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Lower large deviations for the maximal �ow through adomain of R
d in �rst passage per
olationRaphaël CerfUniversité Paris Sud, Laboratoire de Mathématiques, bâtiment 42591405 Orsay Cedex, Fran
eE-mail: r
erf�math.u-psud.frandMarie ThéretÉ
ole Normale Supérieure, Département Mathématiques et Appli
ations, 45 rue d'Ulm75230 Paris Cedex 05, Fran
eE-mail: marie.theret�ens.frAbstra
t: We 
onsider the standard �rst passage per
olation model in the res
aled graph Z

d/nfor d ≥ 2, and a domain Ω of boundary Γ in R
d. Let Γ1 and Γ2 be two disjoint open subsets of Γ,representing the parts of Γ through whi
h some water 
an enter and es
ape from Ω. We investigatethe asymptoti
 behaviour of the �ow φn through a dis
rete version Ωn of Ω between the 
orrespond-ing dis
rete sets Γ1

n and Γ2
n. We prove that under some 
onditions on the regularity of the domainand on the law of the 
apa
ity of the edges, the lower large deviations of φn/nd−1 below a 
ertain
onstant are of surfa
e order.AMS 2000 subje
t 
lassi�
ations: 60K35.Keywords : First passage per
olation, maximal �ow, minimal 
ut, large deviations.1 First de�nitions and main resultWe use many notations introdu
ed in [8℄ and [9℄. Let d ≥ 2. We 
onsider the graph (Zd

n, Ed
n) havingfor verti
es Z

d
n = Z

d/n and for edges E
d
n, the set of pairs of nearest neighbours for the standard L1norm. With ea
h edge e in E

d
n we asso
iate a random variable t(e) with values in R

+. We supposethat the family (t(e), e ∈ E
d
n) is independent and identi
ally distributed, with a 
ommon law Λ: thisis the standard model of �rst passage per
olation on the graph (Zd

n, Ed
n). We interpret t(e) as the
apa
ity of the edge e; it means that t(e) is the maximal amount of �uid that 
an go through theedge e per unit of time.We 
onsider an open bounded 
onne
ted subset Ω of R

d su
h that the boundary Γ = ∂Ω of Ωis pie
ewise of 
lass C1 (in parti
ular Γ has �nite area: Hd−1(Γ) < ∞). It means that Γ is in
ludedin the union of a �nite number of hypersurfa
es of 
lass C1, i.e., in the union of a �nite number of
C1 submanifolds of R

d of 
odimension 1. Let Γ1, Γ2 be two disjoint subsets of Γ that are open in

http://uk.arxiv.org/abs/0907.5501v1


1 FIRST DEFINITIONS AND MAIN RESULT
Γ. We want to de�ne the maximal �ow from Γ1 to Γ2 through Ω for the 
apa
ities (t(e), e ∈ E

d
n).We 
onsider a dis
rete version (Ωn,Γn,Γ1

n,Γ2
n) of (Ω,Γ,Γ1,Γ2) de�ned by:





Ωn = {x ∈ Z
d
n | d∞(x,Ω) < 1/n} ,

Γn = {x ∈ Ωn | ∃y /∈ Ωn , 〈x, y〉 ∈ E
d
n} ,

Γi
n = {x ∈ Γn | d∞(x,Γi) < 1/n , d∞(x,Γ3−i) ≥ 1/n} for i = 1, 2 ,where d∞ is the L∞-distan
e, the notation 〈x, y〉 
orresponds to the edge of endpoints x and y (see�gure 1).

Γ2
Γ1

Γ1
n

Γ2
n

Γ Γn

Figure 1: Domain Ω.We shall study the maximal �ow from Γ1
n to Γ2

n in Ωn. Let us de�ne properly the maximal�ow φ(F1 → F2 in C) from F1 to F2 in C, for C ⊂ R
d (or by 
ommodity the 
orresponding graph

C ∩ Z
d/n). We will say that an edge e = 〈x, y〉 belongs to a subset A of R

d, whi
h we denote by
e ∈ A, if the interior of the segment joining x to y is in
luded in A. We de�ne Ẽ

d
n as the set of all theoriented edges, i.e., an element ẽ in Ẽ

d
n is an ordered pair of verti
es whi
h are nearest neighbours.We denote an element ẽ ∈ Ẽ

d
n by 〈〈x, y〉〉, where x, y ∈ Z

d
n are the endpoints of ẽ and the edge isoriented from x towards y. We 
onsider the set S of all pairs of fun
tions (g, o), with g : E

d
n → R

+and o : E
d
n → Ẽ

d
n su
h that o(〈x, y〉) ∈ {〈〈x, y〉〉, 〈〈y, x〉〉}, satisfying:

