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Abstract

We pursue the task of developing a finite population counterpart
to Eigen’s model. We consider the classical Wright–Fisher model
describing the evolution of a population of size m of chromosomes of
length ` over an alphabet of cardinality κ. The mutation probability
per locus is q. The replication rate is σ > 1 for the master sequence
and 1 for the other sequences. We study the equilibrium distribution
of the process in the regime where

`→ +∞ , m→ +∞ , q → 0 ,

`q → a ∈]0,+∞[ ,
m

`
→ α ∈ [0,+∞] .

We obtain an equation αψ(a) = lnκ in the parameter space (a, α)
separating the regime where the equilibrium population is totally
random from the regime where a quasispecies is formed. We observe
the existence of a critical population size necessary for a quasispecies
to emerge and we recover the finite population counterpart of the er-
ror threshold. The result is the twin brother of the corresponding
result for the Moran model. The proof is more complex and it relies
on the Freidlin–Wentzell theory of random perturbations of dynam-
ical systems.
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1 Introduction.

The Wright–Fisher model is one of the most studied model in mathematical
population genetics. In this work, we apply to a basic Wright–Fisher model
the ideas presented in [3] for the Moran model, thereby pursuing the task
of developing a finite population counterpart to Eigen’s model. Numerous
works have attacked this issue [1, 5, 10, 16, 20, 24]. Using different tech-
niques, Deem, Hu and Saakian [23], Deem, Muñoz and Park [22], Musso
[19] and Dixit, Srivastava, Vishnoi [6] considered finite population models
which approximate Eigen’s model when the population size goes to infinity.
These models are variants or generalizations of the classical Wright–Fisher
model of population genetics. The problem is to understand how the error
threshold phenomenon present in Eigen’s model in the infinite population
limit shows up in the finite population model. We refer to the introduction
of [3] for a detailed discussion of this question and the heuristics guiding
our strategy. We consider here the classical Wright–Fisher model describ-
ing the evolution of a population of size m of chromosomes of length ` over
an alphabet of cardinality κ. The mutation probability per locus is q. The
replication rate is σ > 1 for the master sequence and 1 for the other se-
quences. We study the equilibrium distribution of the process in the regime
where

`→ +∞ , m→ +∞ , q → 0 ,

`q → a ∈]0,+∞[ ,
m

`
→ α ∈ [0,+∞] .

We obtain an equation αψ(a) = lnκ in the parameter space (a, α) separat-
ing the regime where the equilibrium population is totally random from the
regime where a quasispecies is formed. We observe the existence of a crit-
ical population size necessary for a quasispecies to emerge and we recover
the finite population counterpart of the error threshold. It is a classical
fact that the Moran model and the Wright–Fisher model have similar dy-
namics. Indeed, the main result here is the twin brother of the main result
of [3], the only difference being the equation of the critical curve. While
we could compute exactly the critical curve for the Moran model, here the
critical curve is defined through a variational problem depending on the
parameter a. Apart from this point, the scaling and the associated expo-
nents are the same in both cases. This confirms a conjecture of [3] and it
sustains the hope that this kind of analysis is robust.

A potential application of the result concerns genetic algorithms. In-
deed, the Wright–Fisher model is identical to the genetic algorithm without
crossover. In her PhD thesis [21], Ochoa investigated the role of the er-
ror threshold phenomenon for genetic algorithms and she concluded that
there exists a relationship between the optimal mutation rate and the er-
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ror threshold. The result proved here provides a theoretical basis for some
heuristics to control efficiently the genetic algorithms proposed in [2].

On the technical side, the Wright–Fisher model is much more difficult
to handle than the Moran model. In the Moran model, the estimates of
the selection drift relied on a birth and death model introduced by Nowak
and Schuster [20]. In the Wright–Fisher model, the bounding processes are
more complicated, they involve three dependent binomial laws. As the size
of the population grows, their transition probabilities satisfy a large devia-
tion principle, derived with the help of the classical Cramér theorem. In the
set of the populations containing the master sequence, the process can be
seen as the random perturbation of a discrete dynamical system. This dis-
crete dynamical system is simply the sequence of the iterates of a rational
map F : [0, 1] → [0, 1]. Depending on the parameters, this map has either
one stable fixed point or two fixed points, one stable and the other unsta-
ble. This opens the way to the application of the general scheme developed
by Freidlin and Wentzell [9] to study the random perturbations of dynam-
ical systems. Originally, Freidlin and Wentzell studied diffusion processes
arising as brownian perturbations of a differential equation. These pro-
cesses are continuous time Markov processes with a continuous state space.
However their approach is robust and it can be applied in other contexts.
Kifer [13, 14] reworked this theory in the discrete time case. Unfortunately,
our bounding processes do not fit the hypothesis of Kifer’s model, for the
following two reasons. In Kifer’s model, the large deviation rate function
of the transition probabilities is not allowed to be infinite, and the large
deviation principle for the transition probabilities is assumed to be uni-
form with respect to the starting point. Certainly the general framework
considered by Kifer could be adjusted to include our case, with the help
of some relaxed hypothesis. Yet in our case, we have only two attractors,
one unstable and one stable, and we need only two specific estimates from
the general theory, which is concerned with a finite number of attractors
of any type. In fact, the kind of estimates we need have been computed in
two other works handling closely related models. In an unpublished work
[4] (transmitted to me by courtesy of Gregory Morrow), Darden analyzed
a Wright–Fisher model with two alleles and no mutation with the help of
the Freidlin–Wentzell theory. What we have to do essentially is to obtain
results analogous to Darden for the model with mutations. Morrow and
Sawyer [18] considered a more general model of Markov chains evolving in
a convex subset of Rd around one stable attractor. Our bounding processes
would fit this framework, were it for the uniform assumption on the vari-
ance of the transition probabilities. In our case, this condition is violated
close to the unstable attractor 0. We can apply their results outside a
neighborhood of 0, but this would lead to a messy construction. It appears
that, in any case, if we try to apply the results of Kifer or of Morrow and
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Sawyer, we have to make a specific study of our process in the vicinity
of the unstable fixed point 0. In the end, it seems that the most efficient
presentation consists in deriving from scratch the required estimates, fol-
lowing the initial ideas of Freidlin and Wentzell. The techniques involved
in the proof are classical and go back to the seminal work of Freidlin and
Wentzell. However there is an important simplifying feature in our case.
Indeed, the bounding processes are monotone. This allows to avoid uniform
large deviation estimates and to provide substantially simpler proofs.

We describe the model in the next section and we present the main
result in section 3. The rest of the paper is devoted to the proofs. The
global strategy is identical to the case of the Moran model. The lumping
is performed in section 4. In section 5, we build a coupling and we prove
the monotonicity of the occupancy process. This allows us to define simple
bounding processes in section 6. Section 7 which analyzes the dynamics
of the bounding processes is much more complicated than for the Moran
model. Section 8 is slightly simpler than for the Moran model. Some results
for the mutation dynamics from [3] are restated without proof, otherwise
the estimates in the neutral case are adapted easily to the case of the
Wright–Fisher model.

2 The Wright–Fisher model.

Let A be a finite alphabet and let κ = cardA be its cardinality. Let
` ≥ 1 be an integer. We consider the space A` of sequences of length `
over the alphabet A. Elements of this space represent the chromosome of
an haploid individual, or equivalently its genotype. In our model, all the
genes have the same set of alleles and each letter of the alphabet A is a
possible allele. Typical examples are A = {A, T,G,C } to model standard
DNA, or A = { 0, 1 } to deal with binary sequences. Generic elements of
A` will be denoted by the letters u, v, w. A population is an m–tuple of
elements of A`. Generic populations will be denoted by the letters x, y, z.
Thus a population x is a vector

x =

 x(1)
...

x(m)


whose components are chromosomes. For i ∈ { 1, . . . ,m }, we denote by

x(i, 1), . . . , x(i, `)
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the letters of the sequence x(i). This way a population x can be represented
as an array

x =

 x(1, 1) · · · x(1, `)
...

...
x(m, 1) · · · x(m, `)


of size m×` of elements of A, the i–th line being the i–th chromosome. The
evolution of the population is random and it is driven by two antagonistic
forces: replication and mutation.

Replication. The replication favors the development of fit chromosomes.
The fitness of a chromosome is encoded in a fitness function

A : A` → [0,+∞[ .

With the help of the fitness function A, we define a selection function
F : A` ×

(
A`
)m → [0, 1] by setting

∀u ∈ A` ∀x ∈
(
A`
)m

F (u, x) =
A(u)

A(x(1)) + · · ·+A(x(m))

∑
1≤i≤m

1x(i)=u .

The population x being fixed, the values F (u, x), u ∈ A`, define a probabil-
ity distribution over A`. The value F (u, x) is the probability of choosing u
when sampling from the population x.

Mutation. The mutation mechanism is the same for all the loci, and
mutations occur independently. We denote by q ∈]0, 1−1/κ[ the probability
that a mutation occurs at one particular locus. If a mutation occurs, then
the letter is replaced randomly by another letter, chosen uniformly over the
κ− 1 remaining letters. We encode this mechanism in a mutation matrix

M(u, v) , u, v ∈ A` ,

where M(u, v) is the probability that the chromosome u is transformed by
mutation into the chromosome v. The analytical formula for M(u, v) is

M(u, v) =
∏̀
j=1

(
(1− q)1u(j)=v(j) +

q

κ− 1
1u(j)6=v(j)

)
.

Transition matrix. We consider the classical Wright–Fisher model. In
this model, generations do not overlap. The mechanism to build a new
generation is divided in two steps. In the first step, m chromosomes are
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sampled with replacement from the population. The sampling law is given
by the selection function. In the second step, each chromosome mutates
according to the law specified by the mutation matrix. For n ≥ 0, we denote
by Xn the n–th generation. The Wright–Fisher model is the Markov chain
(Xn)n∈N on the space

(
A`
)m

whose transition matrix is given by

∀n ∈ N ∀x, y ∈
(
A`
)m

P
(
Xn+1 = y |Xn = x

)
=

∏
1≤i≤m

( ∑
u∈A`

F
(
u, x

)
M
(
u, y(i)

))
.

The other non diagonal coefficients of the transition matrix are zero. The
diagonal terms are chosen so that the sum of each line is equal to one.

3 Main results.

We present the main results in this section.

Sharp peak landscape. We will consider only the sharp peak landscape
defined as follows. We fix a specific sequence, denoted by w∗, called the
wild type or the master sequence. Let σ > 1 be a fixed real number. The
fitness function A is given by

∀u ∈ A` A(u) =

{
1 if u 6= w∗

σ if u = w∗

Density of the master sequence. We denote by N(x) the number of
copies of the master sequence w∗ present in the population x:

N(x) = card
{
i : 1 ≤ i ≤ m, x(i) = w∗

}
.

We are interested in the expected density of the master sequence in the
steady state distribution of the process, that is,

Master(σ, `,m, p) = lim
n→∞

E
( 1

m
N(Xn)

)
,

as well as the variance

Variance(σ, `,m, p) = lim
n→∞

E

(( 1

m
N(Xn)−Master(σ, `,m, p)

)2)
.

The ergodic theorem for Markov chains ensures that the above limits exist.
We denote by I(p, t) the rate function governing the large deviations of the
binomial law of parameter p ∈ [0, 1], given by

∀t ∈ [0, 1] I(p, t) = t ln
t

p
+ (1− t) ln

1− t
1− p

.
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We define, for a ∈]0,+∞[,

ρ∗(a) =


σe−a − 1

σ − 1
if σe−a > 1

0 if σe−a ≤ 1
,

Ψ(a) = inf
l∈N

inf
{ l−1∑
k=0

I
( σρk

(σ − 1)ρk + 1
, γk

)
+ γk I

(
e−a,

ρk+1

γk

)
:

ρ0 = ρ∗(a), ρl = 0, ρk, γk ∈ [0, 1] for 0 ≤ k < l
}
.

The function Ψ is finite positive on ]0, lnσ[ and it vanishes on [lnσ,+∞[.

Theorem 3.1 We suppose that

`→ +∞ , m→ +∞ , q → 0 ,

in such a way that

`q → a ∈]0,+∞[ ,
m

`
→ α ∈ [0,+∞] .

We have the following dichotomy:

• If αψ(a) < lnκ then Master
(
σ, `,m, q

)
→ 0.

• If αψ(a) > lnκ then Master
(
σ, `,m, q

)
→ ρ∗(a).

In both cases, we have Variance
(
σ, `,m, q

)
→ 0.

The statement of the theorem holds also in the case where α is null or
infinite, but a must belong to ]0,+∞[. This result is very similar to the
result for the Moran model. Therefore all the comments done for the Moran
model apply here as well. The main difference is that the function Ψ(a) is
more complicated. While we could obtain an explicit formula in the case of
the Moran model, here the function Ψ(a) is the solution of a complicated
variational problem. The general structure of the proof is similar to the
one for the Moran model. We use the lumping theorem to reduce the size
of the state space. We couple the lumped processes with different initial
conditions. The coupling for the occupancy process is monotone. We
construct then a lower and an upper process. These processes behave like
the original process in the neutral region and like a Wright–Fisher model
with two alleles whenever the master sequence is present in the population.
The dynamics of these models is analyzed with a specific implementation
of the Freidlin–Wentzell theory. We compute estimates of the persistence
time of the master sequence, as well as its equilibrium density. Although
the results are similar to the case of the Moran model, this part is much
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more technical in the case of the Wright–Fisher model. Indeed, in the case
of the Moran model, we needed simply to estimate some explicit formula
associated to the birth and death model introduced by Nowak and Schuster
[20]. The approach used here to handle the Wright–Fisher model is quite
robust and it should work for other variants of the model. In the final
section we analyze the discovery time of the master sequence. This part is
similar to the case of the Moran model, it is even simpler.

4 Lumping

We denote by dH the Hamming distance between two chromosomes:

∀u, v ∈ A` dH(u, v) = card
{
j : 1 ≤ j ≤ `, u(j) 6= v(j)

}
.

We define a function H : A` → { 0, . . . , ` } by setting

∀u ∈ A` H(u) = dH
(
u,w∗

)
.

We define further a vector function H :
(
A`
)m → { 0, . . . , ` }m by setting

∀x =

 x(1)
...

x(m)

 ∈ (A`)m H(x) =

H
(
x(1)

)
...

H
(
x(m)

)
 .

4.1 Mutation and replication

We state some results on the mutation matrix that have been proved in [3].
The mutation matrix is lumpable with respect to the function H. Let
b, c ∈ { 0, . . . , ` } and let u ∈ A` such that H(u) = b. The sum∑

w∈A`
H(w)=c

M(u,w)

does not depend on u in H−1({ b }), it is a function of b and c only, which
we denote by MH(b, c). The coefficient MH(b, c) is equal to∑
0≤k≤`−b
0≤l≤b
k−l=c−b

(
`− b
k

)(
b

l

)(
p
(

1− 1

κ

))k(
1− p

(
1− 1

κ

))`−b−k( p
κ

)l(
1− p

κ

)b−l
.

The fitness function A of the sharp peak landscape can be factorized
through H. If we define

∀b ∈ { 0, . . . , ` } AH(b) =

{
σ if b = 0

1 if b ≥ 1
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then we have
∀u ∈ A` A(u) = AH(H(u)) .

The selection function F can also be factorized through H. We define a
selection function FH : { 0, . . . , ` } × { 0, . . . , ` }m → [0, 1] by setting

∀k ∈ { 0, . . . , ` } ∀d ∈ { 0, . . . , ` }m

FH(k, d) =
AH(k)

AH(d(1)) + · · ·+AH(d(m))

∑
1≤i≤m

1d(i)=k .

We have then

∀k ∈ { 0, . . . , ` } ∀x ∈
(
A`
)m ∑

u∈A`
H(u)=k

F
(
u, x

)
= FH

(
k,H(x)

)
.

4.2 Exchangeability

The symmetric group Sm of the permutations of { 1, . . . ,m } acts in a
natural way on the populations through the following group operation:

∀x ∈
(
A`
)m ∀ρ ∈ Sm ∀j ∈ { 1, . . . ,m } (ρ · x)(j) = x(ρ(j)) .

A probability measure µ on
(
A`
)m

is exchangeable if it is invariant under
the action of Sm:

∀ρ ∈ Sm ∀x ∈
(
A`
)m

µ(ρ · x) = µ(x) .

A process (Xn)n≥0 with values in
(
A`
)m

is exchangeable if and only if, for
any n ≥ 0, the law of Xn is exchangeable.

Lemma 4.1 The transition matrix p is invariant under the action of Sm:

∀x, y ∈
(
A`
)m ∀ρ ∈ Sm p

(
ρ · x, ρ · y

)
= p

(
x, y
)
.

Proof. Let ρ ∈ Sm and let x, y ∈
(
A`
)m

. We have

p
(
ρ · x, ρ · y

)
=

∑
z∈(A`)m

∏
1≤i≤m

(
F
(
z(i), ρ · x

)
M
(
z(i), ρ · y(i)

))
=

∑
z∈(A`)m

∏
1≤i≤m

(
F
(
ρ · z(i), ρ · x

)
M
(
ρ · z(i), ρ · y(i)

))
=

∑
z∈(A`)m

∏
1≤i≤m

(
F
(
z(i), x

)
M
(
z(i), y(i)

))
= p

(
x, y
)
.

Thus the matrix p satisfies the required invariance property. �
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Corollary 4.2 Let µ be an exchangeable probability distribution on the
population space

(
A`
)m

. The Wright–Fisher model (Xn)n≥0 starting with
µ as the initial distribution is exchangeable.

4.3 Distance process

We define the distance process (Dn)n≥0 by

∀n ≥ 0 Dn = H
(
Xn

)
.

We prove next that the Markov chain (Xn)n≥0 is lumpable with respect to
the partition of

(
A`
)m

induced by the map H, so that the distance process
(Dn)n≥0 is a genuine Markov chain.

Proposition 4.3 (H Lumpability) Let p be the transition matrix of the
Wright–Fisher model. We have

∀e ∈ { 0, . . . , ` }m ∀x, y ∈
(
A`
)m

,

H(x) = H(y) =⇒
∑

z∈(A`)
m

H(z)=e

p(x, z) =
∑

z∈(A`)
m

H(z)=e

p(y, z) .

Proof. Let d, e ∈ { 0, . . . , ` }m and let x ∈
(
A`
)m

be such that H(x) = d.
We have∑

z∈(A`)
m

H(z)=e

p(x, z) =
∑

z∈(A`)
m

H(z)=e

∏
1≤i≤m

( ∑
u∈A`

F
(
u, x

)
M
(
u, z(i)

))

=
∏

1≤i≤m

( ∑
u∈A`

F
(
u, x

) ∑
v∈A`

H(v)=e(i)

M
(
u, v
))

=
∏

1≤i≤m

( ∑
u∈A`

F
(
u, x

)
MH

(
H(u), e(i)

))
=

∏
1≤i≤m

( ∑
k∈{ 0,...,` }

∑
u∈A`
H(u)=k

F
(
u, x

)
MH

(
k, e(i)

))

=
∏

1≤i≤m

( ∑
k∈{ 0,...,` }

FH
(
k,H(x)

)
MH

(
k, e(i)

))
.

