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1. INTRODUCTION

A theorem of Lyapunov states that the range R of a non—atomic vector measure u on [a, b]
R = { u(A) : A measurable subset of [a,b] }

coincides with the convex set

b
{/ pdurﬂépgl}.

However for a given p, 0 < p < 1, the usual proofs based on convexity—extreme points
arguments [4,5] do not give any information about the existence of a ”nice” set E such
that

n(E) = /abpdu-

Consider for instance the two—dimensional vector measure u(A) = (JA|,|A|+2|AN B|)
where B is a borelian subset of [a,b] and | | denotes the Lebesgue measure. For each
set E, the equality pu(F) = pu(B) implies B = E.

When the measure p admits a density f, Halkin [3] showed that if for each vector p € R™
the set

{te[a,b]:p-f(t)>0}

(where - is the usual scalar product) is a finite (respectively countable) union of intervals
then there exists a set £ which is a finite (resp. countable) union of intervals.

In our paper [2] we introduced the stronger orientation condition A:

we say that n real functions fy,--- , f, verify condition A on an interval [a, ] if for each k
in {1,--- ,n}, the determinant

folw) folws) - fule)

is not equal to zero whenever the z;’s in [a, b] are distinct and its sign is constant on the

k—tuples (x1, -+ ,z) such that a <z < x9 <--- <z < b.

We showed that if a measure p admits a density function whose components are continuous

and satisfy the orientation condition A then the set E may be built in such a way that its

characteristic function has at most n discontinuity points. Moreover, if 0 < p < 1 there

exist two such sets E; and Eo whose characteristic functions xg, and xg, have exactly n
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discontinuity points (one set is a neighbourhood of a whereas the other is not).
Our proofs relied upon the fact that the map

(g, - ,Ozn)r—>/a2f(x)dx+/a4f(x)dx+...

is differentiable and has an invertible Jacobian whenever a < o1 < --- < i, < b.

We also showed that whenever a function z satisfies 2(0) = --- = z(»=2(0) = 0 and
(=1 (0) = 1 then the n functions (z®~Y, ... 2/ z) verify A on a neighbourhood of 0.
We applied these results to the study of reachable sets of constrained bang—bang solutions
and to non—convex problems of the calculus of variations.

In this paper we deal with measures which are not necessarily absolutely continuous with
respect to the Lebesgue measure.

Oriented measure. If A;,--- A are k measurable sets of [a,b], by A1 < -+ < Ay we
mean that for all k—tuple (z1,--- ,x) of Ay X --- X Ay we have 1 < -+ < . A measure
= (p1,- -, pn) is said to be oriented if for each k—tuple of measurable sets Ay, .-, Ay
such that A; < --- < Aj the determinant

pi(Ar) o pa(Ag)

pe(Ar) - (Ag)

is positive.

In this more general framework we give a new proof of the results stated in [2].
We carry out a deep study of the range R of the measure:
e for each point g of its interior R there exist exactly two distinct "dual” sets Ep, Fo
whose characteristic functions have n discontinuity points such that u(E1) =g = p(E»);
e the set R coincides with ,
{/ pdu:0<p<1}

a
so that the above set is open;
e the set R is strictly convex;
e apoint u(FE) belongs to the boundary OR of R if and only if the characteristic function

of F has less than n — 1 discontinuity points;
e finally we give a recursive decomposition of the boundary OR.

2. ORIENTED MEASURES

Throughout the paper we will work with an interval [a, b] equipped with the Lebesgue o—
field £. Measurable will mean measurable with respect to this o—field. A negligible set
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is a measurable set of Lebesgue measure zero. A vector measure on [a,b] is a countably
additive set function defined on the Lebesgue o—field with values in R™ for some integer n.

Notation. If Ay,---, Ay are k measurable sets of [a,b], by 41 < --- < A we mean that
Ay, -+, A have non—zero Lebesgue measure and for all k—tuple (z1,--- ,zp) of Ay XX A
we have 1 < -+ < Tg.

Let p = (p1,- -, px) be a vector measure. If p belongs to Li([a, b]), we note

b b
ui(p)z/ pdp; u(p)z/ pdp = (p1(p);- - s pr(p))-

Definition 2.1. A vector measure p = (u1,--- ,in) on [a,b] is said to be oriented on
[a, b] if it is non—atomic and if for each k in {1,--- ,n} and for each k—tuple of measurable
sets Ay, -+, Ag such that A; < --- < A the determinant

pa(Ar) oo pa(Ag)

pe(Ar) o pe(Ar)

is positive.