• for ea
h edge e in C we have
0 ≤ g(e) ≤ t(e) ,

• for ea
h vertex v in C r (F1 ∪ F2) we have
∑

e∈C : o(e)=〈〈v,·〉〉

g(e) =
∑

e∈C : o(e)=〈〈·,v〉〉

g(e) ,where the notation o(e) = 〈〈v, .〉〉 (respe
tively o(e) = 〈〈., v〉〉) means that there exists y ∈ Z
d
n su
hthat e = 〈v, y〉 and o(e) = 〈〈v, y〉〉 (respe
tively o(e) = 〈〈y, v〉〉). A 
ouple (g, o) ∈ S is a possiblestream in C from F1 to F2: g(e) is the amount of �uid that goes through the edge e, and o(e) givesthe dire
tion in whi
h the �uid goes through e. The two 
onditions on (g, o) express only the fa
t2



1 FIRST DEFINITIONS AND MAIN RESULTthat the amount of �uid that 
an go through an edge is bounded by its 
apa
ity, and that there isno loss of �uid in the graph. With ea
h possible stream we asso
iate the 
orresponding �ow
flow(g, o) =

∑

u∈F2 , v /∈C : 〈u,v〉∈Ed
n

g(〈u, v〉)1o(〈u,v〉)=〈〈u,v〉〉 − g(〈u, v〉)1o(〈u,v〉)=〈〈v,u〉〉 .This is the amount of �uid that 
rosses C from F1 to F2 if the �uid respe
ts the stream (g, o). Themaximal �ow through C from F1 to F2 is the supremum of this quantity over all possible 
hoi
es ofstreams
φ(F1 → F2 in C) = sup{flow(g, o) | (g, o) ∈ S} .We re
all that we 
onsider an open bounded 
onne
ted subset Ω of R

d whose boundary Γ ispie
ewise of 
lass C1, and two disjoint open subsets Γ1 and Γ2 of Γ. We denote by
φn = φ(Γ1

n → Γ2
n in Ωn)the maximal �ow from Γ1

n to Γ2
n in Ωn. We will investigate the asymptoti
 behaviour of φn/nd−1when n goes to in�nity. More pre
isely, we will show that the lower large deviations of φn/nd−1below a 
onstant φΩ are of surfa
e order. The des
ription of φΩ will be given in se
tion 2, and pc(d)is the 
riti
al parameter for the bond per
olation on Z

d. Here we state the pre
ise theorem:Theorem 1. If the law Λ of the 
apa
ity of an edge admits an exponential moment:
∃θ > 0

∫

R+

eθxdΛ(x) < +∞ ,and if Λ(0) < 1 − pc(d), then there exists a �nite 
onstant φΩ su
h that for all λ < φΩ,
lim sup

n→∞

1

nd−1
log P[φn ≤ λnd−1] < 0 .Remark 1. The lower large deviations we obtain are of the relevant order. Indeed, if all the edgesin a �at layer that separates Γ1

n from Γ2
n in Ωn have abnormally small 
apa
ity, then φn will beabnormally small. Sin
e the 
ardinality of su
h a set of edges is D′nd−1 for a 
onstant D′, theprobability of this event is of order exp−Dnd−1 for a 
onstant D.Remark 2. The 
ondition Λ(0) < 1 − pc(d) is optimal. Indeed, Zhang proved in [11℄ that in theparti
ular 
ase where d = 3 and Ω is a straight 
ube of bottom Γ1 and top Γ2, if Λ admits anexponential moment and Λ(0) = 1 − pc(d), then limn→∞ φn/nd−1 = 0 a.s. The heuristi
 is thefollowing: if Λ(0) ≥ 1 − pc(d), then the edges of 
apa
ity stri
tly positive do not per
olate, andtherefore they 
annot 
onvey a stri
tly positive amount of �uid through Ω when n goes to in�nity.Kesten obtained the �rst results about maximal �ows in this model in [9℄ under a stronger hypothesison Λ(0). Zhang su

eeded in relaxing the 
onstraint on Λ in his remarkable arti
le [12℄.Remark 3. In the two 
ompanion papers [4℄ and [5℄, we prove in fa
t that φΩ is the almost surelimit of φn/nd−1 when n goes to in�nity, and that the upper large deviations of φn/nd−1 above φΩare of volume order. 3



2 COMPUTATION OF φΩ2 Computation of φΩ2.1 Geometri
 notationsWe start with some geometri
 de�nitions. For a subset X of R
d, we denote by Hs(X) the s-dimensional Hausdor� measure of X (we will use s = d − 1 and s = d − 2). The r-neighbourhood

Vi(X, r) of X for the distan
e di, that 
an be the Eu
lidean distan
e if i = 2 or the L∞-distan
e if
i = ∞, is de�ned by

Vi(X, r) = {y ∈ R
d | di(y,X) < r} .If X is a subset of R

d in
luded in an hyperplane of R
d and of 
odimension 1 (for example a nondegenerate hyperre
tangle), we denote by hyp(X) the hyperplane spanned by X, and we denote by

cyl(X,h) the 
ylinder of basis X and of height 2h de�ned by
cyl(X,h) = {x + tv |x ∈ X , t ∈ [−h, h]} ,where v is one of the two unit ve
tors orthogonal to hyp(X) (see �gure 2).