This quantity is a function of H(x) = d and e only. �
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We apply the classical lumping result to conclude that the distance process
(Dn)n≥0 is a Markov chain. From the previous computations, we see that
its transition matrix pH is given by

∀d, e ∈ { 0, . . . , ` }m

pH
(
d, e
)

=
∏

1≤i≤m

( ∑
k∈{ 0,...,` }

FH
(
k, d
)
MH

(
k, e(i)

))
.

4.4 Occupancy process

We denote by Pm`+1 the set of the ordered partitions of the integer m in at
most `+ 1 parts:

Pm`+1 =
{

(o(0), . . . , o(`)) ∈ N`+1 : o(0) + · · ·+ o(`) = m
}
.

These partitions are interpreted as occupancy distributions. The partition
(o(0), . . . , o(`)) corresponds to a population in which o(l) chromosomes are
at Hamming distance l from the master sequence, for any l ∈ { 0, . . . , ` }.
Let O be the map which associates to each population x its occupancy
distribution O(x) = (o(x, 0), . . . , o(x, `)), defined by:

∀l ∈ { 0, . . . , ` } o(x, l) = card
{
i : 1 ≤ i ≤ m, dH(x(i), w∗) = l

}
.

The map O can be factorized through H. For d ∈ { 0, . . . , ` }m, we set

oH(d, l) = card
{
i : 1 ≤ i ≤ m, d(i) = l

}
and we define a map OH : { 0, . . . , ` }m → Pm`+1 by setting

OH(d) = (oH(d, 0), . . . , oH(d, `)) .

We have then
∀x ∈

(
A`
)m O(x) = OH

(
H(x)

)
.

The map O lumps together populations which are permutations of each
other:

∀x ∈
(
A`
)m ∀ρ ∈ Sm O(x) = O(ρ · x) .

We define the occupancy process (On)n≥0 by setting

∀n ≥ 0 On = O(Xn) = OH(Dn) .

Proposition 4.4 (O Lumpability) Let pH be the transition matrix of
the distance process. We have

∀o ∈ Pm`+1 ∀d, e ∈ { 0, . . . , ` }m ,

OH(d) = OH(e) =⇒
∑

f∈{ 0,...,` }m
OH(f)=o

pH(d, f) =
∑

f∈{ 0,...,` }m
OH(f)=o

pH(e, f) .
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Proof. Let o ∈ Pm`+1 and d, e ∈ { 0, . . . , ` }m such that OH(d) = OH(e).
Since OH(d) = OH(e), then there exists a permutation ρ ∈ Sm such that
ρ · d = e. By lemma 4.1, the transition matrices p and pH are invariant
under the action of Sm, therefore∑

f∈{ 0,...,` }m
OH(f)=o

pH(d, f) =
∑

f∈{ 0,...,` }m
OH(f)=o

pH(ρ · d, ρ · f)

=
∑

f∈{ 0,...,` }m
OH(ρ−1·f)=o

pH(e, f) =
∑

f∈{ 0,...,` }m
OH(f)=o

pH(e, f)

as requested. �

We apply the classical lumping result to conclude that the occupancy pro-
cess (On)n≥0 is a Markov chain. Let us compute its transition probabilities.
We define a selection function FO : { 0, . . . , ` } × Pm`+1 → [0, 1] by setting

∀k ∈ { 0, . . . , ` } ∀o ∈ Pm`+1 FO(k, o) =
o(k)AH(k)∑

0≤h≤` o(h)AH(h)
.

We have then

∀k ∈ { 0, . . . , ` } ∀d ∈ { 0, . . . , ` }m FO
(
k,OH(d)

)
= FH

(
k, d
)
.

Let o ∈ Pm`+1 and d ∈ { 0, . . . , ` }m be such that OH(d) 6= o. We write∑
e∈{ 0,...,` }m
OH(e)=o

pH(d, e) =
∑

e∈{ 0,...,` }m
OH(e)=o

∏
1≤i≤m

( ∑
k∈{ 0,...,` }

FH
(
k, d
)
MH

(
k, e(i)

))

=
∏

0≤h≤`

( ∑
k∈{ 0,...,` }

FO
(
k,OH(d)

)
MH

(
k, h)

)o(h)
.

The last quantity depends only on OH(d) and o as requested. We conclude
that the transition matrix of the occupancy process is given by

∀o, o′ ∈ Pm`+1 pO
(
o, o′

)
=

∏
0≤h≤`

( ∑
k∈{ 0,...,` }

FO
(
k, o
)
MH

(
k, h)

)o′(h)
.

5 Monotonicity

A crucial property for comparing the Wright–Fisher model with other pro-
cesses is monotonicity. We will realize a coupling of the lumped Wright–
Fisher processes with different initial conditions and we will deduce the
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monotonicity from the coupling construction. All the processes will be
built on a single large probability space. We consider a probability space
(Ω,F , P ) containing the following collection of independent random vari-
ables, all of them following the uniform law on the interval [0, 1]:

U i,jn , n ≥ 1 , 1 ≤ i ≤ m, 1 ≤ j ≤ ` ,
Sin , n ≥ 1 , 1 ≤ i ≤ m.

To build the coupling, it is more convenient to replace the mutation prob-
ability q by the parameter p given by

p =
κ

κ− 1
q .

5.1 Coupling of the lumped processes

We build here a coupling of the lumped processes. We set

∀n ≥ 1 Rn =

 S1
n, U

1,1
n , . . . , U1,`

n
...

... · · ·
...

Smn , U
m,1
n , . . . , Um,`n

 .

The matrix Rn is the random input which is used to perform the n–th
step of the Markov chains. We denote by R the set of the matrices of size
m× (`+ 1) with coefficients in [0, 1]. The sequence (Rn)n≥1 is a sequence
of independent identically distributed random matrices with values in R.

Mutation. We define a map

MH : { 0, . . . , ` } × [0, 1]` → { 0, . . . , ` }

in order to couple the mutation mechanism starting with different chromo-
somes. Let b ∈ { 0, . . . , ` } and let u1, . . . , u` ∈ [0, 1]`. The map MH is
defined by setting

MH(b, u1, . . . , u`) = b−
b∑

k=1

1uk<p/κ +
∑̀
k=b+1

1uk>1−p(1−1/κ) .

The mapMH is built in such a way that, if U1, . . . , U` are random variables
with uniform law on the interval [0, 1], all being independent, then for any
b ∈ { 0, . . . , ` }, the law of MH(b, U1, . . . , U`) is given by the line of the
mutation matrix MH associated to b, i.e.,

∀c ∈ { 0, . . . , ` } P
(
MH(b, U1, . . . , U`) = c

)
= MH(b, c) .
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Selection for the distance process. We realize the replication mecha-
nism with the help of a selection map

SH : { 0, . . . , ` }m × [0, 1]→ { 1, . . . ,m } .

Let d ∈ { 0, . . . , ` }m and let s ∈ [0, 1[. We define SH(d, s) = i where i is
the unique index in { 1, . . . ,m } satisfying

AH(d(1)) + · · ·+AH(d(i− 1))

AH(d(1)) + · · ·+AH(d(m))
≤ s <

AH(d(1)) + · · ·+AH(d(i))

AH(d(1)) + · · ·+AH(d(m))
.

The map SH is built in such a way that, if S is a random variable with
uniform law on the interval [0, 1], then for any d ∈ { 0, . . . , ` }m, the law of
SH(d, S) is given by

∀i ∈ { 1, . . . ,m } P
(
SH(d, S) = i

)
=

AH(d(i))

AH(d(1)) + · · ·+AH(d(m))
.

Coupling for the distance process. We build a deterministic map

ΨH : { 0, . . . , ` }m ×R → { 0, . . . , ` }m

in order to realize the coupling between distance processes with various
initial conditions. The coupling map ΨH is defined by

∀r ∈ R , ∀d ∈ { 0, . . . , ` }m

ΨH(d, r) =

 MH(d(SH(d, r(1, 1))), r(1, 2), . . . , r(1, `+ 1))
)

...
MH(d(SH(d, r(m, 1))), r(m, 2), . . . , r(m, `+ 1))

)
 .

The coupling is then built in a standard way with the help of the i.i.d.
sequence (Rn)n≥1 and the map ΨH . Let d ∈ { 0, . . . , ` }m be the starting
point of the process. We build the distance process (Dn)n≥0 by setting
D0 = d and

∀n ≥ 1 Dn = ΨH

(
Dn−1, Rn

)
.

A routine check shows that the process (Dn)n≥0 is a Markov chain starting
from d with the adequate transition matrix. This way we have coupled the
distance processes with various initial conditions.

Selection for the occupancy process. We realize the replication mech-
anism with the help of a selection map

SO : Pm`+1 × [0, 1]→ { 0, . . . , ` } .

14



Let o ∈ Pm`+1 and let s ∈ [0, 1[. We define SO(o, s) = l where l is the unique
index in { 0, . . . , ` } satisfying

o(0)AH(0) + · · ·+ o(l − 1)AH(l − 1)

o(0)AH(0) + · · ·+ o(`)AH(`)
≤ s < o(0)AH(0) + · · ·+ o(l)AH(l)

o(0)AH(0) + · · ·+ o(`)AH(`)
.

The map SO is built in such a way that, if S is a random variable with
uniform law on the interval [0, 1], then for any o ∈ Pm`+1, the law of SO(o, S)
is given by

∀l ∈ { 0, . . . , ` } P
(
SO(o, S) = l

)
=

o(l)AH(l)

o(0)AH(0) + · · ·+ o(`)AH(`)
.

Coupling for the occupancy process. We build a deterministic map

ΨO : Pm`+1 ×R → Pm`+1

in order to realize the coupling between occupancy processes with various
initial conditions. The coupling map ΨO is defined by

∀r ∈ R , ∀o ∈ Pm`+1

ΨO(o, r) = OH

 MH(SO(o, r(1, 1)), r(1, 2), . . . , r(1, `+ 1))
)

...
MH(SO(o, r(m, 1)), r(m, 2), . . . , r(m, `+ 1))

)
 .

Let o ∈ Pm`+1 be the starting point of the process. We build the occupancy
process (On)n≥0 by setting O0 = o and

∀n ≥ 1 On = ΨO

(
On−1, Rn

)
.

A routine check shows that the process (On)n≥0 is a Markov chain starting
from o with the adequate transition matrix. This way we have coupled the
occupancy processes with various initial conditions.

5.2 Monotonicity of the model

We first recall some standard definitions concerning monotonicity and cor-
relations for stochastic processes. A classical reference is Liggett’s book
[15], especially for applications to particle systems. In the next two defini-
tions, we consider a discrete time Markov chain (Xn)n≥0 with values in a
space E . We suppose that the state space E is finite and that it is equipped
with a partial order ≤. A function f : E → R is non–decreasing if

∀x, y ∈ E x ≤ y ⇒ f(x) ≤ f(y) .

15



Definition 5.1 The Markov chain (Xn)n≥0 is said to be monotone if, for
any non–decreasing function f , the function

x ∈ E 7→ E
(
f(Xn) |X0 = x

)
is non–decreasing.

A natural way to prove monotonicity is to construct an adequate coupling.

Definition 5.2 A coupling for the Markov chain (Xn)n≥0 is a family of
processes (Xx

n)n≥0 indexed by x ∈ E , which are all defined on the same
probability space, and such that, for x ∈ E , the process (Xx

n)n≥0 is the
Markov chain (Xn)n≥0 starting from X0 = x. The coupling is said to be
monotone if

∀x, y ∈ E x ≤ y ⇒ ∀n ≥ 1 Xx
n ≤ Xy

n .

If there exists a monotone coupling, then the Markov chain is monotone.
The space { 0, . . . , ` }m is naturally endowed with a partial order:

d ≤ e ⇐⇒ ∀i ∈ { 1, . . . ,m } d(i) ≤ e(i) .

The map MH is non–decreasing with respect to the Hamming class, i.e.,

∀b, c ∈ { 0, . . . , ` } ∀u1, . . . , u` ∈ [0, 1]

b ≤ c ⇒ MH(b, u1, . . . , u`) ≤ MH(c, u1, . . . , u`) .

(See [3] for a detailed proof). In the neutral case σ = 1, the map SH does
not depend on the population, in fact,

∀d ∈ { 0, . . . , ` }m ∀s ∈ [0, 1] SH(d, s) = bmsc .

As a consequence, we have

∀d, e ∈ { 0, . . . , ` }m ∀s ∈ [0, 1]

d ≤ e ⇒ d
(
SH(d, s)

)
≤ e

(
SH(e, s)

)
.

Lemma 5.3 In the neutral case σ = 1, the map ΨH is non–decreasing
with respect to the distances, i.e.,

∀d, e ∈ { 0, . . . , ` }m ∀r ∈ R , d ≤ e ⇒ ΨH(d, r) ≤ ΨH(e, r) .

Proof. Let r ∈ R and let d, e ∈ { 0, . . . , ` }m, d ≤ e. Let i ∈ { 1, . . . ,m }.
Since

SH(d, r(i, 1)) = SH(e, r(i, 1)) = bmr(i, 1)c ,
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then
d(SH(d, r(i, 1))) ≤ e(SH(e, r(i, 1))) .

This inequality and the monotonicity of the map MH imply that

MH(d(SH(d, r(i, 1))), r(i, 2), . . . , r(i, `+ 1))
)

≤ MH(e(SH(e, r(i, 1))), r(i, 2), . . . , r(i, `+ 1))
)
.

Therefore ΨH(d, r) ≤ ΨH(e, r) as requested. �

Corollary 5.4 In the neutral case σ = 1, the distance process (Dn)n≥0 is
monotone.

Unfortunately, the map ΨH is not monotone for σ > 1. Indeed, suppose
that

κ = 3 , σ = 2 , m = 3 , ` ≥ 2 ,
2

3
< s1 <

3

4
,

3

4
< s2 < 1 ,

3

4
< s3 < 1 ,

∀i ∈ { 1, 2, 3 } ∀j ∈ { 1, . . . , ` } ui,j ∈
[p

3
, 1− 2p

3

]
,

then

ΨH

0
2
1

 =

2
1
1

 , ΨH

1
2
1

 =

1
1
1

 .

This creates a serious complication. To get around this problem, we lump
further the distance process in order to build the occupancy process. It
turns out that the occupancy process is monotone even in the non neutral
case. We define an order � on Pm`+1 as follows. Let o = (o(0), . . . , o(`))
and o′ = (o′(0), . . . , o′(`)) belong to Pm`+1. We say that o is smaller than or
equal to o′, which we denote by o � o′, if

∀l ≤ ` o(0) + · · ·+ o(l) ≤ o′(0) + · · ·+ o′(l) .

As shown in [3], the map SO is non–increasing with respect to the occu-
pancy distribution, i.e.,

∀o, o′ ∈ Pm`+1 ∀s ∈ [0, 1]

o � o′ ⇒ SO(o, s) ≥ SO(o′, s) .

Lemma 5.5 The map ΨO is non–decreasing with respect to the occupancy
distributions, i.e.,

∀o, o′ ∈ Pm`+1 ∀r ∈ R o � o′ ⇒ ΨO(o, r) � ΨO(o′, r) .
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Proof. Let r ∈ R and let o, o′ ∈ Pm`+1 be such that o � o′. Using the
monotonicity of the map SO, we have

∀i ∈ { 1, . . . ,m } SO(o, r(i, 1)) ≥ SO(o′, r(i, 1)) .

This inequality and the monotonicity of the map MH imply that

∀i ∈ { 1, . . . ,m } MH(SO(o, r(i, 1)), r(i, 2), . . . , r(i, `+ 1))
)

≥ MH(SO(o′, r(i, 1)), r(i, 2), . . . , r(i, `+ 1))
)
.

Therefore ΨO(o, r) ≤ ΨO(o′, r) as requested. �

Corollary 5.6 The occupancy process (On)n≥0 is monotone.

5.3 The FKG inequality

We consider here the product space { 0, . . . , ` }m equipped with the natural
product order:

d ≤ e ⇐⇒ ∀i ∈ { 1, . . . ,m } d(i) ≤ e(i) .

Definition 5.7 A probability measure µ on { 0, . . . , ` }m is said to have
positive correlations if for any functions f, g : { 0, . . . , ` }m → R which are
non–decreasing, we have∑
d∈{ 0,...,` }m

f(d)g(d)µ(d) ≥
( ∑
d∈{ 0,...,` }m

f(d)µ(d)
)( ∑

d∈{ 0,...,` }m
g(d)µ(d)

)
.

The Harris inequality, or the FKG inequality in this context, says that any
product probability measure on { 0, . . . , ` }m has positive correlations. The
FKG inequality is in fact true for any product probability measure on a
product of the interval [0, 1] (see section 2.2 of Grimmett’s book [11]). As
far as correlations are concerned, there is not much to do with the original
Wright–Fisher model, because its state space is not partially ordered. So
we examine the distance process.

Proposition 5.8 Suppose that we are in the neutral case σ = 1. If the
law of D0 has positive correlations, then for any n ≥ 0, the law of Dn also
has positive correlations.

Proof. The Wright–Fisher model (Xn)n≥0 can be seen as a probabilistic
cellular automaton. Indeed, given the population Xn = x at time n, the
individuals (Xn+1(i), 1 ≤ i ≤ m) of the population at time n + 1 are
independent. This still holds for the distance process. By corollary 5.4,
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the neutral distance process (Dn)n≥0 is monotone. Monotone probabilistic
cellular automata preserve the FKG inequality. This is explained in detail
by Mezić [17] and it was first observed by Harris [12] at the very end of his
article on continuous time processes. Because the argument is very short,
we reproduce it here. Suppose that the initial law µ of D0 has positive
correlations. Let f, g : { 0, . . . , ` }m → R be two non–decreasing functions.
For any d ∈ { 0, . . . , ` }m, the conditional law of D1 knowing that D0 = d
is a product measure on { 0, . . . , ` }m, thus it satisfies the FKG inequality,
whence

∀d ∈ { 0, . . . , ` }m

E
(
f(D1)g(D1) |D0 = d

)
≥ E

(
f(D1) |D0 = d

)
E
(
g(D1) |D0 = d

)
.

We integrate the inequality with respect to the initial law µ:∑
d∈{ 0,...,` }m

E
(
f(D1)g(D1) |D0 = d

)
µ(d) ≥

∑
d∈{ 0,...,` }m

E
(
f(D1) |D0 = d

)
E
(
g(D1) |D0 = d

)
µ(d) .

Since (Dn)n≥0 is monotone, the maps

d ∈ { 0, . . . , ` }m 7→ E
(
f(D1) |D0 = d

)
,

d ∈ { 0, . . . , ` }m 7→ E
(
g(D1) |D0 = d

)
,

are non–decreasing. By hypothesis, the initial law µ has positive correla-
tions, therefore∑
d∈{ 0,...,` }m

E
(
f(D1) |D0 = d

)
E
(
g(D1) |D0 = d

)
µ(d) ≥

( ∑
d∈{ 0,...,` }m

E
(
f(D1) |D0 = d

)
µ(d)

)( ∑
d∈{ 0,...,` }m

E
(
g(D1) |D0 = d

)
µ(d)

)
.