Remark. If p is oriented then pp is a positive measure which assigns positive values to
sets of positive Lebesgue measure. In particular, if I is a non-trivial interval, then p(I) is
non—zero.

Remark. If yi is oriented and I, - - - , I,, are n disjoint non—trivial intervals, then the vectors
w(ly), -, u(l,) form a basis of R™.

A very important fact concerning oriented measures is that their characteristic property
carries on from sets to positive functions.

Notation. If p is a function its support is the set supp p = {z : p(z) #0}.
Theorem 2.2. Let p = (1, , fn) be an oriented measure. If p1, - ,pn are n

integrable non—negative functions such that supp p1 < --- < supp py then the determinant
pi(pr) oo pa(pn)
pn(p1) o pa(pn)

18 positive.

Let us first state a preparatory lemma.



Lemma 2.3. Let = (p1,- - , pin) be a vector measure and p1,--- , pn be n measurable p—
integrable functions. The determinant

/pldul /pndul
/pldun /pndun

1S equal to
/ e /91(81) R pn(sn) d( Z E(O-):ua(l) K& :ucr(n)) (817 T 7sn)'
geS,
Proof of the lemma. The identity is obviously true whenever pq,--- , p, are characteristic

functions. The monotone class theorem yields the result. [

Proof of theorem 2.2. We apply the lemma. The domain of integration of the n—fold
integral is reduced to supp p1 X -+ X supp pn-

We first prove that the measure i = > v €(0)tig(1) @ -+ @ fio(n) is positive on the
product space (supp p1, L) X -+ X (supp pn, L) equipped with the product o—field (where £
denotes the one-dimensional Lebesgue o—field). Notice that the product o—field L& does
not coincide in general with the n—dimensional Lebesgue o—field (i.e. the completion of
the n—dimensional Borel o—field).

Consider first the case of a subset of supp p; X --- X supp p, which is a product set
Ap X ---x A, (where the A;’s are measurable). Necessarily, each A; is a subset of supp p;.
If none of the A;’s is negligible, then we have A; < --- < A4, and i(A; X --- x A,) =
det[u(Ay),- -+, u(Ay)] is positive by definition.

Suppose now some of the A;’s are negligible. For each index i, 1 < i < n, there exists a
decreasing sequence (B! )nen of non—negligible measurable subsets of supp p; having an
empty intersection (this is a consequence of the fact that supp p; is not negligible). Now
for each m we have A; U B, < .- < A, U B" whence ji(A; UBL x---x A, UB") is
positive. By the continuity of the measure p we have

f(A; x -+ x A,) = lim g(A;UBL x---x A, UB?)

m—00

so that f(A;---A,) is non—negative. It follows that [ is non—negative on the boolean
algebra of the finite (disjoint) union of product sets: its unique extension to the o—field
L8 generated by these products is also non-negative.
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The function (s1,- - ,8,) — p1(S1) -+ - pn(sy) is positive everywhere on this set and is mea-
surable with respect to the o—field £L2": thus the integral [ p1(s1) - pn(sn) dit(s1, -, sn)
is positive. [J

Remark. If u is absolutely continuous with respect to the Lebesgue measure then Lyapunov
theorem yields an alternative proof of theorem 2.2. In fact

Vke{l,---,n} 3FEp Csupp pr  p(pr) = p(Ex).

Necessarily p(E}) is non—zero for each k (see remark after definition 2.1) and the absolute
continuity hypothesis on p implies that the Fy’s are not negligible.
It follows that Ey < --- < E,, and det[u(p1),- -, u(pn)] = det[u(Er), - -+, u(Ey,)] > 0.

We shall denote by I'y the subset

r, = {(xh...7mk)€]Rk:a§w1<---§xk§b}‘

Definition 2.4. The measure p is said to be locally oriented if for each n—tuple x of
I',, there exists a neighbourhood V' = V; x --- x V,, of x such that for each k—tuple of
measurable sets Ay < --- < Ay satisfying A; X --- x Ay C V; X -+ X V}, the determinant

pa(Ar) - pa(Ag)

pi(Ar) - pe(Ar)
is positive.
As a curiosity, we prove the following
Proposition 2.5. A locally oriented measure on [a,b] is oriented on [a,b].