h

h

v

x X

Figure 2: Cylinder cyl(X,h).For x ∈ R
d, r ≥ 0 and a unit ve
tor v, we denote by B(x, r) the 
losed ball 
entered at xof radius r, by disc(x, r, v) the 
losed dis
 
entered at x of radius r and normal ve
tor v, and by

B+(x, r, v) (respe
tively B−(x, r, v)) the upper (respe
tively lower) half part of B(x, r) where thedire
tion is determined by v (see �gure 3), i.e.,
B+(x, r, v) = {y ∈ B(x, r) | (y − x) · v ≥ 0} ,

B−(x, r, v) = {y ∈ B(x, r) | (y − x) · v ≤ 0} .We denote by αd the volume of a unit ball in R
d, and αd−1 the Hd−1 measure of a unit dis
.2.2 Flow in a 
ylinderHere are some parti
ular de�nitions of �ows through a box. It is important to know them, be
auseall our work 
onsists in 
omparing the maximal �ow φn in Ωn with the maximal �ows in small
ylinders. Let A be a non degenerate hyperre
tangle, i.e., a box of dimension d − 1 in R

d. Allhyperre
tangles will be supposed to be 
losed in R
d. We denote by v one of the two unit ve
torsorthogonal to hyp(A). For h a positive real number, we 
onsider the 
ylinder cyl(A,h). The4



2 COMPUTATION OF φΩ 2.3 Max-�ow min-
ut theorem
v

B+(x, r, v)

disc(x, r, v)

r
x

B−(x, r, v)Figure 3: Ball B(x, r).set cyl(A,h) r hyp(A) has two 
onne
ted 
omponents, whi
h we denote by C1(A,h) and C2(A,h).For i = 1, 2, let Ah
i be the set of the points in Ci(A,h) ∩ Z

d
n whi
h have a nearest neighbour in

Z
d
n r cyl(A,h):

Ah
i = {x ∈ Ci(A,h) ∩ Z

d
n | ∃y ∈ Z

d
n r cyl(A,h) , 〈x, y〉 ∈ E

d
n} .Let T (A,h) (respe
tively B(A,h)) be the top (respe
tively the bottom) of cyl(A,h), i.e.,

T (A,h) = {x ∈ cyl(A,h) | ∃y /∈ cyl(A,h) , 〈x, y〉 ∈ E
d
n and 〈x, y〉 interse
ts A + hv}and

B(A,h) = {x ∈ cyl(A,h) | ∃y /∈ cyl(A,h) , 〈x, y〉 ∈ E
d
n and 〈x, y〉 interse
ts A − hv} .For a given realisation (t(e), e ∈ E

d
n) we de�ne the variable τ(A,h) = τ(cyl(A,h), v) by

τ(A,h) = τ(cyl(A,h), v) = φ(Ah
1 → Ah

2 in cyl(A,h)) ,and the variable φ(A,h) = φ(cyl(A,h), v) by
φ(A,h) = φ(cyl(A,h), v) = φ(B(A,h) → T (A,h) in cyl(A,h)) ,where φ(F1 → F2 in C) is the maximal �ow from F1 to F2 in C, for C ⊂ R

d (or by 
ommodity the
orresponding graph C ∩Z
d/n) de�ned previously. The dependen
e in n is impli
it here, in fa
t we
an also write τn(A,h) and φn(A,h) if we want to emphasize this dependen
e on the mesh of thegraph.2.3 Max-�ow min-
ut theoremThe maximal �ow φ(F1 → F2 in C) 
an be expressed di�erently thanks to the max-�ow min-
uttheorem (see [2℄). We need some de�nitions to state this result. A path on the graph Z

d
n from v0to vm is a sequen
e (v0, e1, v1, ..., em, vm) of verti
es v0, ..., vm alternating with edges e1, ..., em su
hthat vi−1 and vi are neighbours in the graph, joined by the edge ei, for i in {1, ...,m}. A set E ofedges in C is said to 
ut F1 from F2 in C if there is no path from F1 to F2 in C r E. We 
all E an5



2.4 De�nition of ν 2 COMPUTATION OF φΩ

(F1, F2)-
ut if E 
uts F1 from F2 in C and if no proper subset of E does. With ea
h set E of edgeswe asso
iate its 
apa
ity whi
h is the variable
V (E) =

∑

e∈E

t(e) .The max-�ow min-
ut theorem states that
φ(F1 → F2 in C) = min{V (E) |E is a (F1, F2)-
ut } .2.4 De�nition of νThe asymptoti
 behaviour of the res
aled expe
tation of τn(A,h) for large n is well known, thanksto the almost subadditivity of this variable. We re
all the following result:Theorem 2. We suppose that ∫