The two above inequalities imply that the law of D1 satisfies the FKG
inequality. We conclude by iterating the argument. �

6 Stochastic bounds

In this section, we take advantage of the monotonicity of the map ΨO to
compare the process (On)n≥0 with simpler processes.
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6.1 Lower and upper processes

We shall construct a lower process (O`n)n≥0 and an upper process (O1
n)n≥0

satisfying
∀n ≥ 0 O`n � On � O1

n .

Loosely speaking, the lower process evolves as follows. As long as there is
no master sequence present in the population, the process (O1

n)n≥0 evolves
exactly as the initial process (On)n≥0. When the first master sequence
appears, all the other chromosomes are set in the Hamming class 1, i.e.,
the process jumps to the state (1,m − 1, 0, . . . , 0). As long as the master
sequence is present, the mutations on non master sequences leading to non
master sequences are suppressed, and any mutation of a master sequence
leads to a chromosome in the first Hamming class. The dynamics of the
upper process is similar, except that the chromosomes distinct from the
master sequence are sent to the last Hamming class ` instead of the first
one. We shall next construct precisely these dynamics. We define two maps
π`, π1 : Pm`+1 → Pm`+1 by setting

∀o ∈ Pm`+1 π`(o) =
(
o(0), 0, . . . , 0,m− o(0)

)
,

π1(o) =
(
o(0),m− o(0), 0, . . . , 0

)
.

Obviously,
∀o ∈ Pm`+1 π`(o) � o � π1(o) .

We denote by W∗ the set of the occupancy distributions containing the
master sequence, i.e.,

W∗ =
{
o ∈ Pm`+1 : o(0) ≥ 1

}
and by N the set of the occupancy distributions which do not contain the
master sequence, i.e.,

N =
{
o ∈ Pm`+1 : o(0) = 0

}
.

Let ΨO be the coupling map defined in section 5.1 We define a lower map
Ψ`
O by setting, for o ∈ Pm`+1 and r ∈ R,

Ψ`
O(o, r) =


ΨO(o, r) if o ∈ N and ΨO(o, r) 6∈ W∗

π`
(
ΨO(o, r)

)
if o ∈ N and ΨO(o, r) ∈ W∗

π`
(
ΨO(π`(o), r)

)
if o ∈ W∗

Similarly, we define an upper map Ψ1
O by setting, for o ∈ Pm`+1 and r ∈ R,

Ψ1
O(o, r) =


ΨO(o, r) if o ∈ N and ΨO(o, r) 6∈ W∗

π1
(
ΨO(o, r)

)
if o ∈ N and ΨO(o, r) ∈ W∗

π1
(
ΨO(π1(o), r)

)
if o ∈ W∗
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A direct application of lemma 5.5 yields that the map Ψ`
O is below the map

ΨO and the map Ψ1
O is above the map ΨO in the following sense:

∀r ∈ R ∀o ∈ Pm`+1 Ψ`
O(o, r) � ΨO(o, r) � Ψ1

O(o, r) .

We define a lower process (O`n)n≥0 and an upper process (O1
n)n≥0 with the

help of the i.i.d. sequence (Rn)n≥1 and the maps Ψ`
O, Ψ1

O as follows. Let
o ∈ Pm`+1 be the starting point of the process. We set O`0 = O1

0 = o and

∀n ≥ 1 O`n = Ψ`
O

(
O`n−1, Rn

)
, O1

n = Ψ1
O

(
O1
n−1, Rn

)
.

Proposition 6.1 Suppose that the processes (O`n)n≥0, (On)n≥0, (O1
n)n≥0,

start from the same occupancy distribution o. We have

∀n ≥ 0 O`n � On � O1
n .

Proof. We prove the inequality by induction over n ∈ N. For n = 0 we
have O0 = O`0 = O1

0 = o. Suppose that the inequality has been proved at
time n ∈ N, so that O`n � On � O1

n. By construction, we have

O`n+1 = Ψ`
O

(
O`n, Rn

)
, On+1 = ΨO

(
On, Rn

)
, O1

n+1 = Ψ1
O

(
O1
n, Rn

)
.

We use the induction hypothesis and we apply lemma 5.5 to get

ΨO

(
O`n, Rn

)
� ΨO

(
On, Rn

)
� ΨO

(
O1
n, Rn

)
.

Yet the map Ψ`
O is below the map ΨO and the map Ψ1

O is above the map
ΨO, thus

Ψ`
O

(
O`n, Rn

)
� ΨO

(
O`n, Rn

)
, ΨO

(
O1
n, Rn

)
� Ψ1

O

(
O1
n, Rn

)
.

Putting together these inequalities we obtain that O`n+1 � On+1 � O1
n+1

and the induction step is completed. �

6.2 Dynamics of the bounding processes

We study next the dynamics of the processes (O`n)n≥0 and (O1
n)n≥0 inW∗.

The computations are the same for both processes. Throughout the section,
we fix θ to be either 1 or ` and we denote by (Oθn)n≥0 the corresponding
process. For the process (Oθn)n≥0, the states

T θ =
{
o ∈ Pm`+1 : o(0) ≥ 1 and o(0) + o(θ) < m

}
are transient, while the populations in N ∪

(
W∗ \ T θ

)
form a recurrent

class. Let us look at the transition mechanism of the process restricted to
W∗ \ T θ. Since

W∗ \ T θ =
{
o ∈ Pm`+1 : o(0) ≥ 1 and o(0) + o(θ) = m

}
,
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we see that a state of W∗ \ T θ is completely determined by the first occu-
pancy number, or equivalently the number of copies of the master sequence
present in the population. From the previous observations, we conclude
that, whenever (Oθn)n≥0 starts in W∗ \ T θ, the dynamics of the number
of master sequences (Oθn(0))n≥0 is markovian until the time of exit from
W∗ \ T θ. We denote by (Zθn)n≥0 a Markov chain on { 0, . . . ,m } with the
following transition probabilities: for h ∈ { 1, . . . ,m } and k ∈ { 0, . . . ,m },

∀n ≥ 0 P
(
Zθn+1 = k |Zθn = h

)
= P

(
Oθn+1(0) = k |Oθn(0) = h

)
,

and for h = 0 and k ∈ { 0, . . . ,m },

∀n ≥ 0 P
(
Zθn+1 = k |Zθn = 0

)
=

(
m
k

)
MH(θ, 0)k

(
1−MH(θ, 0)

)m−k
.

Let us denote by pθ(h, k) the above transition probability and let us com-
pute its value. We use the definition of the transition mechanism of (Oθn)n≥0
to get

pθ(h, k) =
∑

i∈{ 0,...,m }

i∑
j=0

pθ(h, i, j, k)

where pθ(h, i, j, k) is given by

pθ(h, i, j, k) = P


i master sequences are selected ,
j master sequences do not mutate,

k − j non master sequences
mutate into a master sequence

∣∣∣∣∣Zθn = h


=

(
m
i

)
(σh)i(m− h)m−i(
(σ − 1)h+m

)m (ij
)
MH(0, 0)j

(
1−MH(0, 0)

)i−j
×
(
m− i
k − j

)
MH(θ, 0)k−j

(
1−MH(θ, 0)

)m−i−k+j
.

The Markov chain (Zθn)n≥0 corresponds to the evolution of the number
of master sequences in a Wright–Fisher model with two types, the master
type having fitness σ and the other type having fitness 1, and with the
following mutation matrix between the two types:

P (the master type mutates into the non master type) = 1−MH(0, 0) ,

P (the non master type mutates into the master type) = MH(θ, 0) .

We can also realize the Markov chain (Zθn)n≥0 on our common probability
space. We define two maps Ξ`,Ξ1 : { 0, . . . ,m } → Pm`+1 by setting

∀i ∈ { 0, . . . ,m }
Ξ`(i) = (i, 0, . . . , 0,m− i) , Ξ1(i) = (i,m− i, 0, . . . , 0) .

22



Let i ∈ { 0, . . . ,m } be the starting point of the process. We set Zθ0 = i and

∀n ≥ 1 Zθn = Ψθ
O

(
Ξθ(Zθn−1), Rn

)
(0) .

This construction yields a Markov chain (Zθn)n≥0 starting from i with the
adequate transition matrix. Moreover the maps Ξ`, Ξ1 are non–decreasing.
By lemma 5.5, the map ΨO is also non–decreasing with respect to the
occupancy distribution. We conclude that the above coupling is monotone.

Corollary 6.2 The Markov chain (Zθn)n≥0 is monotone.

6.3 Invariant probability measures

Our goal is to estimate the law ν of the fraction of the master sequence in
the population at equilibrium. The probability measure ν is the probability
measure on the interval [0, 1] satisfying the following identities. For any
function f : [0, 1]→ R,∫

[0,1]

f dν = lim
n→∞

f
( 1

m
N(Xn)

)
=

∑
x∈(A`)m

f
( 1

m
N(x)

)
µ(x)

where µ is the invariant probability measure of the Markov chain (Xn)n≥0
and N(x) is the number of copies of the master sequence w∗ present in the
population x:

N(x) = card
{
i : 1 ≤ i ≤ m, x(i) = w∗

}
.

In fact, the probability measure ν is the image of µ through the map

x ∈
(
A`
)m 7→ 1

m
N(x) ∈ [0, 1] .

We denote by µ`O, µO, µ1
O the invariant probability measures of the Markov

chains (O`n)n≥0, (On)n≥0, (O1
n)n≥0. The probability ν is also the image of

µO through the map

o ∈ Pm`+1 7→
1

m
o(0) ∈ [0, 1] .

Thus, for any function f : [0, 1]→ R,∫
[0,1]

f dν =
∑

o∈Pm`+1

f
(o(0)

m

)
µO(o) = lim

n→∞
f
( 1

m
On(0)

)
.

We fix now a non–decreasing function f : [0, 1] → R such that f(0) = 0.
Proposition 6.1 yields the inequalities

∀n ≥ 0 f
( 1

m
O`n(0)

)
≤ f

( 1

m
On(0)

)
≤ f

( 1

m
O1
n(0)

)
.
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Taking the expectation and sending n to ∞, we get∑
o∈Pm`+1

f
(o(0)

m

)
µ`O(o) ≤

∫
[0,1]

f dν ≤
∑

o∈Pm`+1

f
(o(0)

m

)
µ1
O(o) .

We seek next estimates on the above sums. The strategy is the same for the
lower and the upper sum. Thus we fix θ to be either 1 or ` and we study
the invariant probability measure µθO. For the Markov chain (Oθn)n≥0,
the states of T θ are transient, while the populations in N ∪

(
W∗ \ T θ

)
form a recurrent class. Let oθexit be the occupancy distribution having m
chromosomes in the Hamming class θ:

∀l ∈ { 0, . . . , ` } oθexit(l) =

{
m if l = θ

0 otherwise
.

The process (Oθn)n≥0 always exits W∗ \ T θ at oθexit. This allows us to
estimate the invariant measure with the help of the following renewal result.

Proposition 6.3 Let (Xn)n≥0 be a discrete time Markov chain with values
in a finite state space E which is irreducible and aperiodic. Let µ be the
invariant probability measure of the Markov chain (Xn)n≥0. Let W∗ be a
subset of E and let e be a point of E \ W∗. Let f be a map from E to R
which vanishes on E \W∗. Let

τ∗ = inf
{
n ≥ 0 : Xn ∈ W∗

}
, τ = inf

{
n ≥ τ∗ : Xn = e

}
.

We have∑
x∈E

f(x)µ(x) =
1

E(τ |X0 = e)
E

( τ∑
n=τ∗

f(Xn)
∣∣∣X0 = e

)
.

This result is proved in detail in [3]. We apply the renewal result of propo-
sition 6.3 to the process (Oθn)n≥0 restricted to N ∪

(
W∗ \ T θ

)
, the set

W∗ \T θ, the occupancy distribution oθexit and the function o 7→ f(o(0)/m).
Setting

τ∗ = inf
{
n ≥ 0 : Oθn ∈ W∗

}
,

τ = inf
{
n ≥ τ∗ : Oθn = oθexit

}
,

we have

∑
o∈Pm`+1

f
(o(0)

m

)
µθO(o) =

E

( τ∑
n=τ∗

f
(Oθn(0)

m

) ∣∣∣Oθ0 = oθexit

)
E
(
τ |Oθ0 = oθexit

) .
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Yet, whenever the process (Oθn)n≥0 is in W∗ \ T θ, the dynamics of the
number of master sequences (Oθn(0))n≥0 is the same as the dynamics of
the Markov chain (Zθn)n≥0 defined at the end of section 6.2. Let τ0 be the
hitting time of 0, defined by

τ0 = inf
{
n ≥ 0 : Zθn = 0

}
.

The process (Oθn)n≥0 always exits W∗ \ T θ at oθexit. Therefore τ coincides
with the exit time of W∗ \ T θ after τ∗. Let i ∈ { 1, . . . ,m }. From the
previous elements, we see that, conditionally on the event

{
Oθτ∗(0) = i

}
,

the trajectory
(
Oθn(0), τ∗ ≤ n ≤ τ

)
has the same law as the trajectory(

Zθn , 0 ≤ n ≤ τ0
)

starting from Zθ0 = i, whence

E
(
τ − τ∗

∣∣Oθτ∗(0) = i
)

= E
(
τ0
∣∣Zθ0 = i

)
,

E

( τ∑
n=τ∗

f
(Oθn(0)

m

) ∣∣∣Oθτ∗(0) = i

)
= E

( τ0∑
n=0

f
(Zθn
m

) ∣∣∣Zθ0 = i

)
.

Conditioning with respect to Oθτ∗(0) and reporting in the formula for the
invariant probability measure µθO, we get

∑
o∈Pm`+1

f
(o(0)

m

)
µθO(o) =

m∑
i=1

E

( τ0∑
n=0

f
(Zθn
m

) ∣∣∣Zθ0 = i

)
P
(
Oθτ∗(0) = i |Oθ0 = oθexit

)
E
(
τ∗ |Oθ0 = oθexit

)
+

m∑
i=1

E
(
τ0
∣∣Zθ0 = i

)
P
(
Oθτ∗(0) = i |Oθ0 = oθexit

) .
We must next estimate these expectations. In section 7, we deal with the
terms involving the Markov chain (Zθn)n≥0. In section 8, we deal with the
discovery time τ∗.

7 Approximating processes

This section is devoted to the study of the dynamics of the Markov chains
(Z`n)n≥0 and (Z1

n)n≥0. The estimates are carried out exactly in the same
way for both Markov chains. As we said before, the Markov chain (Zθn)n≥0
corresponds to the evolution of the number of master sequences in a Wright-
Fisher model with two types. Throughout the section, we fix θ = 1 or θ = `
and we remove θ from the notation in most places, writing simply p, Zn
instead of pθ, Zθn.
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7.1 Large deviations for the transition matrix

We first recall a basic estimate for the binomial coefficients.

Lemma 7.1 For any n ≥ 1, any k ∈ { 0, . . . , n }, we have∣∣∣ ln n!

k!(n− k)!
+ k ln

k

n
+ (n− k) ln

n− k
n

∣∣∣ ≤ 2 lnn+ 3 .

Proof. The proof of this estimate is standard (see for instance [7]).
Setting, for n ∈ N, φ(n) = lnn!− n lnn+ n, we have

ln
n!

k!(n− k)!
= lnn!− ln k!− ln(n− k)!

= n lnn−n+φ(n)−
(
k ln k−k+φ(k)

)
−
(
(n−k) ln(n−k)−(n−k)+φ(n−k)

)
= −k ln

k

n
− (n− k) ln

n− k
n

+ φ(n)− φ(k)− φ(n− k) .

Comparing the discrete sum

lnn! =
∑

1≤k≤n

ln k

to the integral ∫ n

1

lnx dx ,

we see that 1 ≤ φ(n) ≤ lnn+ 2 for all n ≥ 1. On one hand,

φ(n)− φ(k)− φ(n− k) ≤ lnn ,

on the other hand,

φ(n)− φ(k)− φ(n− k) ≥ 1− (ln k + 2)− (ln(n− k) + 2) ≥ −3− 2 lnn

and we have the desired inequalities. �

For p, t ∈ [0, 1], we define

I(p, t) = t ln
t

p
+ (1− t) ln

1− t
1− p

.

For t 6∈ [0, 1], we set I(p, t) = +∞. For p = 0, we have

∀t ∈ [0, 1] I(0, t) =

{
0 if t = 0

+∞ if t > 0
.

The function I(p, ·) is the rate function governing the large deviations of
the binomial distribution B(n, p) with parameters n and p. This is the
simplest case of the famous Cramér theorem, which we recall next.
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Lemma 7.2 Let X be a random variable whose law is the binomial dis-
tribution B(n, p) with parameters n and p. For t ∈ [0, 1], we have

lim
n→∞

1

n
lnP (X = bntc) = −I(p, t) .

Using the estimate of lemma 7.1, we have even

∀k ∈ { 0, . . . , n } lnP (X = k) = −nI
(
p,
k

n

)
+O(2 lnn+ 3) .

We define two functions f, F : [0, 1]→ [0, 1] by

f(r) =
σr

(σ − 1)r + 1
, F (r) = e−af(r) .

We define a function I` : [0, 1]4 → [0,+∞] by

I`(r, s, β, t) = I
(
f(r), s

)
+ s I

(
MH(0, 0),

β

s

)
+ (1− s) I

(
MH(θ, 0),

t− β
1− s

)
.

This function depends on ` through the mutation probabilities MH(0, 0)
and MH(θ, 0). Using the estimate provided by lemma 7.1 and the expres-
sion of pθ, we see that

∀h, i, j, k ∈ { 0, . . . ,m }

ln p(h, i, j, k) = −mI
(
f
( h
m

)
,
i

m

)
− iI

(
MH(0, 0),

j

i

)
− (m− i)I

(
MH(θ, 0),

k − j
m− i

)
+ Φ(h, i, j, k,m)

= −mI`
( h
m
,
i

m
,
j

m
,
k

m

)
+ Φ(h, i, j, k,m) ,

where the error term Φ(h, i, j, k,m) satisfies

∀h, i, j, k ∈ { 0, . . . ,m }
∣∣Φ(h, i, j, k,m)

∣∣ ≤ 6 lnm+ 9 .

We consider the regime where

`→ +∞ , m→ +∞ , q → 0 , `q → a ∈]0,+∞[ .

In this regime, we have for θ = 1 or θ = `,

MH(0, 0)→ e−a , MH(θ, 0)→ 0 ,

so that, for r, s, β, t ∈ [0, 1]4,

I`(r, s, β, t) →

{
I(r, s, t) if β = t

+∞ if β 6= t
,
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where the function I(r, s, t) is given by

∀r, s, t ∈ [0, 1]3 I(r, s, t) = I
(
f(r), s

)
+ s I

(
e−a,

t

s

)
.

Proposition 7.3 We define a function V1 on [0, 1]× [0, 1] by

∀r, t ∈ [0, 1] V1(r, t) = inf
{
I
(
r, s, t

)
: s ∈ [0, 1]

}
.