Proof. Let i be a locally oriented measure. The compact set I';,, can be covered by a finite

family of open sets (V;);eyx where V; = I} x --- x I and (I}) icx are subintervals of
1 n

[a,b] in such a way that for each k-tuple of measurable sets A; < --- < Aj satisfying
Ay x---x A CV; for some i € T, the determinant formed with the first k& components of
the vectors pu(Aq),- -, u(Ag) is positive.

Let (J;)iex be the finite family of the atoms of the algebra generated by the sets (I},,7 €
T,1 < k < n) (thus the J;’s are exactly the sets of the form ﬂi’k:meli I for some x € [a, b]).

Let us remark that for each (I1,-++ , 1) in X¥ the product Jj, x --- x Jj, is contained in
some product ;% x --- x I;°. In fact

Ji, X x Jp, C UI{X---XI,i
i€
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so that there exits i¢p such that J;, x --- x J;, N I}'O X - X I,io is not empty. It follows
that J;, N1}° # 0,---, J;, NI}° # ( and by the very construction of the sets J;'s we obtain
Ji, C LY, i, C 1P We denote by fiy, the measure i, = 3 5 €(0)lo(1) @+ @ flg(k).-
Let (Ay,---,Ag) be a k—tuple of measurable sets such that A7 < --- < Ag. The product
Aq %+ -x Ay is the disjoint union of the sets (Ay x- - - x Ag)N(Jy, x---xJ;, ) when (I1,- -, k)
varies in ¥¥. Let now (Iy,--- ,l;) belong to X¥. Either (Ay x --- x Ag)N(Jy, X - x Jp, ) is
empty (and thus has a zero [i;, measure) or it is not empty and necessarily, J;, < -+ < Jj, .
Proceeding as in the proof of theorem 2.2, we show that f[ix is a positive measure on
the set (J;, x -+ x J;,) whence fix((Ay x -+ x Ag) N (J;; X -+- X Jp,)) is non—negative.
Since the set A; x --- x Aj is not negligible, at least one of these sets is not negligible.
Let (A; x -+ x Ag) N (J, x -+ x Jj,) be such a set. It’s a subset of one of the V;’s and
moreover (A;NJy,) < -+ < (AN J;,, ) whence fi, (A1 N Jy,) X -+ X (AN Jp,.)) is positive.
Thus fig (A X -+ X Ag) is positive. [

3. ORIENTED MEASURES WITH DENSITIES

Orientation condition A. We say that n real functions fi,---, f,, verify condition A
on an interval [a, b] if for each k in {1,--- ,n}, the determinant

fley) - fiew)
fa(xr) - falwn)

fe(z) - fr(zy)
is positive whenever the z;’s in [a, b] are such that a < 27 < z2 < -+ <z <b.

Remark. In our previous paper [2], we didn’t impose the sign of the above determinant
to be positive. When dealing with continuous functions, a connectedness argument shows
immediately that the sign is constant on the set I'y. In our present framework (at the
measure level), we find it convenient to work with this slightly more restrictive condition.

Ezxamples. For n = 1, condition A states that the function f; is positive; for n = 2, the
functions f1, fo satisfy A if and only if f; is positive and fa/f; is strictly increasing.

The functions f;(t) = t*=! (i > 1) satisfy condition A on R (the corresponding determi-
nants are Vandermonde determinants).

Proposition 3.1. Let fi,---, f, be n functions in L'([a,b]) satisfying the orientation
condition A on [a,b]. Let p; be the measure on [a,b] whose density with respect to the
Lebesgue measure is f;. Then the measure p = (py,- -+ , i) 8 oriented.

Proof. Let Ay < --- < Ay be k measurable sets of [a,b]. Since the determinant is a
8



multilinear continuous form, we can write

fi - fi fi(s1) - fi(sk)
_ [ R P

Ay XX Ap fk(.sl) fk(sk)

e - T
A, Ay,

By condition A, the integrand is positive on Ay x -+ x Ai. O

If f1,---, fx are of class C*~! on [a, b] we will denote their Wronskian by W (fi,--- , fx).
The following operational criterion for the fulfilment of the orientation condition A has
been used in [2].