[0,+∞[
x dΛ(x) < ∞ .Then for ea
h unit ve
tor v there exists a 
onstant ν(d,Λ, v) = ν(v) (the dependen
e on d and Λ isimpli
it) su
h that for every non degenerate hyperre
tangle A orthogonal to v and for every stri
tlypositive 
onstant h, we have

lim
n→∞

E[τn(A,h)]

nd−1Hd−1(A)
= ν(v) .For a proof of this proposition, see [10℄. We emphasize the fa
t that the limit depends on thedire
tion of v, but not on h nor on the hyperre
tangle A itself.In fa
t, Rossignol and Théret proved in [10℄ that under some moment 
onditions and/or some
ondition on A, ν(v) is the limit of the res
aled variable τn(A,h)/(nd−1Hd−1(A)) almost surely andin L1. We also know, thanks to the works of Kesten [9℄, Zhang [12℄ and Rossignol and Théret [10℄that the variable φn(A,h)/(nd−1Hd−1(A)) satis�es the same law of large numbers in the parti
ular
ase where A is a straight hyperre
tangle, i.e., a hyperre
tangle of the form ∏d−1

i=1 [0, ki] × {0} forsome ki > 0. In his arti
le [12℄, Zhang obtains a 
ontrol on the number of edges in a minimal 
utset.We will present and use this result in se
tion 4.We re
all some geometri
 properties of the map ν : v ∈ Sd−1 7→ ν(v), under the only 
onditionon Λ that E(t(e)) < ∞. They have been stated in se
tion 4.4 of [10℄. There exists a unit ve
tor
v0 su
h that ν(v0) = 0 if and only if for all unit ve
tor v, ν(v) = 0, and it happens if and only if
Λ(0) ≥ 1 − pc(d). This property has been proved by Zhang in [11℄. Moreover, ν satis�es the weaktriangle inequality, i.e., if (ABC) is a non degenerate triangle in R

d and vA, vB and vC are theexterior normal unit ve
tors to the sides [BC], [AC], [AB] in the plane spanned by A, B, C, then
H1([AB])ν(vC ) ≤ H1([AC])ν(vB) + H1([BC])ν(vA) .This implies that the homogeneous extension ν0 of ν to R

d, de�ned by ν0(0) = 0 and for all w in
R

d,
ν0(w) = |w|2ν(w/|w|2) ,is a 
onvex fun
tion; in parti
ular, sin
e ν0 is �nite, it is 
ontinuous on R

d. We denote by νmin(respe
tively νmax) the in�mum (respe
tively supremum) of ν on Sd−1.The last result we re
all is Theorem 3.9 in [10℄ 
on
erning the lower large deviations of thevariable τn(A,h) below ν(v): 6



2 COMPUTATION OF φΩ 2.5 De�nition of φΩTheorem 3 (Rossignol and Théret). We suppose that ∫[0,+∞[ x dΛ(x) < ∞ and that Λ(0) < 1 −
pc(d). Then for every ε there exists a positive 
onstant K(d,Λ, ε) su
h that for every unit ve
tor
v and every non degenerate hyperre
tangle A orthogonal to v, there exists a 
onstant K ′(d,Λ, A, ε)su
h that for every stri
tly positive 
onstant h we have

P

[
τn(A,h)

nd−1Hd−1(A)
≤ ν(v) − ε

]
≤ K ′(d,Λ, A, ε) exp

(
−K(d,Λ, ε)nd−1Hd−1(A)

)
.We shall rely on this result for proving Theorem 1. Moreover, Theorem 1 is a generalisation ofTheorem 3, where we work in the domain Ω instead of a parallelepiped.2.5 De�nition of φΩWe give here a de�nition of φΩ in terms of the map ν. For a subset F of R

d, we de�ne the perimeterof F in Ω by
P(F,Ω) = sup

{∫

F
div f(x)dLd(x), f ∈ C∞

c (Ω, B(0, 1))

}
,where C∞

c (Ω, B(0, 1)) is the set of the fun
tions of 
lass C∞ from R
d to B(0, 1), the ball 
entered at

0 and of radius 1 in R
d, having a 
ompa
t support in
luded in Ω, and div is the usual divergen
eoperator. The perimeter P(F ) of F is de�ned as P(F, Rd). We denote by ∂F the boundary of F ,and by ∂∗F the redu
ed boundary of F . At any point x of ∂∗F , the set F admits a unit exteriornormal ve
tor vF (x) at x in a measure theoreti
 sense (for de�nitions see for example [6℄, se
tion13). For all F ⊂ R

d of �nite perimeter in Ω, we de�ne
IΩ(F ) =

∫

∂∗F∩Ω
ν(vF (x))dHd−1(x) +

∫

Γ2∩∂∗(F∩Ω)
ν(v(F∩Ω)(x))dHd−1(x)

+

∫

Γ1∩∂∗(ΩrF )
ν(vΩ(x))dHd−1(x) .If P(F,Ω) = +∞, we de�ne IΩ(F ) = +∞. Finally, we de�ne

φΩ = inf{IΩ(F ) |F ⊂ R
d} = inf{IΩ(F ) |F ⊂ Ω} .In the 
ase where ∂F is C1, IΩ(F ) has the simpler following expression:

IΩ(F ) =

∫

∂F∩Ω
ν(vF (x))dHd−1(x) +

∫

Γ2∩∂(F∩Ω)
ν(v(F∩Ω)(x))dHd−1(x)