The one step transition probabilities of (Zn)n≥0 satisfy the large deviation
principle governed by V1: for any subset U of [0, 1], we have, for any n ≥ 0,

− inf
{
V1(r, t) : t ∈ U

o }
≤ lim inf

`,m→∞, q→0
`q→a

1

m
lnP

(
Zn+1 ∈ mU |Zn = brmc

)
,

lim sup
`,m→∞, q→0

`q→a

1

m
lnP

(
Zn+1 ∈ mU |Zn = brmc

)
≤ − inf

{
V1(r, t) : t ∈ U

}
.

Proof. Let r ∈ [0, 1] and let U be a subset of [0, 1]. We have, for any
n ≥ 0,

P
(
Zn+1 ∈ mU |Zn = brmc

)
=

∑
k∈mU∩{ 0,...,m }

p
(
brmc, k

)
=

∑
k∈{ 0,...,m }
k∈mU

m∑
i=0

i∑
j=0

p
(
brmc, i, j, k

)
.

From the previous inequalities, we have

P
(
Zn+1 ∈ mU |Zn = brmc

)
≤ (m+ 1)3 max

{
p
(
brmc, i, j, k

)
: 0 ≤ i ≤ m, 0 ≤ j ≤ i, k ∈ mU

}
≤ m11 exp

(
−mmin

{
I`

(brmc
m

,
i

m
,
j

m
,
k

m

)
:

0 ≤ i ≤ m, 0 ≤ j ≤ i, k ∈ mU
})

.

For each m ≥ 1, let im, jm, km be three integers in { 0, . . . ,m } which realize
the above minimum. By compactness of [0, 1], up to the extraction of a
subsequence, we can suppose that, as m goes to ∞,

im
m
→ s ,

jm
m
→ β ,

km
m
→ t .
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If β < t then

lim sup
`,m→∞, q→0

`q→a

−I`
(brmc

m
,
im
m
,
jm
m
,
km
m

)
≤

lim sup
`,m→∞, q→0

`q→a

−
(

1− im
m

)
I
(
MH(θ, 0),

km
m
− jm
m

1− im
m

)
= −∞ ,

because

lim sup
`,m→∞, q→0

`q→a

−km − jm
m

ln

km − jm
m(

1− im
m

)
MH(θ, 0)

= −∞ .

Thus we need only to consider the case where β = t. We have then

lim sup
`,m→∞, q→0

`q→a

−I`
(brmc

m
,
im
m
,
jm
m
,
km
m

)
≤ −I

(
f(r), s

)
− s I

(
e−a,

t

s

)
.

This implies the large deviation upper bound:

lim sup
`,m→∞, q→0

`q→a

1

m
lnP

(
Zn+1 ∈ mU |Zn = brmc

)
≤ − inf

{
I
(
r, s, t

)
: s ∈ [0, 1], t ∈ U

}
.

Conversely, let s, t ∈ [0, 1]. We have

P
(
Zn+1 = btmc |Zn = brmc

)
≥ p

(
brmc, bsmc, btmc, btmc

)
≥ 1

m7
exp

(
−mI`

(brmc
m

,
bsmc
m

,
btmc
m

,
btmc
m

))
≥ 1

m7
exp

(
−mI

(
f
(brmc

m

)
,
bsmc
m

)
− bsmc I

(
MH(0, 0),

btmc
bsmc

)
−
(
m− bsmc

)
ln

1

1−MH(θ, 0)

)
.

Taking ln and sending m, ` to ∞, we obtain

lim inf
`,m→∞, q→0

`q→a

1

m
lnP

(
Zn+1 = btmc |Zn = brmc

)
≥ −I

(
r, s, t

)
.
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Suppose now that t belongs to U
o
, the interior of U . For m large enough,

the integer btmc belongs to mU . From the previous estimate, we have

lim inf
`,m→∞, q→0

`q→a

1

m
lnP

(
Zn+1 ∈ mU |Zn = brmc

)
≥ −I

(
r, s, t

)
.

Optimizing over s, t, we get the large deviation lower bound:

lim inf
`,m→∞, q→0

`q→a

1

m
lnP

(
Zn+1 ∈ mU |Zn = brmc

)
≥ − inf

{
I
(
r, s, t

)
: s ∈ [0, 1], t ∈ U

o }
.

This finishes the proof of the large deviation principle. �

Proceeding in the same way, we can prove that the l–step transition prob-
abilities satisfy a large deviation principle. For l ≥ 1, we define a function
Vl on [0, 1]× [0, 1] by

Vl(r, t) = inf
{ l−1∑
k=0

I
(
ρk, γk, ρk+1

)
: ρ0 = r, ρl = t,

ρk, γk ∈ [0, 1] for 0 ≤ k < l
}
.

Corollary 7.4 For l ≥ 1, the l–step transition probabilities of (Zn)n≥0
satisfy the large deviation principle governed by Vl: for any subset U of
[0, 1], any r ∈ [0, 1], we have, for any n ≥ 0,

− inf
{
Vl(r, t) : t ∈ U

o }
≤ lim inf

`,m→∞, q→0
`q→a

1

m
lnP

(
Zn+l ∈ mU |Zn = brmc

)
,

lim sup
`,m→∞, q→0

`q→a

1

m
lnP

(
Zn+l ∈ mU |Zn = brmc

)
≤ − inf

{
Vl(r, t) : t ∈ U

}
.

The rate function for the one step transition probabilities is given by

I
(
r, s, t

)
= I

(
f(r), s

)
+ s I

(
e−a,

t

s

)
,

we see that

I
(
r, s, t

)
= 0 ⇐⇒ s = f(r) , e−a =

t

s
.
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Therefore the Markov chain (Zn)n≥0 can be considered as a random per-
turbation of the dynamical system associated to the map F :

z0 ∈ [0, 1] , ∀n ≥ 1 zn = F (zn−1) .

Let us set

ρ∗(a) = ρ(e−a, 0) =


σe−a − 1

σ − 1
if σe−a > 1

0 if σe−a ≤ 1

If σe−a ≤ 1 the function F admits only one fixed point, O, which is stable.
If σe−a > 1 the function F admits two fixed points, O, which is unstable,
and ρ∗(a) which is stable.

The natural strategy to study the Markov chain (Zn)n≥0 is to use the
Freidlin–Wentzell theory [9]. This theory has been initially developed in
a continuous setting, for brownian perturbations of differential equations.
This theory is quite robust and it can be applied well beyond this initial
framework. A discrete version has been worked out by Kifer [13, 14]. Un-
fortunately, our model does not satisfy the initial hypothesis employed by
Kifer. Indeed we have a degeneracy at 0 and the convergence in the large
deviation principle for the transition probabilities p is not uniform with re-
spect to the starting point. In addition, the rate function might be infinite,
for instance

P
(
Zn+1 >

m

2
|Zn = 0

)
=

∑
k>m/2

(
m
k

)
MH(θ, 0)k

(
1−MH(θ, 0)

)m−k
,

and since MH(θ, 0) goes to 0 as ` goes to ∞, we have

lim
`,m→∞, q→0

`q→a

1

m
lnP

(
Zn+1 >

m

2
|Zn = 0

)
= −∞ .

For these reasons, the Markov chain (Zn)n≥0 does not fit into the model
studied by Kifer. Undoubtedly, it is possible to relax somehow the hy-
pothesis of Kifer’s model in order to include our case. However this would
require a full check of the proofs and the final presentation would not be
convenient. Moreover we do not need the general results concerning the
perturbed dynamics in the presence of a finite number of attractors. In
our case, we have one stable fixed point and one unstable fixed point. Our
situation is similar to the case studied by Darden [4] and by Morrow and
Sawyer [18]. In Darden’s case, the mutations are not taken into account,
so the model is slightly too restrictive. In their model, Morrow and Sawyer
assume a lower bound on the variance of the process which is uniform with
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respect to the starting point. This condition is violated here, because the
variance vanishes at the unstable fixed point. In fact, we could possibly use
the result of Morrow and Sawyer on a subset of the form { bδmc, . . . ,m

}
,

where δ > 0 is fixed, but we would still need to study the process in the
vicinity of 0. The other drawback is also that, apart from the hypothesis
on the variance, their model is a bit too general for our purposes (they con-
sider a Markov chain evolving in a bounded subset of Rd). It appears that,
in any case, if we try to apply the results of Kifer or of Morrow and Sawyer,
we have to make a specific study of our process in the vicinity of the unsta-
ble fixed point 0, because we must control the hitting time of 0, uniformly
over the starting point. Therefore we choose to make a self–contained proof
of the estimates we need. We take advantage of the specific dynamics to
make a simpler proof, namely we use the discrete structure of { 0, . . . ,m }
and the monotonicity of the model, instead of relying on compactness and
a condition of uniform convergence. The crucial quantity to analyze the
dynamics is the following cost function V . We define, for s, t ∈ [0, 1],

V (s, t) = inf
l≥1

Vl(s, t) =

inf
l≥1

inf
{ l−1∑
k=0

I
(
ρk, γk, ρk+1

)
: ρ0 = s, ρl = t, ρk, γk ∈ [0, 1] for 0 ≤ k < l

}
.

Lemma 7.5 Suppose that σe−a > 1. For s, t ∈ [0, 1], we have V (s, t) = 0
if and only if
• either s = t = 0,
• or there exists l ≥ 1 such that t = F l(s),
• or s 6= 0, t = ρ∗(a).

Proof. Throughout the proof we write ρ∗ instead of ρ∗(a). Let s, t ∈ [0, 1]
be such that V (s, t) = 0. Suppose first that s = 0. Since I(0, γ, ρ) = +∞
unless γ = ρ = 0, then any sequence (ρ0, γ0, . . . , γl) such that ρ0 = s = 0
and

l−1∑
k=0

I
(
ρk, γk, ρk+1

)
< +∞

has to be the null sequence, so that necessarily t = 0. We suppose next
that s > 0. For each n ≥ 1, let (ρn0 , γ

n
0 , . . . , ρ

n
l(n)) be a sequence of length

l(n) in [0, 1] such that

ρn0 = s, ρnl(n) = t,

l(n)−1∑
k=0

I
(
ρnk , γ

n
k , ρ

n
k+1

)
≤ 1

n
.
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We consider two cases. If the sequence (l(n))n≥1 is bounded, then we can
extract a subsequence (

ρ
φ(n)
0 , γ

φ(n)
0 , . . . , ρ

φ(n)
l(φ(n))

)
such that l(φ(n)) = l does not depend on n and for any k ∈ { 0, . . . , l− 1 },
the following limits exist:

lim
n→∞

ρ
φ(n)
k = ρk , lim

n→∞
γ
φ(n)
k = γk .

The map I being continuous, we have then

∀k ∈ { 0, . . . , l − 1 } I
(
ρk, γk, ρk+1

)
= 0 ,

whence
∀k ∈ { 0, . . . , l } ρk = F k(ρ0) .

Since in addition ρ0 = s and ρl = t, we conclude that t = F l(s). Suppose
next that the sequence (l(n))n≥1 is not bounded. Our goal is to show that
t = ρ∗. Using Cantor’s diagonal procedure, we can extract a subsequence(

ρ
φ(n)
0 , γ

φ(n)
0 , . . . , ρ

φ(n)
l(φ(n))

)
such that, for any k ≥ 0, the following limits exist:

lim
n→∞

ρ
φ(n)
k = ρk , lim

n→∞
γ
φ(n)
k = γk .

The map I being continuous, we have then

∀k ≥ 0 I
(
ρk, γk, ρk+1

)
= 0 ,

whence
∀k ≥ 0 ρk = F k(ρ0) .

Let ε > 0. We have
I
(
ρ∗, f(ρ∗), ρ∗

)
= 0 .

The map I being continuous, there exists a neighborhood U of ρ∗ such that

∀ρ ∈ U V1(ρ∗, ρ) ≤ I
(
ρ∗, f(ρ∗), ρ

)
< ε .

Since s > 0,
lim
n→∞

Fn(s) = ρ∗

and
∃h ≥ 1 Fh(s) ∈ U .
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In particular,

lim
n→∞

ρ
φ(n)
h = Fh(s) ∈ U ,

so that, for n large enough,

ρ
φ(n)
h ∈ U ,

and

V (ρ∗, t) ≤ V1
(
ρ∗, ρ

φ(n)
h

)
+ V

(
ρ
φ(n)
h , t

)
≤ ε+

1

n
.

Letting successively n go to ∞ and ε go to 0 we obtain that V (ρ∗, t) = 0.
Let δ ∈]0, ρ∗/2[ and let U be the neighborhood of ρ∗ given by

U = ]ρ∗ − δ, ρ∗ + δ[ .

Let α be the infimum

α = inf
{
I
(
ρ0, γ0, ρ1

)
: ρ0 ∈ U, γ0 ∈ [0, 1], ρ1 6∈ U

}
.

The function I is continuous on the compact set U × [0, 1] ×
(
[0, 1] \ U

)
,

hence

∃(ρ∗0, γ∗0 , ρ∗1
)
∈ U × [0, 1]×

(
[0, 1] \ U

)
α = I

(
ρ∗0, γ

∗
0 , ρ
∗
1

)
.

Since F is non–decreasing and continuous, we have

F
(
U
)

= F
(
[ρ∗ − δ, ρ∗ + δ]

)
=
[
F (ρ∗ − δ), F (ρ∗ + δ)

]
.

Moreover we have

ρ∗ − δ < F (ρ∗ − δ) ≤ F (ρ∗ + δ) < ρ∗ + δ .

Thus F (U) ⊂ U and necessarily ρ∗1 6= F (ρ∗0) and α > 0. It follows that
any sequence (ρ0, γ0, . . . , ρl) such that

ρ0 ∈ U ,
l−1∑
k=0

I
(
ρk, γk, ρk+1

)
< α

is trapped in U . As a consequence, a point t satisfying V (ρ∗, t) = 0 must
belong to U . This is true for any δ > 0, hence for any neighborhood of ρ∗,
thus t = ρ∗. �

We shall derive estimates in the regime where

`→ +∞ , m→ +∞ , q → 0 , `q → a ∈]0,+∞[ .

Several inequalities will be valid only when the parameters are sufficiently
close to their limits. We will say that a property holds asymptotically to
express that it holds for `,m large enough and q small enough.
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7.2 Persistence time

In this section, we will estimate the expected hitting time τ0 starting from
a point of { 1, . . . ,m }. This quantity approximates the persistence time of
the master sequence w∗. We recall that

ρ∗(a) = ρ(e−a, 0) =


σe−a − 1

σ − 1
if σe−a > 1

0 if σe−a ≤ 1

and that the functions f, F : [0, 1]→ [0, 1] are given by

f(r) =
σr

(σ − 1)r + 1
, F (r) = e−af(r) .

Proposition 7.6 Let a ∈]0,+∞[ and let i ∈ { 1, . . . ,m }. The expected
hitting time τ0 of 0 starting from i satisfies

lim
`,m→∞
q→0, `q→a

1

m
lnE(τ0 |Z0 = i) = V (ρ∗(a), 0) .

Proof. Before proceeding to the proof, let us explain the general strategy,
which comes directly from the theory of Freidlin and Wentzell. To obtain
the upper bound on the persistence time, we show that, starting from any
point in { 1, . . . ,m }, the probability to reach a neighborhood of 0 in a finite
number of steps is larger than

exp
(
−mV (ρ∗, 0)−mε

)
.

This way we can bound from above τ0 by a geometric law with this param-
eter (see lemma 7.7). To obtain the lower bound on the persistence time,
we first show in lemma 7.8 that, starting from any point, the process has
a reasonable probability of reaching any neighborhood of ρ∗ before visit-
ing 0. This estimate is quite tedious, because the process might start from
Z0 = 1, which is close to the unstable fixed point of F . Since we need
to control the hitting time of 0 starting from any point, such an estimate
seems to be indispensable and it cannot be done in the more general situ-
ations considered by Kifer [13] or Morrow and Sawyer [18] without adding
some extra assumptions. So we give a lower bound on the probability of
following the iterates of a discrete approximation of F . With a Poisson
fluctuation, the process jumps away from 0, then, because F is expanding
in the neighborhood of 0, it reaches the point ηm after lnm steps, for some
η > 0, and with a finite number of steps, it lands in a neighborhood of ρ∗.
We then study the excursions of the process outside a neighborhood of 0
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and ρ∗. Whenever the process is outside such a neighborhood, it reenters
the neighborhood in a finite number of steps with probability larger than
1 − exp(−cm) for some c > 0 depending on the neighborhood. Thus the
process is very unlikely to stay a long time outside a neighborhood of the
two attractors { 0, ρ∗ }. In fact, the length of these excursions is bounded
by a constant, up to negligible events. We consider the hitting time τδ of
the δ–neighborhood of 0. Obviously we have τ0 ≥ τδ. We look then at the
portion of the trajectory starting at the last visit to the neighborhood of ρ∗

before reaching a neighborhood of 0. Such an excursion occurs at a given
time with probability of order

exp
(
−mV (ρ∗, 0) +mε

)
,

therefore it is unlikely to occur before time exp
(
mV (ρ∗, 0) − mε

)
. We

start now with the implementation of this scheme. Throughout the proof
we write ρ∗ instead of ρ∗(a). We start by proving an upper bound on
the hitting time. The next argument works in both cases σe−a ≤ 1 and
σe−a > 1. In the case σe−a ≤ 1, we have ρ∗ = 0 and V (ρ∗, 0) = 0, and the
proof becomes simpler, there is no need to consider a path from ρ∗ to 0.
Let ε > 0. We have

I
(
ρ∗, f(ρ∗), ρ∗

)
= 0 .

The map I being continuous, there exists δ > 0 such that

∀ρ ∈]ρ∗ − δ, ρ∗ + δ[ I
(
ρ, f(ρ), ρ∗

)
< ε .

Moreover
lim
n→∞

Fn(1) = ρ∗ .

Thus
∃h ≥ 1 Fh(1) ∈ ]ρ∗ − δ, ρ∗ + δ[ .

Let l ≥ 1 and let (ρ0, γ0, . . . , ρl) be a sequence in [0, 1] such that

ρ0 = ρ∗, ρl = 0,

l−1∑
k=0

I
(
ρk, γk, ρk+1

)
≤ V (ρ∗, 0) + ε .

We consider the sequence obtained by concatenating the two previous se-
quences:

t0 = 1, s0 = f(1), t1 = F (1), . . . , th−1 = Fh−1(1), sh−1 = f(th−1),

th = Fh(1), sh = f(th), th+1 = ρ∗, sh+1 = γ0,

th+2 = ρ1, · · · , th+l = ρl−1, sh+l = γl−1, th+l+1 = ρl = 0 .
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We set j = h+ l + 1. This sequence satisfies

t0 = 1, tj = 0,

j−1∑
k=0

I
(
tk, sk, tk+1

)
≤ V (ρ∗, 0) + 3ε .

We have then

P (Zj = 0 |Z0 = m) ≥
j−1∏
k=0

p
(
bmtkc, bmskc, bmtk+1c, bmtk+1c

)
.

Taking ln, sending m to ∞ and using the estimate on the transition prob-
abilities obtained in the proof of proposition 7.3, we have

lim inf
`,m→∞, q→0

`q→a

1

m
lnP (Zj = 0 |Z0 = m) ≥ −

j−1∑
k=0

I
(
tk, sk, tk+1

)
≥ −V (ρ∗, 0)− 3ε .