Proposition 3.2. Let fi, -, f, € C"1([a,b]) be such that
Vt € |a, b] W(f1)@t) >0, -« ,W(fr,--, fa)(t) >0.
Then f1,---, fn satisfy the orientation condition A on |a,b].

4. NOTATIONS AND PRELIMINARY LEMMAS

Let us introduce some notations.

If uy,- -+ ,u, are vectors of R", their determinant is sometimes denoted by det [uy, - - , up].
Let A be a n x n matrix with real coefficients; by det A or |A| we denote its determinant.
For each i,j € {1,---,n}, by A;; we mean the (n — 1) x (n — 1) matrix obtained by
removing the i—th row and the j—th column from A. Surprisingly, the following simple
algebraic trick will play an essential role in the existence part of the proof of theorem 1.

Lemma 4.1. Let A = (a;;),, i<n be an nxn matriz with real coefficients. Let x1,--- ,xy,

be such that
a1121 +-+ @ p—1Tn—1 + a1pT, =0

2121 +- -+ a2p-_1Tn_1 + a2p,xy, =0

an71,1x1+ to +an71,n71xn71+anfl,nxn: 0

If det A,,,, # 0 then

Ap1x1 + -+ AppTn = ’A’ Tn.
|[Ann]
Proof. Cramer rule applied to the above system yields
—1)n+ A
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so that . _
Zi:1(_1)n+zani|f4m|x _ |Al "
|Apn| " Al T

since > i, (—=1)"*a,;|An;| is the development of the determinant |A| along the first
row. [

Ap1T1 + -+ QppTn =

The next lemmas involve strongly the notion of oriented measure.

Lemma 4.2. Let F and G be two distinct subsets of |a,b] which are the union of | and

m disjoint closed intervals
F=Jn, ¢=J7
i=1 j=1
and let = (p1,- - , n) be an oriented measure. Assume u(F) = u(G).
Then n < 1+ m; moreover if OF NOG # () thenn <l +m — 1.

Proof. Let us first remark that the symmetric difference

(hU”*”OAU“*”U%OZ(kﬂﬁu%o\(tﬂﬁﬂ#ﬂ

4,J ]

is the union of at most [ +m non—trivial intervals and that whenever at least two intervals
have a common boundary point then this number is smaller than [ +m — 1. Since the
intervals Iy, --- , I; are disjoint, as well as Jy,--- , J,,, we have

(LU~ -ULU( U UJp)\ (LN = (L UJ)\(LNJ)U(LU- - -UL) U (JoUs - -Udy).

Now, the set (IoU---UIL;)U(JoU---UJy,) is a union of at most [ +m — 2 disjoint intervals.
Either I;NJ; =0 or I1NJy # 0 and (I;UJy) is an interval. In both cases (I;UJy)\ (I1NJy)
is the union of at most two intervals (at most one if I; and J; have a boundary point in
common). A straightforward induction gives the result.

Since the sets F' and G are distinct, FAG is not empty. Let 4; < --- < A, be the
connected components of FAG. For k in {1,--- ,p} we have

A = (AN F)U (AN G),
(AkNEYN(AxNG)CALN(FNG) C (FAG)N(FNG)=0;

the set Ay being connected, either A, C F\ G or Ay C G\ F. Put
{ +1 if A C F\G
A =

-1 if AkCG\F
10



so that the equality u(F) = u(G) can be rewritten as

Api (Ar)+ -+ App1(Ap)=0

At (A1) =+ +Appn (Ap)= 0
Suppose n > p; the first p equations imply that the determinant

pa(Ar) oo pa(Ap)

pp(Ar) o pp(A4p)
vanishes, which contradicts the fact that p is oriented. [

The following notations will be used throughout the paper.
Notations 4.3. We shall denote by I'j, the set

Te={(v, ) ER ta<y < <y, <b}

To each k—tuple v = (71, -+ ,7%) belonging to 'y, we associate the two sets

Ev_: U [Vis Yit1] s E;r: U [Vis Yit1]

0<i<k 0<i<k
i odd 1 even

where by convention vy = a, yx4+1 = b.

Lemma 4.4 (Uniqueness). Let p be a n—dimensional oriented measure on |a,b]. As-
sume the n—tuples v = (v, ,v) and 6 = (61, -+ ,0,) of Iy satisfy p(E;) = p(Ey )
(respectively p(E) = p(EY)). Then E = Ey (resp. Ef = Ey ).