+

∫

Γ1∩∂(ΩrF )
ν(vΩ(x))dHd−1(x) .The lo
alization of the set along whi
h the previous integrals are done is illustrated in �gure 4.Sin
e ν(v) is the average amount of �uid that 
an 
ross a hypersurfa
e of area one in the dire
tion

v per unit of time, it 
an be interpreted as the 
apa
ity of a unitary hypersurfa
e orthogonal to v.Thus IΩ(F ) 
an be interpreted as the 
apa
ity of (∂F ∩ Ω) ∪ (Γ2 ∩ ∂(F ∩ Ω)) ∪ (Γ1 ∩ ∂(Ω r F )).7



4 NUMBER OF EDGES IN A MINIMAL CUTSET AND COMPACTNESS
Γ2Γ1

Ω

vF (x)

x

F

vΩ(z)

z

v(F∩Ω)(y)

y

(∂F ∩ Ω) ∪ (Γ2
∩ ∂(F ∩ Ω)) ∪ (Γ1

∩ ∂(Ω r F ))Figure 4: The set (∂F ∩ Ω) ∪ (Γ2 ∩ ∂(F ∩ Ω)) ∪ (Γ1 ∩ ∂(Ω r F )).3 Sket
h of the proofWe are studying the lower large deviations of φn/nd−1: they are 
ontrolled by what happens arounda minimal 
utset. First, we will use the estimate of the number of edges in a minimal 
utset madeby Zhang in [12℄ to restri
t the problem to 
utsets having a number of edges at most cnd−1 for a
onstant c; we 
an then 
on
lude that the minimal 
utset is "near" the boundary of a subset F of
Ω belonging to a 
ompa
t spa
e. By making an adequate 
overing of this spa
e, we need only todeal with a �nite number of sets and their neighbourhoods. We will then 
over the boundary ofsu
h a set F by balls of very small radius, su
h that ∂F is "almost �at" in ea
h ball; we will alsoshow that if φn is smaller than φΩ(1− ε)nd−1 for some positive ε, then some lo
al event happens inea
h ball of the 
overing of ∂F (this event will be denoted by G(B, vF (x)) for the ball B 
enteredat x ∈ ∂F ). After that, we will 
onstru
t a link between this lo
al event in a ball and the fa
tthat the maximal �ow through a 
ylinder (in
luded in the ball) is abnormally small. The lowerlarge deviations for the maximal �ow through a 
ylinder are already known (see [10℄). Finally, we
alibrate the 
onstants to get Theorem 1.This proof is largely inspired by the methods used to study the Wul� 
rystal in Ising model indimension d ≥ 3 (see for example [6℄).4 Number of edges in a minimal 
utset and 
ompa
tnessWe 
onsider a (Γ1

n,Γ2
n)-
ut En in Ωn of minimal 
apa
ity, i.e., φn = V (En), and of minimal numberof edges (if there are more than one su
h 
utset, we sele
t one of them by a deterministi
 algorithm).A

ording to Theorem 1 in [12℄, adapted to our 
ase as said in Remark 2 in [12℄, we know that:Theorem 4 (Zhang). If the law of the 
apa
ity of the edges admits an exponential moment, andif Λ(0) < 1 − pc(d), then there exist 
onstants β0 = β0(Λ, d), Ci = Ci(Λ, d) for i = 1, 2 and

N = N(Λ, d,Ω,Γ,Γ1,Γ2) su
h that for all β ≥ β0, for all n ≥ N , we have
P[card(En) ≥ βnd−1] ≤ C1 exp(−C2βnd−1) .We will always 
onsider su
h large n ≥ N . Thus with high probability the (Γ1

n,Γ2
n)-
ut En hasnot "too mu
h" edges. We want now to 
hange a little bit our point of view in order to work with a8



5 COVERING OF ∂F BY BALLSsubset of R
d rather than the 
utset En. We de�ne for ea
h edge e the variable t′(e) = 1{e/∈En}, andthe set Ẽn ⊂ Z

d
n by

Ẽn = {x ∈ Ωn |x is in an open 
luster 
onne
ted to Γ1
n for the per
olation pro
ess (t′(e))e∈Ωn

}.Then the edge boundary ∂eẼn of Ẽn, de�ned by
∂eẼn = {e = 〈x, y〉 ∈ Z

d
n ∩ Ωn |x ∈ Ẽn and y /∈ Ẽn} ,is exa
tly equal to En. We 
onsider now the "non dis
rete version" En of Ẽn de�ned by

En = {x ∈ Ω | d∞(x, Ẽn) ≤ 1/(2n)} =
(
Ẽn + [−1/(2n), 1/(2n)]d

)
∩ Ω .For all F ⊂ R

d, we re
all that the perimeter of F in Ω is de�ned by
P(F,Ω) = sup

{∫

F
div f(x)dLd(x), f ∈ C∞

c (Ω, B(0, 1))