Thus, asymptotically, we have

P (Zj = 0 |Z0 = m) ≥ exp
(
−mV (ρ∗, 0)− 4mε

)
.

Using the monotonicity of the Markov chain (Zn)n≥0, we conclude that,
asymptotically,

∀i ∈ { 1, . . . ,m } P (Zj = 0 |Z0 = i) ≥ exp
(
−mV (ρ∗, 0)− 4mε

)
.

We have thus a lower bound on the probability of reaching 0 in j steps
starting from any point in { 1, . . . ,m }. For any n ≥ 0, we have, using the
Markov property,

P
(
τ0 > (n+ 1)j |Z0 = m

)
=

m∑
h=1

P
(
τ0 > (n+ 1)j, Znj = h |Z0 = m

)
=

m∑
h=1

P
(
τ0 > nj, Znj = h, Znj+1 6= 0, . . . Z(n+1)j 6= 0 |Z0 = m

)
=

m∑
h=1

P
(
Znj+1 6= 0, . . . Z(n+1)j 6= 0 | τ0 > nj, Znj = h, Z0 = m

)
× P

(
τ0 > nj, Znj = h |Z0 = m

)
=

m∑
h=1

P
(
τ0 > j |Z0 = h

)
P
(
τ0 > nj, Znj = h |Z0 = m

)
≤
(

1− exp
(
−mV (ρ∗, 0)− 4mε

))
P
(
τ0 > nj |Z0 = m

)
.

Iterating this inequality, we obtain the following result.
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Lemma 7.7 For any ε > 0, there exists j ≥ 1 such that

∀n ≥ 0 P
(
τ0 > nj |Z0 = m

)
≤
(

1− exp
(
−mV (ρ∗, 0)− 4mε

))n
.

It follows that

E(τ0 |Z0 = m) =
∑
k≥1

P
(
τ0 ≥ k |Z0 = m

)
=
∑
n≥0

(n+1)j∑
k=nj+1

P
(
τ0 ≥ k |Z0 = m

)
≤
∑
n≥0

j P
(
τ0 > nj |Z0 = m

)
≤ j exp

(
mV (ρ∗, 0) + 4mε

)
whence

lim sup
`,m→∞, q→0

`q→a

1

m
lnE(τ0 |Z0 = m) ≤ V (ρ∗, 0) + 4ε .

Letting ε go to 0 yields the desired upper bound. We prove next a lower
bound on the hitting time. If σe−a ≤ 1, then ρ∗ = 0, V (ρ∗, 0) = 0, and
obviously

lim inf
`,m→∞, q→0

`q→a

1

m
lnE(τ0 |Z0 = m) ≥ V (ρ∗, 0) = 0 .

Thus we need only to consider the case σe−a > 1. We start by estimating
from below the probability of going from 1 to a neighborhood of ρ∗ without
visiting 0. Before proceeding with the mathematical details, let us explain
the strategy to get this lower bound. When Z0 = 1, the binomial law
involved in the replication mechanism can be approximated by a Poisson
law of parameter σ, and the process (Zn)n≥0 can jump to any fixed h ∈ N
with a probability larger than a positive quantity independent of m. Using
a simple estimate on the central term of the binomial law, we have that

P
(
Zn+1 = Gm(h) |Zn = h

)
≥ 1

(m+ 1)2

where Gm is a map from { 0, . . . ,m } to { 0, . . . ,m } such that

1

m
Gm(h) ≥ F

( h
m

)
− 1

m
.

Therefore we study the iterates of the function F (x)−1/m. This function,
which is a small perturbation of F , has two fixed points, one unstable close
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to 0, of order 1/m, and one stable close to ρ∗. We take h large enough so
that h/m is above the unstable fixed point. Then the repulsive dynamics
of F (x)−1/m will bring the point h/m close to a value η > 0 (independent
of m) in a number of iterates of order lnm. Once the process (Zn)n≥0 is at
bηmc, a finite number of iterates leads into the neighborhood of ρ∗. The
lower bound is obtained by combining the three steps:

P (1→ h)P (h→ ηm)P (ηm→ (ρ∗ − δ)m) ≥ c

(
1

(m+ 1)2

)c lnm+c

,

where c is a constant independent of m. This is the idea of the proof of
the next lemma.

Lemma 7.8 For any δ > 0, there exist m0, c > 0, depending on δ, such
that, for m ≥ m0,

P
(
Z1 > 0, . . . , Zbc lnmc−1 > 0, Zbc lnmc > m(ρ∗ − δ) |Z0 = 1

)
≥ 1

mc lnm
.

Proof. The binomial law B(n, p) of parameters n ≥ 0 and p < 1 is
maximal at b(n+ 1)pc, therefore(

n
b(n+ 1)pc

)
pb(n+1)pc(1− p)n−b(n+1)pc ≥ 1

n+ 1
.

See for instance chapter VI in Feller’s book [8]. We shall use this inequal-
ity to bound from below the transition probabilities of the Markov chain
(Zn)n≥0. Let us define a map Gm : { 0, . . . ,m } → { 0, . . . ,m } by

∀h ∈ { 0, . . . ,m− 1 } Gm(h) =

⌊(⌊
(m+ 1)f

( h
m

)⌋
+ 1
)
e−a

⌋
,

Gm(m) = b(m+ 1)e−ac .

Applying the previous lower bound to the binomial laws involved in the
transition step of (Zn)n≥0, we obtain

∀n, h ≥ 0 P
(
Zn+1 ≥ Gm(h) |Zn = h

)
≥

p
(
h,
⌊
(m+ 1)f

( h
m

)⌋
, Gm(h), Gm(h)

)
≥ 1

(m+ 1)2
.
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It follows that for n, h ≥ 0,

P
(
Z1 ≥ (Gm)1(h), . . . , Zn ≥ (Gm)n(h) |Z0 = h

)
=

∑
l≥(Gm)n−1(h)

P
(
Z1 ≥ (Gm)1(h), . . . , Zn−1 = l, Zn ≥ (Gm)n(h) |Z0 = h

)
=

∑
l≥(Gm)n−1(h)

P
(
Zn ≥ (Gm)n(h) |Zn−1 = l

)
× P

(
Z1 ≥ (Gm)1(h), . . . , Zn−1 = l |Z0 = h

)
≥ P

(
Zn ≥ (Gm)n(h) |Zn−1 = (Gm)n−1(h)

)
×P
(
Z1 ≥ (Gm)1(h), . . . , Zn−1 ≥ (Gm)n−1(h) |Z0 = h

)
≥ 1

(m+ 1)2
P
(
Z1 ≥ (Gm)1(h), . . . , Zn−1 ≥ (Gm)n−1(h) |Z0 = h

)
.

Iterating this inequality, we obtain, for n, h ≥ 0,

P
(
Z1 ≥ (Gm)1(h), . . . , Zn ≥ (Gm)n(h) |Z0 = h

)
≥ 1

(m+ 1)2n
.

The map Gm : { 0, . . . ,m } → { 0, . . . ,m } is non–decreasing. Moreover

∀h ∈ { 0, . . . ,m } Gm(h) ≥

⌊
(m+ 1)f

( h
m

)
e−a

⌋
≥ mf

( h
m

)
e−a − 1 .

Let us define a map Hm : [0, 1]→ [0, 1] by

∀x ∈ [0, 1] Hm(x) = F (x)− 1

m
.

We can rewrite the previous inequality as

∀h ∈ { 0, . . . ,m } Gm(h) ≥ mHm

( h
m

)
.

Iterating this inequality, we get, thanks to the fact that both Gm and Hm

are non–decreasing,

∀n ≥ 0 ∀h ∈ { 0, . . . ,m } (Gm)n(h) ≥ m (Hm)n
( h
m

)
.

The map Hm, which is a small perturbation of the map F , has two fixed
points ρ′m < ρ′′m, whose expansion as m goes to ∞ is given by

ρ′m =
1

m(σe−a − 1)
+ o
( 1

m

)
,

ρ′′m =
σe−a − 1

σ − 1
− σe−a

m(σe−a − 1)
+ o
( 1

m

)
.
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Let η > 0. If x ≤ η, we have F (x) ≥ αx, where

α =
σe−a

(σ − 1)η + 1
.

For η sufficiently small, we have α > 1 and the map F restricted to [0, η]
is expanding. Let us study the iterates of x through the map Hm. We set

N = inf
{
n ≥ 0 : (Hm)n(x) > η

}
.

For 1 ≤ n < N , we have

(Hm)n(x) = Hm

(
(Hm)n−1(x)

)
≥ α(Hm)n−1(x)− 1

m
,

which we rewrite as

1

αn
(Hm)n(x) ≥ 1

αn−1
(Hm)n−1(x)− 1

mαn−1
.

Summing from n = 1 to N − 1, we get

(Hm)N−1(x) ≥ αN−1

(
x− 1

m

N−2∑
n=0

1

αn

)
≥ αN−1

(
x− α

m(α− 1)

)
.

Let h be an integer such that

h ≥ 2
α

α− 1
.

Notice that this condition does not depend on m. We suppose that m > h.
We take x = h/m, and we denote by N(h) the associated integer. We have
then

η > (Hm)N(h)−1
( h
m

)
≥ αN(h)−1 h

2m
.

Thus N(h) satisfies

N(h) < 1 +
1

lnα
ln

2mη

h

and we have

P
(
Z1 > 0, . . . , ZN(h)−1 > 0, ZN(h) > mη |Z0 = h

)
≥ P

(
Z1 ≥ m(Hm)1

( h
m

)
, . . . , ZN(h) ≥ m(Hm)N(h)

( h
m

)
|Z0 = h

)
≥ P

(
Z1 ≥ (Gm)1(h), . . . , ZN(h) ≥ (Gm)N(h)(h) |Z0 = h

)
≥ 1

(m+ 1)2N(h)
.
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We control next the probability to go from 1 to h. We have

P (Z1 ≥ h |Z0 = 1) ≥
(
m
h

)
σh(m− 1)m−h(
σ − 1 +m

)m MH(0, 0)h .

In this regime, where h is fixed and m is large, the Binomial law involved
in the replication mechanism can be approximated by a Poisson law of
parameter σ, whence, for m large enough,

P (Z1 ≥ h |Z0 = 1) ≥ 1

2
exp(−σ)

σh

h!
exp(−ah) .

We control finally the probability to go from ηm to the neighborhood of ρ∗.
We do this by following the iterates of F starting from η, and by controlling
the error term with respect to the iterates of Hm.

Lemma 7.9 We suppose that σe−a > 1. For any m ≥ 1, n ≥ 0, x ∈ [0, 1],
we have

(Hm)n(x) ≥ Fn(x) − 1

m

(σe−a)n+1

σe−a − 1
.

Proof. We have

∀x ∈ [0, 1]
∣∣F ′(x)

∣∣ ≤ σe−a ,

and, for any n ≥ 0,

(Hm)n+1(x) = Hm

(
(Hm)n(x)

)
= F

(
(Hm)n(x)

)
− 1

m
.

We shall prove the following inequality by induction on n:

(Hm)n(x) ≥ Fn(x) − 1

m

n∑
k=1

(σe−a)k .

The inequality is true for n = 0, 1. Suppose that the inequality holds for
some n ≥ 0. Since F is non–decreasing, we deduce from the inequality on
F ′ and the mean value theorem that

(Hm)n+1(x) ≥ F
(
Fn(x)− 1

m

n∑
k=1

(σe−a)k
)
− 1

m

≥ Fn+1(x)− σe−a 1

m

n∑
k=1

(σe−a)k − 1

m

≥ Fn+1(x)− 1

m

n+1∑
k=1

(σe−a)k
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and the inequality is proved at rank n+ 1. Summing the geometric series,
we obtain the inequality stated in the lemma. �

Let δ > 0. Now we have

lim
n→∞

Fn(η) = ρ∗ ,

therefore
∃t ≥ 1 F t(η) > ρ∗ − δ .

For m large enough, we have

F t(η) − 1

m

(σe−a)t+1

σe−a − 1
> ρ∗ − δ ,

so that, by lemma 7.9,

(Hm)t(η) > ρ∗ − δ .

Let i be an integer strictly larger than ηm. We have

P
(
Z1 > 0, . . . , Zt−1 > 0, Zt > m(ρ∗ − δ) |Z0 = i

)
≥ P

(
Z1 ≥ m(Hm)1(η), . . . , Zt ≥ m(Hm)t(η) |Z0 = i

)
≥ P

(
Z1 ≥ m(Hm)1

( i
m

)
, . . . , Zt ≥ m(Hm)t

( i
m

)
|Z0 = i

)
≥ P

(
Z1 ≥ (Gm)1(i), . . . , Zt ≥ (Gm)t(i) |Z0 = i

)
≥ 1

(m+ 1)2t
.

To conclude, we use the monotonicity of (Zn)n≥0 and we combine the three
previous estimates. The values h, t do not depend on m, and there exists
a positive constant c depending on η, h such that, for m large enough,

N(h) + t+ 1 < c lnm,(1

2
exp(−σ)

σh

h!
exp(−ah)

)c lnm 1

(m+ 1)2N(h)+2t
≥ 1

mc lnm
.

Let us set
s = bc lnmc −

(
N(h) + t

)
.
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We have

P (Z1 > 0, . . . , Zbc lnmc−1 > 0, Zbc lnmc > m(ρ∗ − δ) |Z0 = 1) ≥∑
j≥h

∑
i>mη

P (Z1 ≥ h, . . . , Zs−1 ≥ h, Zs = j, Zs+1 > 0, . . . , Zs+N(h)−1 > 0,

Zs+N(h) = i, Zs+N(h)+1 > 0, . . . , Zs+N(h)+t−1 > 0,

Zs+N(h)+t > m(ρ∗ − δ) |Z0 = 1
)

≥
∑
j≥h

∑
i>mη

P (Z1 ≥ h, . . . , Zs−1 ≥ h, Zs = j |Z0 = 1)×

P
(
Zs+1 > 0, . . . , Zs+N(h)−1 > 0, Zs+N(h) = i |Zs = j

)
P
(
Zs+N(h)+1 > 0,

. . . , Zs+N(h)+t−1 > 0, Zs+N(h)+t > m(ρ∗ − δ) |Zs+N(h) = i
)

≥ P (Z1 ≥ h, . . . , Zs ≥ h |Z0 = 1)
∑
i>mη

P
(
Z1 > 0, . . . , ZN(h)−1 > 0,

ZN(h) = i |Z0 = h
)
P
(
Z1 > 0, . . . , Zt−1 > 0, Zt > m(ρ∗ − δ) |Z0 = i

)
≥
(
P (Z1 ≥ h |Z0 = 1)

)s
×

P
(
Z1 > 0, . . . , ZN(h)−1 > 0, ZN(h) > mη |Z0 = h

) 1

(m+ 1)2t

≥
(1

2
exp(−σ)

σh

h!
exp(−ah)

)s 1

(m+ 1)2N(h)+2t
≥ 1

mc lnm
.

This is the required lower bound. �

Whenever the starting point is away from 0, the estimate of lemma 7.9 can
be considerably enhanced, as shown in the next lemma.

Lemma 7.10 We suppose that σe−a > 1. For any δ > 0, there exist h ≥ 1
and c > 0, depending on δ, such that

P
(
Z1 > 0, . . . , Zh−1 > 0, Zh > m(ρ∗ − δ) |Z0 = bmδc

)
≥ 1− exp(−cm) .

Proof. Let δ > 0. Since

lim
n→∞

Fn(δ) = ρ∗ ,

then there exists h ≥ 1 such that Fh(δ) > ρ∗−δ. By continuity of the map
F , there exist ρ0, ρ1, . . . , ρh > 0 such that ρ0 = δ, ρh > ρ∗ − δ and

∀k ∈ { 1, . . . , h } F (ρk−1) > ρk .
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Now,

P
(
Z1 > 0, . . . , Zh−1 > 0, Zh > m(ρ∗ − δ) |Z0 = bmδc

)
≥

P
(
∀k ∈ { 1, . . . , h } Zk ≥ mρk |Z0 = bmδc

)
.

Passing to the complementary event, we have

P
(
∃k ∈ { 1, . . . , h− 1 } Zk = 0 or Zh ≤ m(ρ∗ − δ) |Z0 = bmδc

)
≤ P

(
∃k ∈ { 1, . . . , h } Zk < mρk |Z0 = bmδc

)
≤

∑
1≤k≤h

P
(
Z1 ≥ mρ1, . . . , Zk−1 ≥ mρk−1, Zk < mρk |Z0 = bmδc

)
≤

∑
1≤k≤h

∑
i≥mρk−1

P
(
Zk−1 = i, Zk < mρk |Z0 = bmδc

)
≤

∑
1≤k≤h

∑
i≥mρk−1

P
(
Zk < mρk |Zk−1 = i

)
P
(
Zk−1 = i |Z0 = bmδc

)
≤

∑
1≤k≤h

P
(
Z1 < mρk |Z0 = bmρk−1c

)
.

The large deviation principle for the transition probabilities of the Markov
chain (Zn)n≥0 stated in proposition 7.3 implies that for k ∈ { 1, . . . , h },

lim sup
`,m→∞, q→0

`q→a

1

m
lnP

(
Z1 < mρk |Z0 = bmρk−1c

)
≤ − inf

{
I
(
ρk−1, s, t

)
: s ∈ [0, 1], t ≤ ρk

}
< 0 .

Since h is fixed, we conclude that

lim sup
`,m→∞, q→0

`q→a

1

m
lnP

(
∃k ∈ { 1, . . . , h− 1 } Zk = 0

or Zh ≤ m(ρ∗ − δ)

∣∣∣Z0 = bmδc
)
< 0

and this yields the desired estimate. �

With the estimate of lemma 7.10, we show that the process is very unlikely
to stay a long time in [mδ,m(ρ∗ − δ)].

Corollary 7.11 We suppose that σe−a > 1. Let δ > 0. There exist h ≥ 1
and c > 0 such that

∀k ∈ [mδ,m(ρ∗ − δ)] ∀n ≥ 0

P
(
mδ ≤ Zt ≤ m(ρ∗ − δ) for 0 ≤ t ≤ n |Z0 = k

)
≤ exp

(
− cm

⌊n
h

⌋)
.
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Proof. Let k ∈ [mδ,m(ρ∗ − δ)]. Let δ > 0 and let h ≥ 1 and c > 0 be
associated to δ as in lemma 7.10. We divide the interval { 0, . . . , n } into
subintervals of length h and we use repeatedly the estimate of lemma 7.10.
Let i ≥ 0. We write

P
(
mδ ≤ Zt ≤ m(ρ∗ − δ) for 0 ≤ t ≤ (i+ 1)h |Z0 = k

)
=∑

δm≤j≤(ρ∗−δ)m

P
(
mδ ≤ Zt ≤ m(ρ∗−δ) for 0 ≤ t ≤ (i+1)h, Zih = j |Z0 = k

)
=

∑
δm≤j≤(ρ∗−δ)m

P
(
mδ ≤ Zt ≤ m(ρ∗ − δ) for 0 ≤ t ≤ ih, Zih = j |Z0 = k

)
× P

(
mδ ≤ Zt ≤ m(ρ∗ − δ) for ih ≤ t ≤ (i+ 1)h |Zih = j

)
≤

∑
δm≤j≤(ρ∗−δ)m

P
(
mδ ≤ Zt ≤ m(ρ∗ − δ) for 0 ≤ t ≤ ih, Zih = j |Z0 = k

)
× P

(
Zh ≤ m(ρ∗ − δ) |Z0 = bmδc

)
≤ P

(
mδ ≤ Zt ≤ m(ρ∗ − δ) for 0 ≤ t ≤ ih |Z0 = k

)
exp(−cm) .