Proof. Assume E7, Ey are distinct and pu(E7) = p(Ey ).

Now, two possible cases may occur according to the parity of n.

e Ifn=2rthesets E and Ej are the union of at most 7 intervals. Lemma 4.2 implies
n < r + r which is absurd.

e Ifn=2r+1thesets £ and Ey are the union of at most r+ 1 intervals. However b is
a common boundary point. Lemma 4.2 implies n < (r 4+ 1) + (r + 1) — 1 which is absurd.
The dual case u(ET) = p(E5) can be treated similarly. [

The following essential lemma will be used repeatedly.
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Lemma 4.5. Let p = (u1, -, n) be an oriented measure on the interval [a,b] and
Iy <@ <--- <1, ben+1 subintervals of [a,b]. Then, given a positive €, there exist n+ 1
positive real numbers Ao, -+ , A, such that

Vie{0,---,n} 0< XN <e and Z(—l)l)\l,u(fl) =0.
=0

Proof. Consider the n x n linear system

Xop(To) = Mp(I) + -+ (=1)" " Ny pu(ln—1) = (=1)" " App( L)

where )\, is a parameter. The determinant of the system is

n(n—1)

wn = (1) = det [u(lo), -+, p(In—1)]-

The measure p being oriented, w,, is not zero. Moreover, for each ¢ in {0,--- ,n — 1},
pi(Lo) -+ (=7 PmLim2) (1) 'ua(Lp)  (=1)'m(L) - (=1 (Ln-1)
Y po(lo) -+ (1) Ppe(li—2) (=1 'pa(ln) (=1)pe(li) -+ (=1)" 'pa(ln-1)
pin(Io) (_1)1_2pn(12—2) (_1)n_1ﬂn(In) (=1)*pn(1;) (_1)n_1ﬂn(1n—1)
wi = (~1) T det [u(lo), - p(Lima), nl(1), -+, m(L)):

By Cramer formula, \; equals A\,,w;/w,. The measure p being oriented w; and w,, have the
same sign so that \; is positive whenever )\, is positive. Choosing A,, such that

W w
0 <\, <min(—e,-+, —
wo Wn—1

€, €)

we obtain an (n + 1)—tuple which solves the problem. [

5. MAIN RESULT

The statement of the main result involves the notations 4.3.
12



Theorem 5.1. Let p be an oriented measure on [a,b] and let p be a measurable function
defined on [a,b] with values in [0, 1].
There exist two n—tuples o = (a1, -+ ,an) and 8= (61, -, Bn) in Ty such that

b
WE;) = [ pdn = u(EY) (+)
If in addition 0 < p < 1 then « and (8 in Iy, satisfying (x) are unique and verify

a<ap < <a,<b, a<f<---<pf,<b.

Remark. The measure p being non—atomic we don’t care about boundary points of inter-
vals and we might write pu(«, 3) for the measure of the interval u([c, 5]).

Proof. We consider first the case 0 < p < 1 and we prove the result by induction on n.

e n=1. The measure i being oriented on [a, b], the maps «a — p([a, b]) and 5 +— p([a, F])
are continuous and strictly monotonic on [a,b]. It follows that there exist unique real
numbers a; and 3y such that

b
;Mmmbz/}mM=MMﬂm.

e Assume the result is true at rank n — 1. We deal only with the n—tuple 3: existence
of the n—tuple « corresponding to p at rank n follows from the fact that it coincides with
the n—tuple 3 corresponding to 1 — p.

Define for each k in {1,--- ,n}

b
1k (p) :/ p dpug

and for each n—tuple g in I',,
0u(8) = 1x(E3)

The inductive assumption yields the existence of two (n — 1)-tuples & = (q1,- -+, @n—1)
and 3 = (81, ,Bn-1) such that

a<a < - <bp1<b, a<Bi<-<Pp1<b

and for each k in {1,--- ,n — 1}

On(a,an, - an1) = > (@, i) = m(p)
) ) _ili:d_l - (**)
Oc(Brs- Bno1,b) = > k(B Biga) = pu(p) .-

0<i<m—1

i even

13



Put
S:{ﬁ:(ﬁlv'” 7ﬁn)ern:51§617 Vke{la"' ’n_l} gk(ﬁ)zﬂk(f))}

Since (B1,- -+, Bn_1,b) and (a,as, - ,a,_1) belong to S, the set S is not empty.
We show now that

either 971(517 U 7Bn—1;b) < ,U/n(p) < en(avdla U 76471—1)
or gn(aadla Tt adn—l) < ,Un(p) < en(Bh' o 7Bn—17b)'

The equalities (xx*) yield for each k in {1,--- ,n —1}

Bi+1 Bit+1
> /ﬁ (1= p)dur— Y / pduy, = 0.