}
.We know that if card(En) ≤ βnd−1, then P(En,Ω) ≤ β.We de�ne

Cβ = {F ⊂ Ω | P(F,Ω) ≤ β} ,endowed with the topology L1 asso
iated to the distan
e d(F,F ′) = Ld(F△F ′), where F△F ′ is thesymmetri
 di�eren
e between these two sets. For this topology the set Cβ is 
ompa
t. With every Fin Cβ we asso
iate a positive εF , that we will 
hoose later. The 
olle
tion of sets V(F, εF ), F ∈ Cβ,where V(F, εF ) is the neighbourhood of F of size εF for the distan
e de�ned previously, 
overs Cβso we 
an extra
t a �nite 
overing: Cβ ⊂ ∪i=1...NV(Fi, εFi
). We then obtain that for a �xed β ≥ β0,for all λ we have

P[φn ≤ λnd−1] ≤ e−βnd−1
+ P[V (En) ≤ λnd−1 and P(En,Ω) ≤ β]

≤ e−βnd−1
+

N∑

i=1

P[V (En) ≤ λnd−1 and Ld(En△Fi) ≤ εi] .It remains to study
P[V (En) ≤ λnd−1 and Ld(En△F ) ≤ εF ]for a generi
 F in Cβ and the 
orresponding εF .5 Covering of ∂F by balls5.1 Geometri
 toolsWe re
all an important result about the Minkowski 
ontent of a subset of R

d (see for exampleAppendix A in [3℄). Whenever E is a 
losed (d − 1)-re
ti�able subset of R
d (i.e., there exists aLips
hitz fun
tion mapping some bounded subset of R

d−1 onto E), the Minkowski 
ontent of E,de�ned by
lim
r→0

1

2r
Ld(V2(E, r)) ,9



5.1 Geometri
 tools 5 COVERING OF ∂F BY BALLSexists and is equal to Hd−1(E).We will also use the Vitali 
overing theorem for Hd−1. A 
olle
tion of sets U is 
alled a Vitali
lass for a Borel set E of R
d if for ea
h x ∈ E and δ > 0, there exists a set U ∈ U 
ontaining x su
hthat 0 < diam U < δ, where diam U is the diameter of the set U . We now re
all the Vitali 
overingtheorem for Hd−1 (see for instan
e [7℄, Theorem 1.10):Theorem 5. Let E be a Hd−1 measurable subset of R

d and U be a Vitali 
lass of 
losed sets for E.Then we may sele
t a (
ountable) disjoint sequen
e (Ui)i∈I from U su
h thateither ∑
i∈I

(diam Ui)
d−1 = +∞ or Hd−1(E r ∪i∈IUi) = 0 .If Hd−1(E) < ∞, then given ε > 0, we may also require that

Hd−1(E) ≤ αd−1

2d−1

∑

i∈I

(diam Ui)
d−1 .We re
all next the Besi
ovit
h di�erentiation theorem in R
d (see for example [1℄):Theorem 6. Let M be a �nite positive Radon measure on R

d. For any Borel fun
tion f ∈ L1(M),the quotient
1

M(B(x, r))

∫

B(x,r)
f(y)dM(y)
onverges M-almost surely towards f(x) as r goes to 0.We state a result of 
overing that we will use in our study of the lower deviations of φn:Lemma 1. Let F be a subset of Ω of �nite perimeter. For every positive 
onstants δ and η, thereexists a �nite family of 
losed disjoint balls (Bi)i∈I∪J∪K = (B(xi, ri), vi)i∈I∪J∪K su
h that (theve
tor vi de�nes B−

i )
∀i ∈ I , xi ∈ ∂∗F ∩ Ω , ri ∈]0, 1[ , Bi ⊂ Ω , Ld((F ∩ Bi)△B−

i ) ≤ δαdr
d
i ,

∀i ∈ J , xi ∈ Γ1 ∩ ∂∗(Ω r F ) , ri ∈]0, 1[ , ∂Ω ∩ Bi ⊂ Γ1 , Ld((Bi ∩ Ω)△B−
i ) ≤ δαdr

d
i ,

∀i ∈ K , xi ∈ Γ2 ∩ ∂∗F , ri ∈]0, 1[ , ∂Ω ∩ Bi ⊂ Γ2 , Ld((F ∩ Bi)△B−
i ) ≤ δαdr

d
i ,and �nally ∣∣∣∣∣IΩ(F ) −

∑

i∈I∪K

αd−1r
d−1
i ν(vF (xi)) −

∑

i∈J

αd−1r
d−1
i ν(vΩ(xi))

∣∣∣∣∣ ≤ η .We will prove Lemma 1 with the help of Theorems 5 and 6, following the proof of Lemma 14.6in [6℄. First noti
e that for F ⊂ Ω, we have
IΩ(F ) =

∫

∂∗F∩Ω
ν(vF (x))dHd−1(x) +

∫

Γ2∩∂∗F
ν(vF (x))dHd−1(x)