Iterating this inequality, we obtain

∀i ≥ 0 P
(
mδ ≤ Zt ≤ m(ρ∗−δ) for 0 ≤ t ≤ ih |Z0 = k

)
≤ exp(−cmi) .

The claim of the corollary follows by applying this inequality with i equal
to the integer part of n/h. �

We have computed the relevant estimates to reach the neighborhood of ρ∗.
Our next goal is to study the hitting time τ0 starting from a neighborhood
of ρ∗. Since we need only a lower bound, we shall study the hitting time
of a neighborhood of 0. For δ > 0, we define

τδ = inf
{
n ≥ 0 : Zn < mδ

}
.

Let i > (ρ∗− δ)m. We shall estimate the expectation of τδ starting from i.
The strategy consists in looking at the portion of the trajectory starting at
the last visit to the neighborhood of ρ∗ before reaching the neighborhood
of 0. Accordingly, we define

S = max
{
n ≤ τδ : Zn > (ρ∗ − δ)m

}
.

We write, for n, k ≥ 1,

P
(
τδ ≤ n |Z0 = i

)
=

∑
1≤s<t≤n

P
(
τδ = t, S = s |Z0 = i

)
=

∑
1≤s<t≤n
s<t≤s+k

P
(
τδ = t, S = s |Z0 = i

)
+

∑
1≤s<n
s+k<t≤n

P
(
τδ = t, S = s |Z0 = i

)
.
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Let h ≥ 1 and c > 0 be associated to δ as in corollary 7.11. For 1 ≤ s < n
and t > s+ k,

P
(
τδ = t, S = s |Z0 = i

)
=

∑
mδ≤j≤(ρ∗−δ)m

P
(
τδ = t, S = s, Zs+1 = j |Z0 = i

)
≤

∑
mδ≤j≤(ρ∗−δ)m

P
(
δm ≤ Zr ≤ (ρ∗ − δ)m
for s+ 1 ≤ r ≤ t− 1

∣∣∣∣Zs+1 = j
)

≤ m exp
(
− cm

⌊ t− s− 2

h

⌋)
,

whence∑
1≤s<n
s+k<t≤n

P
(
τδ = t, S = s |Z0 = i

)
≤ n

∑
t≥k

m exp
(
− cm

⌊ t− 1

h

⌋)
.

For 1 ≤ s < t ≤ n and t ≤ s+ k,

P
(
τδ = t, S = s |Z0 = i

)
≤

∑
j>(ρ∗−δ)m

P
(
τδ = t, S = s, Zs = j |Z0 = i

)
≤

∑
j>(ρ∗−δ)m

P
(
Zt < δm |Zs = j

)
≤ mP

(
Zt−s < δm |Z0 = b(ρ∗ − δ)mc

)
,

whence∑
1≤s<n
s<t≤s+k

P
(
τδ = t, S = s |Z0 = i

)
≤

n
∑

1≤t≤k

mP
(
Zt < δm |Z0 = b(ρ∗ − δ)mc

)
.

Putting together the previous inequalities, we obtain

P
(
τδ ≤ n |Z0 = i

)
≤ n

∑
t≥k

m exp
(
− cm

⌊ t− 1

h

⌋)
+ n

∑
1≤t≤k

mP
(
Zt < δm |Z0 = b(ρ∗ − δ)mc

)
.
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We choose k large enough so that

lim sup
`,m→∞, q→0

`q→a

1

m
ln

(∑
t≥k

m exp
(
− cm

⌊ t
h

⌋))
< −V (ρ∗ − δ, δ) ,

and we use the large deviation principle stated in corollary 7.4 to estimate
the second sum:

lim sup
`,m→∞, q→0

`q→a

1

m
ln

( ∑
1≤t≤k

mP
(
Zt < δm |Z0 = b(ρ∗ − δ)mc

))
≤ − min

1≤t≤k
Vt(ρ

∗ − δ, δ) ≤ −V (ρ∗ − δ, δ) .

Applying the previous inequalities with n = exp(mV (ρ∗ − δ, δ) −mδ), we
conclude that

lim
`,m→∞, q→0

`q→a

P
(
τδ ≤ exp(mV (ρ∗ − δ, δ)−mδ) |Z0 = i

)
= 0

and therefore

lim inf
`,m→∞, q→0

`q→a

1

m
lnE(τδ |Z0 = i) ≥ V (ρ∗ − δ, δ)− δ .

To derive a lower bound on the expectation of τ0 starting from 1, we com-
bine the previous estimates as follows. By lemma 7.8, asymptotically,

P
(
Z1 > 0, . . . , Zbc lnmc−1 > 0, Zbc lnmc > m(ρ∗ − δ) |Z0 = 1

)
≥ 1

mc lnm
.

Thus, letting i = b(ρ∗ − δ)mc+ 1, for any n ≥ bc lnmc,

P (τ0 > n |Z0 = 1) ≥∑
j≥i

P
(
Z1 > 0, . . . , Zbc lnmc−1 > 0, Zbc lnmc = j, τ0 > n |Z0 = 1

)
≥
∑
j≥i

P
(
Z1 > 0, . . . , Zbc lnmc−1 > 0, Zbc lnmc = j |Z0 = 1

)
× P

(
Zbc lnmc+1 > 0, . . . , Zn > 0 |Zbc lnmc = j

)
≥ P

(
Z1 > 0, . . . , Zbc lnmc−1 > 0, Zbc lnmc > m(ρ∗ − δ) |Z0 = 1

)
× P

(
Zbc lnmc+1 > 0, . . . , Zn > 0 |Zbc lnmc = i

)
≥ 1

mc lnm
P
(
τ0 > n− bc lnmc |Z0 = i

)
.
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Summing from n = bc lnmc to +∞, we get

E(τ0 |Z0 = 1) ≥ 1

mc lnm
E(τ0 |Z0 = i) .

The very definition of τδ implies that τ0 ≥ τδ, whence

E(τ0 |Z0 = i) ≥ E(τδ |Z0 = i) .

From the lower bound on τδ and the previous inequalities, we deduce that

lim inf
`,m→∞, q→0

`q→a

1

m
lnE(τ0 |Z0 = 1) ≥ V (ρ∗ − δ, δ)− δ .

The conclusion follows by letting δ go to 0. �

7.3 Concentration near ρ∗

In this section, we estimate the numerator of the last formula of section 6.3.
As usual, we drop the superscript θ from the notation when it is not neces-
sary, and we put it back when we need to emphasize the differences between
the cases θ = ` and θ = 1. We define, as before proposition 7.6,

ρ∗(a) = ρ(e−a, 0) =


σe−a − 1

σ − 1
if σe−a > 1

0 if σe−a ≤ 1

Let f : [0, 1] → R be a non–decreasing continuous function such that
f(0) = 0. Our goal here is to estimate the expected value of the sum

τ0∑
n=0

f
(Zn
m

)
.

The Markov chain (Zn)n≥0 is a perturbation of the dynamical system as-
sociated to the map F , therefore it spends most of its time in the neighbor-
hood of the stable fixed point ρ∗. On very large time intervals, the process
visits points far away from ρ∗ and then it returns quickly to ρ∗. Thus the
fraction of the time spent away from ρ∗ is negligible. We will show that
the above sum is, on average, comparable to f(ρ∗)τ0.

Proposition 7.12 Uniformly over i ∈ { 1, . . . ,m }, we have

lim
`,m→∞
q→0, `q→a

E

(
τ0∑
n=0

f
(Zn
m

) ∣∣∣Z0 = i

)
E
(
τ0
∣∣Z0 = i

) = f(ρ∗) .
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Proof. Before proceeding to the proof, let us explain the general strategy,
which comes directly from the theory of Freidlin and Wentzell. Let us
denote by U(δ) the δ–neighborhood of ρ∗. We choose δ small enough, so
that when the process is in the neighborhood U(2δ), the value f(Zn/m)
is approximated by f(ρ∗). When the process is outside of { 0 } ∪ U(2δ), it
reenters U(δ) in bc lnmc steps with probability at least m−c lnm, for some
c > 0 (see lemma 7.15). Therefore the average length of an excursion is
bounded by mc lnm. At a given time, the probability to start an excursion
from U(δ) reaching the outside of U(2δ) is less than exp(−cm). With this
estimate we can control the number of excursions (see lemma 7.14) and
we show that, typically, their total length until the time τ0 is negligible
compared to τ0.

Let ε > 0. Since f is continuous, there exists δ > 0 such that

∀ρ ∈]ρ∗ − 2δ, ρ∗ + 2δ[
∣∣f(ρ)− f(ρ∗)

∣∣ < ε .

We define then a sequence of stopping times to follow the excursions of
(Zn)n≥0 outside ]ρ∗ − δ, ρ∗ + δ[. More precisely, we set T0 = 0 and

T ∗1 = inf
{
n ≥ 0 :

Zn
m
∈ ]ρ∗ − δ, ρ∗ + δ[

}
,

T1 = inf
{
n ≥ T ∗1 :

Zn
m
6∈ ]ρ∗ − 2δ, ρ∗ + 2δ[

}
,

...

T ∗k = inf
{
n ≥ Tk−1 :

Zn
m
∈ ]ρ∗ − δ, ρ∗ + δ[

}
,

Tk = inf
{
n ≥ T ∗k :

Zn
m
6∈ ]ρ∗ − 2δ, ρ∗ + 2δ[

}
,

...

We decompose the sum over the intervals [Tk−1, T
∗
k [, [T ∗k , Tk[, k ≥ 1. De-

noting by s ∧ t the minimum min(s, t), we have

τ0∑
n=0

f
(Zn
m

)
− f(ρ∗) τ0 =

∑
k≥1

T∗k∧τ0−1∑
n=Tk−1∧τ0

(
f
(Zn
m

)
− f(ρ∗)

)
+
∑
k≥1

Tk∧τ0−1∑
n=T∗k∧τ0

(
f
(Zn
m

)
− f(ρ∗)

)
.

We bound next the absolute value as follows:∣∣∣∣∣
τ0∑
n=0

f
(Zn
m

)
− f(ρ∗) τ0

∣∣∣∣∣ ≤ 2f(1)
∑
k≥1

(
T ∗k ∧ τ0 − Tk−1 ∧ τ0

)
+ ε τ0 .
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It remains to deal with the sum. We define, for n ≥ 0,

K(n) = max
{
k ≥ 1 : Tk−1 < n

}
,

and the sum becomes∑
k≥1

(
T ∗k ∧ τ0 − Tk−1 ∧ τ0

)
=

K(τ0)∑
k=1

(
T ∗k ∧ τ0 − Tk−1

)
.

Let η > 0. We set

tηm = exp
(
m(V (ρ∗, 0) + η)

)
.

We decompose the sum as follows:

K(τ0)∑
k=1

(
T ∗k ∧ τ0 − Tk−1

)
≤ τ01τ0>tηm + 1τ0≤tηm

K(τ0)∑
k=1

(
T ∗k ∧ τ0 − Tk−1

)
.

We suppose that the process starts from i ∈ { 1, . . . ,m }. The estimates
are carried out exactly in the same way for any value of i, therefore, to
alleviate the notation, we remove the starting point from the notation.
Throughout the proof the expectation E and the probability P are meant
with respect to the initial condition Z0 = i. Taking expectation in the
previous inequalities, we get∣∣∣∣E
(

τ0∑
n=0

f
(Zn
m

))
− f(ρ∗)E

(
τ0
)∣∣∣∣

≤ εE
(
τ0
)

+ 2f(1)E
(
τ01τ0>tηm

)
+ 2f(1)E

(
1τ0≤tηm

K(τ0)∑
k=1

(
T ∗k ∧ τ0−Tk−1

))
.

Next, we take care of the second term.

Lemma 7.13 For any N, j ≥ 1,

E
(
τ01τ0>Nj

)
≤ NjP

(
τ0 > Nj

)
+
∑
n≥N

jP
(
τ0 > nj

)
.

Proof. We compute

E
(
τ01τ0>Nj

)
=
∑
k>Nj

kP
(
τ0 = k

)
=
∑
k>Nj

∑
n≥0

1n<k P
(
τ0 = k

)
=
∑
n≥0

∑
k>Nj
k>n

P
(
τ0 = k

)
=
∑
n≥0

P
(
τ0 > max(Nj, n)

)
≤ NjP

(
τ0 > Nj

)
+
∑
n≥Nj

P
(
τ0 > n

)
.
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Next,

∑
n≥Nj

P
(
τ0 > n

)
=
∑
n≥N

j−1∑
k=0

P
(
τ0 > nj + k

)
≤
∑
n≥N

jP
(
τ0 > nj

)
and we have the desired inequality. �

We apply lemma 7.7 with ε = η/8: there exists j ≥ 1 such that

∀n ≥ 0 P
(
τ0 > nj |Z0 = m

)
≤
(

1− exp
(
−mV (ρ∗, 0)−mη/2

))n
.

We apply lemma 7.13 with this j and

N = btηm/jc =
⌊1

j
exp

(
mV (ρ∗, 0) +mη

)⌋
and we use the previous inequality:

E
(
τ01τ0>tηm

)
≤ E

(
τ01τ0>Nj

)
≤ NjP

(
τ0 > Nj

)
+
∑
n≥N

jP
(
τ0 > nj

)
≤
(
Nj + j exp

(
mV (ρ∗, 0) +mη/2

))(
1− exp

(
−mV (ρ∗, 0)−mη/2

))N
≤ (1+j) exp

(
mV (ρ∗, 0)+mη

)
exp

(
−N exp

(
−mV (ρ∗, 0)−mη/2

))
.

Thanks to the choice of N , this last quantity goes to 0 as m goes to ∞.
We deal now with the last sum in the inequality before lemma 7.13. We
give first an upper bound on K.

Lemma 7.14 There exists c > 0, depending on δ, such that, asymptoti-
cally,

∀k, n ≥ 0 P
(
K(n) > k

)
≤ nk

k!
exp(−cmk) .

Proof. We denote by U(δ) the δ–neighborhood of ρ∗:

U(δ) = ]ρ∗ − δ, ρ∗ + δ[ .

For k ≥ 0, we define

S∗k = sup
{
T ∗k ≤ n < Tk :

Zn
m
∈ U(δ)

}
.

For k, n ≥ 0, we have

P
(
K(n) > k

)
= P

(
Tk < n

)
=

∑
t∗≤s<t<n

P
(
T ∗k = t∗, Sk = s, Tk = t

)
.
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Let h ≥ 1 and c > 0 be associated to δ as in corollary 7.11. We can suppose
that h ≥ 2. For given values of t∗ and s, we split the sum over t in two
parts: ∑

t:s<t<n

P
(
T ∗k = t∗, Sk = s, Tk = t

)
=

∑
t:t>s+h

· · · +
∑

t:s<t≤s+h

· · ·

We study next the first sum, when t > s+ h. We condition on the state at
time s+ 1:∑

t:t>s+h

· · · =
∑

t:t>s+h
j∈mU(2δ)\mU(δ)

P
(
T ∗k = t∗, Sk = s, Zs+1 = j, Tk = t

)

=
∑

t:t>s+h
j∈mU(2δ)\mU(δ)

P

(
T ∗k = t∗, Zs+1 = j, Zt 6∈ mU(2δ)
Zs+1, . . . , Zt−1 ∈ mU(2δ) \mU(δ)

)

=
∑

t:t>s+h
j∈mU(2δ)\mU(δ)

P
(
Zs+1, . . . , Zt−1 ∈ mU(2δ) \mU(δ), Zt 6∈ mU(2δ)

∣∣Zs+1 = j
)

×P
(
T ∗k = t∗, Sk = s, Zs+1 = j

)
.

For 0 ≤ s < n and t > s+ h,

P
(
Zs+1, . . . , Zt−1 ∈ mU(2δ) \mU(δ), Zt 6∈ mU(2δ)

∣∣Zs+1 = j
)

≤ P
(
δm ≤ Zr ≤ (ρ∗ − δ)m
for s+ 1 ≤ r ≤ t− 1

∣∣∣∣Zs+1 = j
)

≤ exp
(
− cm

⌊ t− s− 2

h

⌋)
.

Thus ∑
t:t>s+h

· · · ≤

(∑
t≥h

exp
(
− cm

⌊ t− 1

h

⌋))
P
(
T ∗k = t∗, Sk = s

)
.

Let us focus on the second sum. We condition on the state at time s:∑
t:s<t≤s+h

· · · =
∑

t:s<t≤s+h
j∈mU(δ)

P
(
T ∗k = t∗, Sk = s, Zs = j, Tk = t

)
≤

∑
t:s<t≤s+h
j∈mU(δ)

P
(
Zt 6∈ mU(2δ)

∣∣Zs = j
)
P
(
T ∗k = t∗, Sk = s, Zs = j

)
≤

∑
t:1≤t≤h
j∈mU(δ)

P
(
Zt 6∈ mU(2δ)

∣∣Z0 = j
)
P
(
T ∗k = t∗, Sk = s, Zs = j

)
.
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For any j ∈ mU(δ), using the monotonicity of (Zn)n≥0,

P
(
Zt 6∈ mU(2δ)

∣∣Z0 = j
)
≤ P

(
Zt ≤ m(ρ∗ − 2δ)

∣∣Z0 = j
)

+ P
(
Zt ≥ m(ρ∗ + 2δ)

∣∣Z0 = j
)

≤ P
(
Zt ≤ m(ρ∗ − 2δ)

∣∣Z0 = b(ρ∗ − δ)mc
)

+ P
(
Zt ≥ m(ρ∗ + 2δ)

∣∣Z0 = b(ρ∗ + δ)mc
)
.

We use the large deviation principle stated in corollary 7.4 to estimate the
last two terms. For any t ∈ { 1, . . . , h },

lim sup
`,m→∞, q→0

`q→a

1

m
lnP

(
Zt ≤ m(ρ∗ − 2δ)

∣∣Z0 = b(ρ∗ − δ)mc
)

≤ − inf
{
Vt(ρ

∗ − δ, ρ) : ρ ≤ ρ∗ − 2δ)
}
,

lim sup
`,m→∞, q→0

`q→a

1

m
lnP

(
Zt ≥ m(ρ∗ + 2δ)

∣∣Z0 = b(ρ∗ + δ)mc
)

≤ − inf
{
Vt(ρ

∗ + δ, ρ) : ρ ≥ ρ∗ + 2δ)
}
.

By compactness, the infima are realized. Because of the constraints on ρ,
the point ρ realizing the infimum

inf
{
Vt(ρ

∗ − δ, ρ) : ρ ≤ ρ∗ − 2δ)
}

is not an iterate of ρ∗−δ through F , hence by lemma 7.5, the above infimum
is positive. We argue in the same way for the second infimum and we
conclude that there exists c′ > 0, depending on δ, such that, asymptotically,

∀j ∈ mU(δ)
∑

t:1≤t≤h

P
(
Zt 6∈ mU(2δ)

∣∣Z0 = j
)
≤ exp(−c′m) ,

whence ∑
t:s<t≤s+h

· · · ≤ exp(−c′m)P
(
T ∗k = t∗, Sk = s

)
.