0<i<n—1 0<i<n—1
1 even 1 odd

Put for k,7 in {1,--- ,n}

) B
o = = [ e A= (o

j—1

>15kagn

where
3 _ p  if jis even,
Pi =\ 1—p ifjis odd.

With these notations the above equalities become
n
B .68 _
VEe{l, - ,n—1} ) apal =0
j=1

Since the measure y is oriented then the determinant |A?, | does not vanish by theorem 2.2.
We are thus in the position to apply lemma 4.1:

_ _ AP
0, (B, Bn1,b) Zaﬁ] f_ |’A ’|< 1)

Similarly if we define for k,j in {1,--- ,n}



where

N {p if § is odd,

Pi = 1—p if jis even,
we have 4]
en(aaab o 76471—1) - Nn(p) = |AO‘ |(_1)n
nn

The measure z being oriented, the determinants |A®| and |A®| have the same sign, as do
|A%, | and |AZ |. Tt follows that 6,, (51, -, Bn_1,b) —pn(p) and O, (a, &y, -+, &n_1)—pin(p)
have opposite signs.

At this stage, we prove that the set S is the graph of a continuous function, this will imply
that S is connected.

Let 31 belong to [a,3;]. We are looking for a (n — 1)-tuple (B2, -- ,3,) satisfying for
each kin {1,--- ,n—1}

p(a, B1) + Z 1 (Bis Bivr) = p(p) = pur(a, Br) + Z 1 (Bi, Bit1)

2<i<n 2<i<n-—1
i even i even

or equivalently

VEe{l--,n—=1} > uk(Bi,Bip1) = me(B, B) + D me(Bi, Bita)

2<i<n 2<i<n—1

1 even 1 even

Suppose first 31 = B1. The above equations become

VEe{l - n—1} > (B Bis) = > wk(Bi,Bisr):

2<i<n 2<i<n—1

i even i even

We put B = (ﬂQa e >ﬁn—17ﬁ’n) and /é = (527" : 7Bn—1>b)'
If n is odd then

Ey =[B2, B3] U---U[Bn1,0n], Ej = B2, B3] U -+ U [Bn-1,b];
if n is even then

Eg = (B2, 8] U+ U[Bn, b, B =1[0,8] U U[Bn2, Bn]
In both cases the preceding formulae can be rewritten as

Vke{l,-n—1p  u(By) = m(Ey);
15



lemma 4.4 implies that E; = E; Since in addition £y < -+ < B,_1 < b then necessarily

ﬁQZBZf"aﬁn—l_:Bn—lyﬁn:b-_ B
Suppose now 3 < 1. Since 1 < 1 < --- < (Bp—1 < b then lemma 4.5 yields the existence
of n real numbers Ay, -+, A, in ]0,1/2[ such that for each k in {1,--- ,n —1}

k(B B) + Y (DT N (B, Bisa) = 0.

1<i<n—1

The function

p=(1- )\1))([617311 + Z )\i+1X[Bi7Bi+l] + Z (1- >\i+1>X[Bi76i+l]

1<i<n—1 2<i<n—1
i odd i even

satisfies 0 < p < 1 on [f1,b] and for each k in {1,--- ,n — 1}

b
/ﬁdukzﬂk(ﬁlaﬁ1)+ Z 11k (Bi, Bit1)-

2<i<n—1
1 even

We are thus led to find a (n — 1)-tuple (82, -, () such that (81 <)B2 < -+ < 5,(< b)
and for each k in {1,--- ,n — 1}

b
Z ,uk(ﬁuﬂiﬂ) :/ p dpi,

2<i<n
1 even

or equivalently, if we put 5 = (B2, -+, Bn),
b
Whe (Lo =1} m(Ey) = [ pdm.
1

Existence and uniqueness of 6 follow from the inductive assumption at rank n — 1.
In addition, since 0 < p < 1 on [B,b], we have 51 < B2 < --- < B, <b.
We can thus define a map 9 : [a, 31] — R"~! such that for all n—tuple (81, ,8,) in T,

(ﬁl?"' 7577,) €S = (ﬁ27"' 7577,) :w(ﬁl)

Thus S is the graph of .