+

∫

Γ1∩∂∗(ΩrF )
ν(vΩ(x))dHd−1(x) .For E a set of �nite perimeter, we denote by ||∇χE

|| the measure de�ned by
∀A Borel set in R

d ||∇χE
||(A) = Hd−1(A ∩ ∂∗E) .10



5 COVERING OF ∂F BY BALLS 5.1 Geometri
 toolsWe 
onsider a subset F of Ω of �nite perimeter. We re
all that the fun
tion ν : Sd−1 → R
+ is
ontinuous. The map x ∈ ∂∗F ∩Ω 7→ vF (x) is ||∇χF

||-measurable, so we 
an apply the Besi
ovit
hdi�erentiation theorem in R
d to the maps x ∈ ∂∗F ∩Ω 7→ ν(vF (x)) and x ∈ ∂∗F ∩Ω 7→ 1 to obtainthat for Hd−1-almost all x ∈ ∂∗F ∩ Ω

lim
r→0

1

αd−1rd−1
Hd−1(B(x, r) ∩ ∂∗F ∩ Ω) = 1 ,

lim
r→0

1

αd−1rd−1

∫

B(x,r)∩∂∗F∩Ω
ν(vF (y))dHd−1(y) = ν(vF (x)) .We denote by R1 the set of the points of ∂∗F ∩ Ω where the two pre
eding identities hold simulta-neously, thus Hd−1((∂∗F ∩ Ω) r R1) = 0. Similarly, let R2 be the set of the points x belonging to

Γ2 ∩ ∂∗F su
h that
lim
r→0

1

αd−1rd−1
Hd−1(B(x, r) ∩ Γ2 ∩ ∂∗F ) = 1 ,

lim
r→0

1

αd−1rd−1

∫

B(x,r)∩Γ2∩∂∗F
ν(vF (y))dHd−1(y) = ν(vF (x)) .We also know that Hd−1((Γ2 ∩ ∂∗F ) r R2) = 0. Sin
e the map x ∈ Γ1 ∩ ∂∗(Ω r F ) 7→ vΩ(x) is

||∇χΩ
||-measurable, the same arguments imply that the set R3 of the points x of Γ1 ∩ ∂∗(Ω r F )su
h that

lim
r→0

1

αd−1rd−1
Hd−1(B(x, r) ∩ Γ1 ∩ ∂∗(Ω r F )) = 1 ,

lim
r→0

1

αd−1rd−1

∫

B(x,r)∩Γ1∩∂∗(ΩrF )
ν(vΩ(y))dHd−1(y) = ν(vΩ(x)) ,satis�es Hd−1(Γ1 ∩ ∂∗(Ω r F ) rR3) = 0. Moreover, from the theory of sets of �nite perimeter (seefor example se
tion 13 in [6℄), we know that

{
∀x ∈ ∂∗F , limr→0 r−dLd(F△B−(x, r, vF (x))) = 0 ,
∀x ∈ ∂∗(Ω r F ) , limr→0 r−dLd(Ω△B−(x, r, vΩ(x))) = 0 .We �x two parameters η > 0 and δ > 0. For all x ∈ R1, there exists a positive r(x, η, δ) su
h thatfor all r < r(x, η, δ) we have
|Hd−1(B(x, r) ∩ ∂∗F ∩ Ω) − αd−1r

d−1| ≤ ηαd−1r
d−1 ,

∣∣∣∣∣
1

αd−1rd−1

∫

B(x,r)∩∂∗F∩Ω
ν(vF (y))dHd−1(y) − ν(vF (x))

∣∣∣∣∣ ≤ η ,

Ld((F ∩ B(x, r))△B−(x, r, vF (x))) ≤ δαdr
d and B(x, r) ⊂ Ω .For all x in R2, there exists a positive r(x, η, δ) su
h that for all r < r(x, η, δ) we have

|Hd−1(B(x, r) ∩ Γ2 ∩ ∂∗F ) − αd−1r
d−1| ≤ ηαd−1r

d−1 ,

∣∣∣∣∣
1

αd−1rd−1

∫

B(x,r)∩Γ2∩∂∗F
ν(vF (y))dHd−1(y) − ν(vF (x))

∣∣∣∣∣ ≤ η ,11



5.1 Geometri
 tools 5 COVERING OF ∂F BY BALLS
Ld((F ∩ B(x, r))△B−(x, r, vF (x))) ≤ δαdr

d and B(x, r) ∩ Γ ⊂ Γ2 .For all x in R3, there exists a positive r(x, η, δ) su
h that for all r < r(x, η, δ) we have
|Hd−1(B(x, r) ∩ Γ1 ∩ ∂∗(Ω r F )) − αd−1r

d−1| ≤ ηαd−1r
d−1 ,

∣∣∣∣∣
1

αd−1rd−1

∫

B(x,r)∩Γ1∩∂∗(ΩrF )
ν(vΩ(y))dHd−1(y) − ν(vΩ(x))

∣∣∣∣∣ ≤ η ,

Ld((Ω ∩ B(x, r))△B−(x, r, vF (x))) ≤ δαdr
d and B(x, r) ∩ Γ ⊂ Γ1 .The family of balls

(B(x, r), x ∈ R1 ∪R2 ∪R3, r < r(x, η, δ))is a Vitali relation for R1 ∪R2 ∪R3. By the Vitali 
overing theorem for Hd−1, we may sele
t fromthis 
olle
tion of balls a �nite or 
ountable 
olle
tion of disjoint balls B(xi, ri), i ∈ I1 su
h thateither
Hd−1