Let c′′ > 0 be such that, asymptotically,∑
t≥h

exp
(
− cm

⌊ t− 1

h

⌋)
+ exp(−c′m) ≤ exp(−c′′m) .

Reporting in the initial equality, we obtain that, asymptotically, for any
n, k ≥ 0,

P
(
Tk < n

)
≤

∑
t∗≤s<n

exp(−c′′m)P
(
T ∗k = t∗, Sk = s

)
≤
∑
t∗<n

P
(
T ∗k = t∗

)
exp(−c′′m) ≤

∑
t∗<n

P
(
Tk−1 < t∗

)
exp(−c′′m) .
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Iterating this inequality, we obtain

P
(
Tk < n

)
≤

∑
0≤n0<···<nk−1<n

exp(−c′′mk) ,

whence

P
(
Tk < n

)
≤ nk

k!
exp(−c′′mk)

as required. �

We estimate now the last sum. By the Cauchy–Schwarz inequality, we have

E

(
1τ0≤tηm

K(τ0)∑
k=1

(
T ∗k ∧ τ0 − Tk−1

))

=
∑
k≥1

E

(
1τ0≤tηm1k≤K(τ0)

(
T ∗k ∧ τ0 − Tk−1

))

≤
∑
k≥1

P
(
τ0 ≤ tηm, K(τ0) ≥ k

)1/2(
E
(

1k≤K(τ0)

(
T ∗k ∧ τ0 − Tk−1

)2))1/2

.

If 1 ≤ k ≤ K(τ0), then Tk−1 < τ0 and ZTk−1
> 0, so that, using the Markov

property,

E
(

1k≤K(τ0)

(
T ∗k ∧ τ0 − Tk−1

)2)
=∑

1≤j≤m

E
(

1k≤K(τ0)

(
T ∗k ∧ τ0 − Tk−1

)2 ∣∣∣ZTk−1
= j
)
P
(
ZTk−1

= j
)

≤
∑

1≤j≤m

E
(
(T ∗1 ∧ τ0)2

∣∣Z0 = j
)
P
(
ZTk−1

= j
)
.

We will next bound the time T ∗1 ∧ τ0, starting from j ∈ { 1, . . . ,m }.

Lemma 7.15 We suppose that σe−a > 1. For any δ > 0, there exist
m0, c > 0, depending on δ, such that, for m ≥ m0, for j ∈ { 1, . . . ,m },

P
(
m(ρ∗ − δ) < Zbc lnmc < m(ρ∗ + δ) |Z0 = j

)
≥ 1

mc lnm
.

Proof. Using lemma 7.8, there exists c > 0 such that, for m large enough,

P
(
Zbc lnmc ≤ m(ρ∗ − δ) |Z0 = 1

)
≤ 1− 1

mc lnm
.
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Proceeding as in lemma 7.10, we obtain that there exist h, c′ > 0 such that

P
(
Zh ≥ m(ρ∗ + δ) |Z0 = m

)
≤ exp(−c′m) .

We have then

P
(
Zbc lnmc ≥ m(ρ∗ + δ) |Z0 = m

)
=∑

j∈{ 1,...,m }

P
(
Zbc lnmc ≥ m(ρ∗ + δ), Zbc lnmc−h = j |Z0 = m

)
=

∑
j∈{ 1,...,m }

P
(
Zh ≥ m(ρ∗ + δ) |Z0 = j

)
P
(
Zbc lnmc−h = j |Z0 = m

)
≤ exp(−c′m) .

Using the monotonicity of (Zn)n≥0, we have then

P
(
Zbc lnmc 6∈ ]m(ρ∗ − δ),m(ρ∗ + δ)[ |Z0 = j

)
≤ P

(
Zbc lnmc ≤ m(ρ∗ − δ) |Z0 = j

)
+ P

(
Zbc lnmc ≥ m(ρ∗ + δ) |Z0 = j

)
≤ P

(
Zbc lnmc ≤ m(ρ∗ − δ) |Z0 = 1

)
+ P

(
Zbc lnmc ≥ m(ρ∗ + δ) |Z0 = m

)
≤ 1− 1

mc lnm
+ exp(−c′m) .

This estimate is uniform with respect to j ∈ { 1, . . . ,m }. �

Corollary 7.16 We suppose that σe−a > 1. For any δ > 0, there exist
m0, c > 0, depending on δ, such that, for m ≥ m0, for j ∈ { 1, . . . ,m },

∀n ≥ 0 P
(
T ∗1 ∧ τ0 ≥ nbc lnmc

∣∣Z0 = j
)
≤
(

1− 1

mc lnm

)n
.

Proof. We proceed as in corollary 7.11 to obtain this inequality. We
divide the interval { 0, . . . , nbc lnmc } into subintervals of length bc lnmc
and we use repeatedly the estimate of lemma 7.15. �

By corollary 7.16, we have, for any j ∈ { 1, . . . ,m },

E
(
(T ∗1 ∧ τ0)2

∣∣Z0 = j
)

=
∑
k≥1

P
(
T ∗1 ∧ τ0 ≥

√
k
∣∣Z0 = j

)

≤
∑
k≥1

(
1− 1

mc lnm

)⌊ √
k

bc lnmc

⌋
.

Let us set

α = 1− 1

mc lnm
, t = bc lnmc .
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We have∑
k≥1

αb
√
k/tc ≤

∑
k≥1

α
√
k/t−1 ≤

∫ ∞
0

α
√
x/t−1 dx =

t2

α(lnα)2

∫ ∞
0

e
√
y dy ,

therefore, asymptotically, for any j,

E
(
(T ∗1 ∧ τ0)2

∣∣Z0 = j
)
≤ m3c lnm .

Reporting in the previous inequalities, we have

∀k ≥ 1 E
(

1k≤K(τ0)

(
T ∗k ∧ τ0 − Tk−1

)2) ≤ m3c lnm

and, using the estimate of lemma 7.14,

E

(
1τ0≤tηm

K(τ0)∑
k=1

(
T ∗k ∧ τ0 − Tk−1

))
≤ m3c lnm

∑
k≥0

P
(
K(tηm) > k

)1/2
≤ m3c lnm

(
tηm exp(−c′m/3) +

∑
k≥tηm exp(−c′m/3)

( (tηm)k

k!
exp(−c′mk)

)1/2)
≤ m3c lnm

(
tηm exp(−c′m/3) +

∑
k≥1

exp
(k

2
− c′mk

3

))
.

To get the last inequality, we have used that k! ≥ (k/e)k, whence, for
k ≥ tηm exp(−c′m/3),

(tηm)k

k!
≤
(etηm
k

)k
≤ exp(k + c′mk/3) .

We choose η such that η < c′/3. The above inequality implies that

lim sup
`,m→∞, q→0

`q→a

1

m
lnE

(
1τ0≤tηm

K(τ0)∑
k=1

(
T ∗k ∧ τ0 − Tk−1

))
≤ V (ρ∗, 0) + η − c′

3
.

All these estimates, together with proposition 7.6, imply that, asymptoti-
cally, uniformly with respect to i ∈ { 1, . . . ,m },∣∣∣∣E

(
τ0∑
n=0

f
(Zn
m

) ∣∣∣Z0 = i

)
− f(ρ∗)E

(
τ0 |Z0 = i

)∣∣∣∣ ≤ 3εE
(
τ0 |Z0 = i

)
.

This achieves the proof of proposition 7.12. �
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8 The neutral phase

We denote by N the set of the populations which do not contain the master
sequence w∗, i.e.,

N =
(
A` \ {w∗ }

)m
.

Since we deal with the sharp peak landscape, the transition mechanism of
the process restricted to the set N is neutral. We consider a Wright–Fisher
process (Xn)n≥0 starting from a population of N . We wish to evaluate the
first time when a master sequence appears in the population:

τ∗ = inf
{
n ≥ 0 : Xn 6∈ N

}
.

We call the time τ∗ the discovery time. Until the time τ∗, the process
evolves in N and the dynamics of the Wright–Fisher model in N does not
depend on σ. In particular, the law of the discovery time τ∗ is the same for
the Wright–Fisher model with σ > 1 and the neutral Wright–Fisher model
with σ = 1. Therefore, we compute the estimates for the latter model.

Neutral hypothesis. Throughout this section, we suppose that σ = 1.

8.1 Ancestral lines

It is a classical fact that neutral evolutionary processes are much easier to
analyze than evolutionary processes with selection. The main reason is that
the mutation mechanism and the sampling mechanism can be decoupled.
For instance, it is possible to compute explicitly the law of a chromosome
in the population at time n. Let µ0 be an exchangeable probability distri-
bution on

(
A`
)m

. Let (Xn)n≥0 be the neutral Wright–Fisher process with
mutation matrix M and initial law µ0. Let ν0 be the component marginal
of µ0:

∀u ∈ A` ν0(u) = µ0

(
{x ∈

(
A`
)m

: x(1) = u }
)
.

Let (Wn)n≥0 be a Markov chain with state space A`, having for transition
matrix the mutation matrix M and with initial law ν0.

Proposition 8.1 Let i ∈ { 1, . . . ,m }. For any n ≥ 0, the law of the i–th
chromosome of Xn is equal to the law of Wn.

Proof. We do the proof by induction over n. The result holds for n = 0.
Suppose that it has been proved until time n. Let i ∈ { 1, . . . ,m }. We
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have, for any u ∈ A`,

P (Xn+1(i) = u) =
∑

x∈(A`)m
P (Xn+1(i) = u, Xn = x)

=
∑

x∈(A`)m
P (Xn+1(i) = u |Xn = x)P (Xn = x) .

Yet we have

P (Xn+1(i) = u |Xn = x) =
1

m

∑
1≤j≤m

M(x(j), u) .

Thus

P (Xn+1(i) = u) =
∑

x∈(A`)m

1

m

∑
1≤j≤m

M(x(j), u)P (Xn = x)

=
∑
v∈A`

1

m

∑
1≤j≤m

M(v, u)P (Xn(j) = v) .

By the induction hypothesis,

∀v ∈ A` ∀j ∈ { 1, . . . ,m } P (Xn(j) = v) = P (Wn = v) ,

whence

P (Xn+1(i) = u) =
∑
v∈A`

P (Wn = v)M(v, u) = P (Wn+1 = u) .

The result still holds at time n+ 1. �

We perform next a similar computation to obtain the law of an ancestral
line. Let us first define an ancestral line. For i ∈ { 1, . . . ,m } and n ≥ 1,
we denote by I(i, n, n − 1) the index of the ancestor at time n − 1 of the
i–th chromosome at time n. More precisely, if the i–th chromosome of the
population at time n has been obtained by replicating the j–th chromosome
of the population at time n − 1, then I(i, n, n − 1) = j. For s ≤ n, the
index I(i, n, s) of the ancestor at time s of the i–th chromosome at time n
is then defined recursively with the help of the following formula:

I(i, n, s) = I(I(i, n, n− 1), n− 1, s) .

The ancestor at time s of the i–th chromosome at time n is the chromosome

ancestor(i, n, s) = Xs(I(i, n, s)) .

The ancestral line of the i–th chromosome at time n is the sequence of its
ancestors until time 0,

(ancestor(i, n, s), 0 ≤ s ≤ n) = (Xs(I(i, n, s)), 0 ≤ s ≤ n) .
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Proposition 8.2 Let i ∈ { 1, . . . ,m }. For any n ≥ 0, the law of the
ancestral line (ancestor(i, n, s), 0 ≤ s ≤ n) of the i–th chromosome of Xn

is equal to the law of (W0, . . . ,Wn).

Proof. We do the proof by induction over n. The result is true at rank
n = 0. Suppose it has been proved until time n. Let i ∈ { 1, . . . ,m } and
let u0, . . . , un+1 ∈ A`. We compute

P
(
ancestor(i, n+ 1, s) = us, 0 ≤ s ≤ n+ 1

)
=

∑
x∈(A`)m

∑
1≤j≤m

P

(
Xn+1(i) = un+1, I(i, n+ 1, n) = j

Xn = x, ancestor(j, n, s) = us, 0 ≤ s ≤ n

)

=
∑

x∈(A`)m

∑
1≤j≤m

P

(
Xn+1(i) = un+1

I(i, n+ 1, n) = j

∣∣∣ ancestor(j, n, s) = us
0 ≤ s ≤ n, Xn = x

)

× P
(ancestor(j, n, s) = us

0 ≤ s ≤ n, Xn = x

)
.

Since we deal with the neutral process, we have

P

(
Xn+1(i) = un+1

I(i, n+ 1, n) = j

∣∣∣ ancestor(j, n, s) = us
0 ≤ s ≤ n, Xn = x

)
= P

(
Xn+1(i) = un+1

I(i, n+ 1, n) = j

∣∣∣Xn = x

)
=

1

m
M(x(j), un+1) .

Reporting in the previous inequality, we get

P
(
ancestor(i, n+ 1, s) = us, 0 ≤ s ≤ n+ 1

)
=

∑
x∈(A`)m

∑
1≤j≤m

1

m
M(x(j), un+1)P

(
ancestor(j, n, s) = us
0 ≤ s ≤ n, Xn = x

)

=
∑

1≤j≤m

1

m
M(un, un+1)P

(
ancestor(i, n, s) = us, 0 ≤ s ≤ n

)
.

By the induction hypothesis, we have

P
(
ancestor(i, n, s) = us, 0 ≤ s ≤ n

)
= P

(
W0 = u0, . . . ,Wn = un

)
.

Therefore

P
(
ancestor(i, n+ 1, s) = us, 0 ≤ s ≤ n+ 1

)
=

P
(
Wn+1 = un+1 |Wn = un

)
P
(
W0 = u0, . . . ,Wn = un

)
= P

(
W0 = u0, . . . ,Wn+1 = un+1

)
and the induction step is completed. �
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8.2 Mutation dynamics

We consider a Markov chain (Yn)n≥0 with state space { 0, . . . , ` } and having
for transition matrix the lumped mutation matrix MH . In this section, we
recall some properties and estimates concerning the Markov chain (Yn)n≥0.
We refer to the corresponding section of [3] for the detailed proofs. The
Markov chain (Yn)n≥0 is monotone. We denote by B the binomial law
B(`, 1− 1/κ) with parameters ` and 1− 1/κ, i.e.,

∀b ∈ { 0, . . . , ` } B(b) =

(
`

b

)(
1− 1

κ

)b( 1

κ

)`−b
.

The matrix MH is reversible with respect to the binomial law B. This bino-
mial law is the invariant probability measure of the Markov chain (Yn)n≥0.
When ` grows, the law B concentrates exponentially fast in a neighbor-
hood of its mean `κ = `(1− 1/κ). We restate next without proofs several
inequalities and estimates proved in [3].

Lemma 8.3 For any b ∈ { 0, . . . ,m } and n ≥ 0, we have

P
(
Yn = 0 |Y0 = b

)
≤ B(0)

B(b)
.

Lemma 8.4 For b ≤ `/2, we have

1

κ`

(
`

2b

)b
≤ B(b) ≤ `b

κ`−b
.

For b ∈ { 0, . . . , ` }, we define the hitting time τ(b) of { b, . . . , ` } by

τ(b) = inf
{
n ≥ 0 : Yn ≥ b

}
.

Lemma 8.5 For n such that

n >
2b

p
(
`κ − b

) ,
we have

P
(
τ(b) > n |Y0 = 0

)
≤ 4`

np
(
`κ − b

)2 .
Proposition 8.6 We suppose that ` → +∞, q → 0, `q → a ∈]0,+∞[.
Asymptotically, we have

P
(
τ(`κ) ≤ `2 |Y0 = 0

)
≥
(

1− 5

a(ln `)2

)( p
κ

)ln `
e−2a .
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Proposition 8.7 We suppose that ` → +∞ , q → 0 , `q → a ∈]0,+∞[.
Asymptotically, we have

∀n ≥
√
` P

(
Yn ≥ ln ` |Y0 = 0

)
≥ 1− 6

a
√
`
.

Proposition 8.8 We suppose that ` → +∞ , q → 0 , `q → a ∈]0,+∞[.
Let ε ∈]0, 1/4[. Asymptotically, we have

∀n ≥ `

aε
P
(
Yn ≥ `κ(1− 4ε) |Y0 = 0

)
≥ 1− 6

`ε
.

We define
τ0 = inf

{
n ≥ 0 : Yn = 0

}
.

Proposition 8.9 For any a ∈]0,+∞[,

lim sup
`→∞, q→0
`q→a

1

`
lnE(τ0 |Y0 = `) ≤ lnκ .

8.3 Discovery time

The dynamics of the processes (O`n)n≥0, (O1
n)n≥0 in N are the same as

the original process (On)n≥0, therefore we can use the original process to
compute their discovery times. Letting

τ∗,` = inf
{
n ≥ 0 : O`n ∈ W∗

}
, τ∗,1 = inf

{
n ≥ 0 : O1

n ∈ W∗
}
,

τ∗ = inf
{
n ≥ 0 : On ∈ W∗

}
,

we have

E
(
τ∗,` |O`0 = o`exit

)
= E

(
τ∗ |O0 = (0, 0, 0, . . . ,m)

)
,

E
(
τ∗,1 |O1

0 = o1exit
)

= E
(
τ∗ |O0 = (0,m, 0, . . . , 0)

)
.

In addition, the law of the discovery time τ∗ is the same for the distance
process and the occupancy process. With a slight abuse of notation, we let

τ∗ = inf
{
n ≥ 0 : Dn ∈ W∗

}
.

Notation. For b ∈ { 0, . . . , ` }, we denote by (b)m the vector column whose
components are all equal to b:

(b)m =

b...
b

 .
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We have

E
(
τ∗ |O0 = (0, 0, . . . , 0,m)

)
= E

(
τ∗ |D0 = (`)m

)
,

E
(
τ∗ |O0 = (0,m, 0, . . . , 0)

)
= E

(
τ∗ |D0 = (1)m

)
.

We will carry out the estimates of τ∗ for the distance process (Dn)n≥0.
Notice that the case α = +∞ is not covered by the result of next proposi-
tion. This case will be handled separately, with the help of the intermediate
inequality of corollary 8.11.

Proposition 8.10 Let a ∈]0,+∞[ and α ∈ [0,+∞[. For any d ∈ N ,

lim
`,m→∞, q→0
`q→a, m

`
→α

1

`
lnE

(
τ∗ |D0 = d

)
= lnκ .

Proof. Since we are in the neutral case σ = 1, then, by corollary 5.4, the
distance process (Dn)n≥0 is monotone. Therefore, for any d ∈ N , we have

E
(
τ∗ |D0 = (1)m

)
≤ E

(
τ∗ |D0 = d

)
≤ E

(
τ∗ |D0 = (`)m

)
.