By the continuity of the measure p, the maps 6, 1 < k < n — 1, are continuous so
that the set § is closed; moreover, the function 1 takes its values in the compact set
[a,b]" L. Tt follows that 1) is continuous. Henceforth S is connected. As a consequence,

16



the map 6,,, being continuous on S, reaches all the values between ,,(31,- - - , Bn_1,b) and
O.(a,a1, - ,&,—-1). In particular, there exists a n—tuple 8 in S such that 6,,(5) = pn(p).
This n—tuple 3 solves the problem.

Since O, (a, a1, -+ ,0n_1) # tn(p) and 0,(B1, -+, Bn_1,b) # pn(p) then a < B; < B so
that a < f1 < B2 < --- < B, < b. Uniqueness of 3 follows from lemma 4.4.

Consider now the case 0 < p < 1. Let (pm)men be a sequence of measurable functions
such that 0 < p,, < 1 and p,, converges to p in L ([a,b]). For each function p,, there
exists a unique n-tuple 8™ such that

b
u(EEm)Z/ prm dy.

a

By compactness, we may assume that 3" converges to some n—tuple § of I',,. Passing to
the limit, we obtain ,u(E;) =u(p). O

6. THE RANGE OF AN ORIENTED MEASURE

Let p be an oriented measure on [a,b]. We denote by R the range of y i.e.
R = {nu(A) : A measurable subset of [a,b] }.

Lemma 6.1. Let p be a measurable function on [a,b], 0 < p < 1. Suppose there exist a
non—trivial interval I of [a,b] and a positive real number € such that e < p <1 —¢€ on I.
Then the set

b
{/ pdp:p=vxr+p,veL,l), |l/|<6}

s a neighbourhood of ffﬁdu i R™.

Proof. Let I; < --- < I, be n non—trivial subintervals of I. The measure u being oriented,
the vectors pu(Iy),- -+, u(I,) form a basis of R”. The map

AN, ) R — Z i p(;) € R™

1<i<n
is a linear isomorphism and is thus open. Let

‘/5:{()‘% :>\n) : 1Iélv,a§Xn|>\l| <€}.

Since A(V) is a neighbourhood of the origin and is contained in the set

{/Vd/L:VGLL(I), |I/|<€},
I

17



then the conclusion follows. [
Remark. The hypothesis € < p < 1 — € implies that u(p) belongs to the interior of R.

Remark. The conclusion of lemma 6.1 does not hold for an arbitrary vector measure:
consider for instance the n—dimensional Lebesgue measure.

Let 6 : ', — R be the function defined by 0(v) = n(ES).
The interior of ', is the set T'y, = { (71, , ) ER"ta <y < -+ <7, <b}.

Corollary 6.2. The set Q(IQ‘n) is contained in R.
Lemma 6.3. The set H(IQn) coincides with the set

b
F:{/ pd,u:0<p<1}.

Proof. Existence part of theorem 5.1 implies that F' is contained in 9( n)-
Conversely, let v = (y1,- -+ ,v5) belong to Fn, applying lemma 4.5 to p, v and € < 1/2, we
obtain a (n 4 1)—tuple (Ao, -, A,) such that

Vie{0,---,n} 0< )\ <e and Z )N\ (i, vix1) = 0.
1=0

Z A’X [virvisr] T Z X[y ryiga]:

0<i<n 0<i<n
i even 7 odd

Put

By construction we have 0 < p < 1 and

b
/pdu p(Ey) =0(7)

so that 6(y) belongs to F. [
We have the following

Theorem 6. 4 The range of 6 coincides with R, the map 0 induces an homeomorphism
from F onto R and maps O, onto OR.

Proof. The surjectivity of 8 follows directly from theorem 5.1. Injectivity of the restriction

oftol, is a consequence of the uniqueness parg of theorem 5.1 together with lemma 6.3.

