
v∈Ω

I n+2Fv/I n+3Fv .



Assume f ∈ F is positive on Rn. By Pfister’s result, f is a sum of
2n squares in R(x1, . . . , xn).
For any prime p, −1 is a sum of (at most) 4 squares in Qp. The
basic equality f = ( f +1

2 )2 − ( f−1
2 )2 implies that in each Fp, f is a

sum of 5 hence of 8 squares. Thus for n ≥ 2, we have

f . < 1, 1 >⊗n+1'< 1, 1 >⊗n+1

over each Fv .
This implies < f ,−1 > ⊗ < 1, 1 >⊗n+1= 0 in I n+2F/I n+3F . Then
Arason–Pifster implies < f ,−1 > ⊗ < 1, 1 >⊗n+1= 0 ∈W (F ),
that is (Witt simplification) f is a sum of 2n+1 squares in F .



In the case n = 1, one sees that f is a sum of 8 squares (this is in
substance the 1986 proof).

For arbitrary n, Arason later noticed that if one uses Milnor’s
conjecture in degree up to n + 3, then one may show that a positive
rational function in Q(x1, . . . , xn) may be written as a sum of 2n+2

squares without appealing to the results by Jannsen and Saito.

The arguments immediately extend to arbitrary algebraic varieties
over arbitrary number fields.