As in the section 8.2, we consider a Markov chain (Yn)n≥0 with state
space { 0, . . . , ` } and having for transition matrix the lumped mutation
matrix MH . Let us look at the distance process at time n starting from
(`)m. From proposition 8.1, we know that the law of the i–th chromosome
in Dn is the same as the law of Yn starting from `. The main difficulty
is that, because of the replication events, the m chromosomes present at
time n are not independent, nor are their genealogical lines. However,
this dependence does not improve significantly the efficiency of the search
mechanism, as long as the population is in the neutral space N . To bound
the discovery time τ∗ from above, we consider the time needed for a single
chromosome to discover the master sequence w∗, that is

τ0 = inf
{
n ≥ 0 : Yn = 0

}
and we remark that, if the master sequence has not been discovered until
time n in the distance process, that is,

∀t ≤ n ∀i ∈ { 1, . . . ,m } Dt(i) ≥ 1 ,

then certainly the ancestral line of any chromosome present at time n does
not contain the master sequence. By proposition 8.2, the ancestral line of
any chromosome present at time n has the same law as Y0, . . . , Yn. From
the previous observations, we conclude that

∀n ≥ 0 P
(
τ∗ > n |D0 = (`)m

)
≤ mP (τ0 > n |Y0 = `) .

Summing this inequality over n ≥ 0, we obtain the following upper bound
on the discovery time.
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Corollary 8.11 Let τ0 be the hitting time of 0 for the process (Yn)n≥0.
For any d ∈ N , any m ≥ 1, we have

E
(
τ∗ |D0 = d

)
≤ mE(τ0 |Y0 = `) .

With the help of proposition 8.9, we conclude that

lim sup
`,m→∞, q→0
`q→a, m

`
→α

1

`
lnE

(
τ∗ |D0 = d

)
≤ lnκ .

The harder part is to bound the discovery time τ∗ from below. The main
difficulty to obtain the adequate lower bound on τ∗ is that the process starts
very close to the master sequence, hence the probability of creating quickly
a master sequence is not very small. Our strategy consists in exhibiting a
scenario in which the whole population is driven into a neighborhood of the
equilibrium `κ. Once the whole population is close to `κ, the probability to
create a master sequence in a short time is of order 1/κ`, thus it requires
a time of order κ`. The key point is to design a scenario whose probability
is much larger than 1/κ`. Indeed, the mean discovery time is bounded
from below by the probability of the scenario multiplied by κ`. We rely on
the following scenario. First we ensure that until time `3/4, no mutation
can recreate the master sequence. This implies that τ∗ > `3/4. Let us
then look at the population at time `3/4. Each chromosome present at this
time has undergone an evolution whose law is the same as the mutation
dynamics studied in section 8.2. The initial drift of the mutation dynamics
is quite violent, therefore at time `3/4, it is very unlikely that a chromosome
evolving with the mutation dynamics is still in { 0, · · · , ln ` }. The problem
is that the chromosomes are not independent. We take care of this problem
with the help of correlation inequalities. Thus, at time `3/4, in this scenario,
all the chromosomes of the population are at distance larger than ln ` from
the master sequence. We wait next until time `2. Because of the mutation
drift, a chromosome starting at ln ` has a very low probability of hitting 0
before time `2. Thus the process is very unlikely to discover the master
sequence before time `2. Arguing again as above, we obtain that, for any
ε > 0, at time `2, it is very unlikely that a chromosome evolving with the
mutation dynamics is still in { 0, · · · , `κ(1 − ε) }. Thus, according to this
scenario, we have τ∗ > `2 and

∀i ∈ { 1, . . . ,m } D`2(i) ≥ `κ(1− ε) .

Let us precise next the scenario and the corresponding estimates. We
suppose that the distance process starts from (1)m and we will estimate
the probability of a specific scenario leading to a discovery time close to κ`.
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Let E be the event

E =
{
∀n ≤ `3/4 ∀i ∈ { 1, . . . ,m } U i,1n > p/κ

}
.

If the event E occurs, then, until time `3/4, none of the mutation events in
the process (Dn)n≥0 can create a master sequence. Indeed, on E ,

∀b ∈ { 1, . . . , ` } ∀n ≤ `3/4 ∀i ∈ { 1, . . . ,m }
MH(b, U i,1n , . . . , U i,`n ) ≥ MH(1, U i,1n , . . . , U i,`n )

≥ 1 +
∑̀
l=2

1Ui,ln >1−p(1−1/κ) ≥ 1 .

Thus, on the event E , we have τ∗ ≥ `3/4. The probability of E is

P (E) =
(

1− p

κ

)m`3/4
.

Let ε > 0. We suppose that the process starts from (1)m and we estimate
the probability

P
(
τ∗ > κ`(1−ε)

)
≥ P

(
τ∗ > κ`(1−ε), E

)
≥ P

(
∀n ∈ { `3/4, . . . , κ`(1−ε) } Dn ∈ N , E

)
=
∑
d∈N

P
(
∀n ∈ { `3/4, . . . , κ`(1−ε) } Dn ∈ N , D`3/4 = d, E

)
≥

∑
d≥(ln `)m

P
(
∀n ∈ { `3/4, . . . , κ`(1−ε) } Dn ∈ N |D`3/4 = d, E

)
× P (D`3/4 = d, E) .

Using the Markov property, we have

P
(
∀n ∈ { `3/4, . . . , κ`(1−ε) } Dn ∈ N |D`3/4 = d, E

)
= P

(
∀n ∈ { 0, . . . , κ`(1−ε) − `3/4 } Dn ∈ N |D0 = d

)
= P

(
τ∗ > κ`(1−ε) − `3/4 |D0 = d

)
≥ P

(
τ∗ > κ`(1−ε) |D0 = d

)
.

In the neutral case, by corollary 5.4, the distance process is monotone.
Therefore, for d ≥ (ln `)m,

P
(
τ∗ > κ`(1−ε) |D0 = d

)
≥ P

(
τ∗ > κ`(1−ε) |D0 = (ln `)m

)
.
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Reporting in the previous sum, we get

P (τ∗ > κ`(1−ε)) ≥ P
(
τ∗ > κ`(1−ε) |D0 = (ln `)m

)
P
(
D`3/4 ≥ (ln `)m, E

)
.

We first study the last term in the above inequality. The status of the
process at time `3/4 is a function of the random matrices

Rn =
(
Sin, U

i,1
n , . . . , U i,`n

)
1≤i≤m , 1 ≤ n ≤ `3/4 .

We make an intermediate conditioning with respect to the variables Sin:

P
(
D`3/4 ≥ (ln `)m, E

)
= E

(
P
(
D`3/4 ≥ (ln `)m, E

∣∣Sin, 1 ≤ i ≤ m, 1 ≤ n ≤ `3/4
))
.

The variables Sin, 1 ≤ i ≤ m, 1 ≤ n ≤ `3/4 being fixed, all the indices of
the chromosomes selected for replication are fixed, and since the mutation
mapMH(·, u1, . . . , u`) is non–decreasing with respect to u1, . . . , u`, we see
that the state of the process at time `3/4 is a non–decreasing function of
the variables

U i,1n , . . . , U i,`n , 1 ≤ i ≤ m, 1 ≤ n ≤ `3/4 .

Thus the events E andD`3/4 ≥ (ln `)m are both non–decreasing with respect
to these variables. By the FKG inequality for a product measure (see
section 5.3), we have

P
(
D`3/4 ≥ (ln `)m, E

∣∣Sin, 1 ≤ i ≤ m, 1 ≤ n ≤ `3/4
)
≥

P
(
D`3/4 ≥ (ln `)m

∣∣Sin, 1 ≤ i ≤ m, 1 ≤ n ≤ `3/4
)

× P
(
E
∣∣Sin, 1 ≤ i ≤ m, 1 ≤ n ≤ `3/4

)
.

Yet E does not depend on the variables Sin, therefore

P
(
E
∣∣Sin, 1 ≤ i ≤ m, 1 ≤ n ≤ `3/4

)
= P (E) .

Reporting in the conditioning, we obtain

P
(
D`3/4 ≥ (ln `)m, E

)
≥

E
(
P
(
D`3/4 ≥ (ln `)m

∣∣Sin, 1 ≤ i ≤ m, 1 ≤ n ≤ `3/4
)
P (E)

)
= P

(
D`3/4 ≥ (ln `)m

)
P
(
E
)
.

By proposition 5.8, the distance process has positive correlations, therefore

P
(
D`3/4 ≥ (ln `)m

)
= P

(
∀i ∈ { 1, . . . ,m } D`3/4(i) ≥ ln `

)
≥

∏
1≤i≤m

P
(
D`3/4(i) ≥ ln `

)
.
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From propositions 8.1 and 8.7,

∀i ∈ { 1, . . . ,m } P
(
D`3/4(i) ≥ ln `

)
= P

(
Y`3/4 ≥ ln `

)
≥ 1− 6

a
√
`
.

Putting the previous estimates together, we have

P
(
D`3/4 ≥ (ln `)m, E

)
≥
(

1− 6

a
√
`

)m (
1− p

κ

)m`3/4
.

We study next
P
(
τ∗ > κ`(1−ε) |D0 = (ln `)m

)
.

We give first an estimate showing that a visit to 0 becomes very unlikely
if the starting point is far from 0.

Lemma 8.12 For b ∈ { 1, . . . , ` }, we have

∀n ≥ 0 P
(
τ∗ ≤ n |D0 = (b)m

)
≤ nm

B(0)

B(b)
.

Proof. Let n ≥ 0 and b ∈ { 1, . . . , ` }. We write

P
(
τ∗ ≤ n |D0 = (b)m

)
=

P
(
∃ t ≤ n ∃ i ∈ { 1, . . . ,m } Dt(i) = 0 |D0 = (b)m

)
≤

∑
1≤t≤n

∑
1≤i≤m

P
(
Dt(i) = 0 |D0 = (b)m

)
.

By proposition 8.1, for any t ≥ 0, any i ∈ { 1, . . . ,m },
P
(
Dt(i) = 0 |D0 = (b)m

)
= P

(
Yt = 0 |Y0 = b

)
.

Using lemma 8.3, and putting together the previous inequalities, we get

P
(
τ∗ ≤ n |D0 = (b)m

)
≤ nm

B(0)

B(b)

as requested. �

Let ε′ > 0. Now

P
(
τ∗ > κ`(1−ε)

∣∣D0 = (ln `)m
)

≥ P
(
τ∗ > `2, Dn ∈ N for `2 ≤ n ≤ κ`(1−ε)

∣∣D0 = (ln `)m
)

=
∑
d∈N

P
( τ∗ > `2, D`2 = d
Dn ∈ N for `2 ≤ n ≤ κ`(1−ε)

∣∣∣D0 = (ln `)m
)

≥
∑

d≥(`κ(1−ε′))m
P
(
Dn ∈ N for `2 ≤ n ≤ κ`(1−ε)

∣∣ τ∗ > `2, D`2 = d
)

× P
(
τ∗ > `2, D`2 = d

∣∣D0 = (ln `)m
)
.
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Using the Markov property and the monotonicity of the process (Dn)n≥0,
we have for d ≥ (`κ(1− ε′))m,

P
(
Dn ∈ N for `2 ≤ n ≤ κ`(1−ε)

∣∣ τ∗ > `2, D`2 = d
)

= P
(
∀n ∈ { 0, . . . , κ`(1−ε) − `2 } Dn ∈ N

∣∣D0 = d
)

= P
(
τ∗ > κ`(1−ε) − `2

∣∣D0 = d
)
≥ P

(
τ∗ > κ`(1−ε)

∣∣D0 = d
)

≥ P
(
τ∗ > κ`(1−ε)

∣∣D0 = (`κ(1− ε′))m
)
.

Reporting in the previous sum, we get

P
(
τ∗ > κ`(1−ε)

∣∣D0 = (ln `)m
)
≥ P

(
τ∗ > κ`(1−ε)

∣∣D0 = (`κ(1− ε′))m
)

× P
(
τ∗ > `2, D`2 ≥ (`κ(1− ε′))m

∣∣D0 = (ln `)m
)
.

We first take care of the last probability. We write

P
(
τ∗ > `2, D`2 ≥ (`κ(1− ε′))m

∣∣D0 = (ln `)m
)
≥

P
(
D`2 ≥ (`κ(1− ε′))m

∣∣D0 = (ln `)m
)
− P

(
τ∗ ≤ `2

∣∣D0 = (ln `)m
)
.

To control the last term, we use the inequality of lemma 8.12 with n = `2

and b = ln `:

P
(
τ∗ ≤ `2 |D0 = (ln `)m

)
≤ `2m

B(0)

B(ln `)
.

By lemma 8.4, we have

B(0)

B(ln `)
≤
(2 ln `

`

)ln `
whence

P
(
τ∗ ≤ `2 |D0 = (ln l)m

)
≤ `2m

(2 ln `

`

)ln `
.

For the other term, we use the monotonicity of the process (Dn)n≥0 and
the fact that it has positive correlations (by corollary 5.4) to get

P
(
D`2 ≥ (`κ(1− ε′))m

∣∣D0 = (ln `)m
)

≥ P
(
D`2 ≥ (`κ(1− ε′))m

∣∣D0 = (0)m
)

≥
∏

1≤i≤m

P
(
D`2(i) ≥ `κ(1− ε′)

∣∣D0 = (0)m
)
.
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By proposition 8.1 and 8.8, for i ∈ { 1, . . . ,m },

P
(
D`2(i) ≥ `κ(1− ε′)

∣∣D0 = (0)m
)

= P
(
Y`2 ≥ `κ(1− ε′) |Y0 = 0

)
≥ 1− 24

`ε′
.

Putting together the previous estimates, we obtain

P
(
τ∗ > `2, D`2 ≥ (`κ(1− ε′))m

∣∣D0 = (ln `)m
)
≥(

1− 24

`ε′

)m
− `2m

(2 ln `

`

)ln `
.

It remains to study P
(
τ∗ > κ`(1−ε) |D0 = (`κ(1 − ε′))m

)
. We use the

inequality of lemma 8.12 with n = κ`(1−ε) and b = `κ(1− ε′):

P
(
τ∗ ≤ κ`(1−ε)

∣∣D0 = (`κ(1− ε′))m
)
≤ κ`(1−ε)m

B(0)

B(`κ(1− ε′))
.

Using the large deviation estimates of lemma 7.2, we see that, for ε′ small
enough, there exists c(ε) > 0 such that, for ` large enough,

P
(
τ∗ ≤ κ`(1−ε)

∣∣D0 = (`κ(1− ε′))m
)
≤ m exp(−c(ε)`) .

Collecting all the previous estimates, we conclude that, for ` large enough,

P
(
τ∗ > κ`(1−ε)

∣∣D0 = (1)m
)
≥
(

1− 6

a
√
`

)m (
1− p

κ

)m`3/4
×
(

1−m exp(−c(ε)`)
)((

1− 24

`ε′

)m
− `2m

(2 ln `

`

)ln `)
.

Moreover, by Markov’s inequality,

E
(
τ∗ |D0 = (1)m

)
≥ κ`(1−ε) P

(
τ∗ ≥ κ`(1−ε)

∣∣D0 = (1)m
)
.

It follows that

lim inf
`,m→∞, q→0
`q→a, m

`
→α

1

`
lnE

(
τ∗ |D0 = (1)m

)
≥ (1− ε) lnκ .

Letting ε go to 0 yields the desired lower bound. �
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9 Synthesis

As in theorem 3.1, we suppose that

`→ +∞ , m→ +∞ , q → 0 ,

in such a way that

`q → a ∈]0,+∞[ ,
m

`
→ α ∈ [0,+∞] .

We put now together the estimates of sections 7 and 8 in order to evaluate
the formula for the invariant measure obtained at the end of section 6.3.
For θ = `, 1, we had∫
Pm`+1

f
(o(0)

m

)
dµθO(o) =

m∑
i=1

E

( τ0∑
n=0

f
(Zθn
m

) ∣∣∣Zθ0 = i

)
P
(
Oθτ∗(0) = i |Oθ0 = oθexit

)
E
(
τ∗ |Oθ0 = oθexit

)
+

m∑
i=1

E
(
τ0
∣∣Zθ0 = i

)
P
(
Oθτ∗(0) = i |Oθ0 = oθexit

) .
Using the monotonicity of (Zθn)n≥0, we have

E
(
τ0
∣∣Zθ0 = 1

)
≤

m∑
i=1

E
(
τ0
∣∣Zθ0 = i

)
P
(
Oθτ∗(0) = i |Oθ0 = oθexit

)
≤ E

(
τ0
∣∣Zθ0 = m

)
.

With the help of proposition 7.6, we deduce from the previous inequalities
that

lim
`,m→∞
q→0, `q→a

1

m
ln

m∑
i=1

E
(
τ0
∣∣Zθ0 = i

)
P
(
Oθτ∗(0) = i |Oθ0 = oθexit

)
= V (ρ∗(a), 0) .

By proposition 8.10, for α ∈ [0,+∞[,

lim
`,m→∞, q→0
`q→a, m

`
→α

1

`
lnE

(
τ∗ |Oθ0 = oθexit

)
= lnκ .

For the case α = +∞, by corollary 8.11 and proposition 8.9,

lim sup
`,m→∞, q→0
`q→a, m

`
→∞

1

`
ln
( 1

m
E
(
τ∗ |Oθ0 = oθexit

))
≤ lnκ .
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These estimates allow to evaluate the ratio between the discovery time and
the persistence time. We define a function ψ :]0,+∞[→ [0,+∞[ by setting

∀a ∈]0,+∞[ ψ(a) = V (ρ∗(a), 0) .

We first prove the properties of the function Ψ stated before theorem 3.1.
If a ≥ lnσ, then ρ∗(a) = 0 and Ψ(a) = 0. If a < lnσ, then ρ∗(a) > 0 and
it follows from lemma 7.5 that Ψ(a) > 0. Finally, for a > 0, we have that

V (ρ∗(a), 0) ≤ I(e−a, 0) = ln
1

1− e−a
< +∞ .

For α ∈ [0,+∞[ or α = +∞, we have

lim
`,m→∞, q→0
`q→a, m

`
→α

m∑
i=1

E
(
τ0
∣∣Zθ0 = i

)
P
(
Oθτ∗(0) = i |Oθ0 = oθexit

)
E
(
τ∗ |Oθ0 = oθexit

)
=

{
0 if αψ(a) < lnκ

+∞ if αψ(a) > lnκ

Notice that the result is the same for θ = ` and θ = 1. By proposition 7.12,
we have

lim
`,m→∞
q→0, `q→a

m∑
i=1

E

( τ0∑
n=0

f
(Zθn
m

) ∣∣∣Zθ0 = i

)
P
(
Oθτ∗(0) = i |Oθ0 = oθexit

)
m∑
i=1

E
(
τ0
∣∣Zθ0 = i

)
P
(
Oθτ∗(0) = i |Oθ0 = oθexit

) = f(ρ∗) .

Putting together the bounds on ν given in section 6.3 and the previous
considerations, we conclude that

lim
`,m→∞, q→0
`q→a, m

`
→α

∫
[0,1]

f dν =

{
0 if αψ(a) < lnκ

f
(
ρ∗(a)

)
if αψ(a) > lnκ

This is valid for any continuous non–decreasing function f : [0, 1]→ R such
that f(0) = 0.
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