We claim that 6(I';,) is open. Let v belong to I',,. Lemma 4.5 allows as usual to find a
18



piecewise constant function p such that 0 < p < 1 and p(p) = 0(). Clearly there exist a
positive € and a subinterval I of [a,b] on which e < p <1 —e. Put

V, ={vxi+p:ve L), |v|<c}

Lemma 6.1 implies that the set

b
(V) = {/ pdu:p € Vﬁl’e}

is a neighbourhood of u(p) in R™. Since each element p of Vﬁl’6 satisfies 0 < p < 1 then
(@)

,u(VﬁI’e) is entirely contained in F. Moreover F' coincides with G(IQR) and thus 0(T,,) is a
neighbourhood of (). .
Now each open convex set in R™ is the interior of its closure; by lemma 6.3, the set o(I',)
is convex and its closure is R, whence 0(I',,) = R.

Finally we show that the map 6 is proper (i.e. that the inverse image of a compact subset
is compact). Let K be a compact subset of F' and (7™),,en be a sequence in 071 (K)
such that 6(y™) converges to u(p) for some p, 0 < p < 1. Since the sequence (Y™)en is
contained in I',,, by compactness, we may assume that v converges to v in I';,. By the
continuity of 8, we have

b
00) = u(Ey) = [ pd

Uniqueness part of theorem 5.1 implies that « belongs to an.

The map 6 is proper and thus closed. It follows that its inversoe 1 ig continuous.

The equality 6(9T';,) = OR is a consequence of the inclusion §(I';,) C R and the fact that 0
is one to one. [

We refer to [7] for the definitions of classical notions associated with convex sets. We have
the following

Theorem 6.5. The range R of an oriented measure is strictly convez.

Proof. Let p(E), u(F') be two distinct points of R. By theorem 5.1 we may assume that the
sets E/ and F' are finite unions of closed intervals. Let A €]0,1[ and put p = Axg+(1—\)xp.
Assume for instance E \ F' # (). Then there exists a non—trivial interval I such that

Veel  p(x)=Axe(@)+(1-Nxr(z) =X

Put € = min(\, 1 — \). Lemma 6.1 applied to p, I, e shows that pu(p) belongs to R O
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Corollary 6.6. Let E be a measurable subset of [a,b]. Then u(E) belongs to the boundary
of R if and only if there exists a set F' which is a finite union of intervals such that xp
has less than n — 1 discontinuity points and EAF is pu—negligible (such a set has also a
zero Lebesque measure).

Proof. We first remark that the family of the sets which are a finite union of intervals and
whose characteristic function has less than n — 1 discontinuity points coincides with the
family { B : v € 9Ly, }.

Theorem 6.4 shows that p(F) belongs to OR whenever F' = E_° for some y € OT'y,.
Conversely let E be such that u(E) belongs to 9R. Theorem 6.4 yields the existence of
a n-tuple v belonging to 0T, such that u(E ) = p(E); a consequence of theorem 6.5 is
that p(E) is an extreme point of R. Olech Theorem [5, Th. 1] implies that EAE7 is
p—negligible. [

Our approach discloses the recursive structure of the boundary of the range of an oriented
measure. For k belonging to {0,--- ,n} let

Ry ={u(E]):vely}, R::{M(Ej):'yefk}.

Notice that Tg = 0, Ry = {0}, R4 = {u(a,b)}.

Proposition 6.7. Thefunctzon’y € Fk — w(ES) € Ry (resp. v < Fk — u(E*) RY)
18 a homeomorphism from Fk onto its range which comczdes with R (resp. R+ ).

Proof. Injectivity follows directly from corollary 6.6. The rest of the proof uses the tech-
niques of the proof of theorem 6.4. [

Remark. For each k in {1,- — 1}, the set Ry \ Ri—_1 is partitioned into two connected
components Rk ,R+ However for k=n,R, =R} =R.
These results yield the following

Proposition 6.8. The boundary of the range R of an oriented n—dimensional measure
admits the decomposition

[e] [e] [e] e}
OR =Ry, U+ URy U{0} U {u(a,b)} URF U- - URY,

Let T be the symmetry with respect to u(a,b)/2 (so that for each measurable subset A
of la,b], T(u(A)) = u([a,b] \ A)). Then for each k belonging to {0,--- ,n} we have
o

T(R,) =R, T(Rk) = Ry.
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