(R1 ∪R2 ∪R3) r

⋃

i∈I1

B(xi, ri)


 = 0or ∑

i∈I1

rd−1
i = ∞ .We know that Ω and F have �nite perimeter, and that

(∂∗F ∩ Ω) ∪ (Γ2 ∩ ∂∗F ) ∪ (Γ1 ∩ ∂∗(Ω r F )) ⊂ Γ ∪ ∂∗F ,so
(1 − η)

∑

i∈I1

αd−1r
d−1
i ≤ Hd−1

(
(∂∗F ∩ Ω) ∪ (Γ2 ∩ ∂∗F ) ∪ (Γ1 ∩ ∂∗(Ω r F ))

)

≤ Hd−1(Γ ∪ ∂∗F ) < ∞ ,thus the �rst 
ase o

urs in the Vitali 
overing theorem, so we may sele
t a �nite subset I2 of I1su
h that
Hd−1


(R1 ∪R2 ∪R3) r

⋃

i∈I2

B(xi, ri)


 ≤ ηHd−1(R1 ∪R2 ∪R3) .We 
laim that the 
olle
tion of balls (B(xi, ri), i ∈ I2) enjoys the desired properties. We de�ne thesets

I = {i ∈ I2 |xi ∈ ∂∗F ∩ Ω} ,

J = {i ∈ I2 |xi ∈ Γ1 ∩ ∂∗(Ω r F )} ,

K = {i ∈ I2 |xi ∈ Γ2 ∩ ∂∗F} ,and vi = vF (xi) for i ∈ I ∪ K and vi = vΩ(xi) for i ∈ J . Finally, we only have to 
he
k that
∣∣∣∣∣IΩ(F ) −

∑

i∈I∪K

αd−1r
d−1
i ν(vF (xi)) −

∑

i∈J

αd−1r
d−1
i ν(vΩ(xi))

∣∣∣∣∣ ≤ η .12



5 COVERING OF ∂F BY BALLS 5.2 De�nition of a lo
al eventWe re
all that νmax is the supremum of ν over Sd−1; we have
∣∣∣∣∣IΩ(F ) −

∑

i∈I∪K

αd−1r
d−1
i ν(vF (xi)) −

∑

i∈J

αd−1r
d−1
i ν(vΩ(xi))

∣∣∣∣∣

≤
∣∣∣∣∣

∫

R1

ν(vF (y))dHd−1(y) −
∑

i∈I

αd−1r
d−1
i ν(vF (xi))

∣∣∣∣∣

+

∣∣∣∣∣

∫

R2

ν(vF (y))dHd−1(y) −
∑

i∈K

αd−1r
d−1
i ν(vF (xi))

∣∣∣∣∣

+

∣∣∣∣∣

∫

R3

ν(vΩ(y))dHd−1(y) −
∑

i∈J

αd−1r
d−1
i ν(vΩ(xi))

∣∣∣∣∣

≤
∫

R1r∪i∈IB(xi,ri)
ν(vF (y))dHd−1(y)

+
∑

i∈I

∣∣∣∣∣

∫

R1∩B(xi,ri)
ν(vF (y))dHd−1(y) − αd−1r

d−1
i ν(vF (x))

∣∣∣∣∣

+

∫

R2r∪i∈KB(xi,ri)
ν(vF (y))dHd−1(y)

+
∑

i∈K

∣∣∣∣∣

∫

R2∩B(xi,ri)
ν(vF (y))dHd−1(y) − αd−1r

d−1
i ν(vF (x))

∣∣∣∣∣

+

∫

R3r∪i∈JB(xi,ri)
ν(vΩ(y))dHd−1(y)

+
∑

i∈J

∣∣∣∣∣

∫

R3∩B(xi,ri)
ν(vΩ(y))dHd−1(y) − αd−1r

d−1
i ν(vΩ(x))

∣∣∣∣∣

≤ ηHd−1(R1 ∪R2 ∪R3)νmax + η
∑

i∈I∪J∪K

αd−1r
d−1
i

≤ ηHd−1(R1 ∪R2 ∪R3)νmax + 2ηHd−1(R1 ∪R2 ∪R3)

≤ η(νmax + 2)(P(F,Ω) + P(Ω)) .Sin
e (νmax + 2)(P(F,Ω) + P(Ω)) does not depend on η, we have the required estimate.5.2 De�nition of a lo
al eventWe 
onsider a set F in Cβ, and a positive εF that we have to 
hoose adequately. Thanks to Lemma1, we know that for every positive �xed δ and η, there exists a �nite family of 
losed disjoint balls
(Bi)i∈I∪J∪K = (B(xi, ri), vi)i∈I∪J∪K su
h that (the ve
tor vi de�nes B−

i )
∀i ∈ I , xi ∈ ∂∗F ∩ Ω , ri ∈]0, 1[ , Bi ⊂ Ω , Ld((F ∩ Bi)△B−

i ) ≤ δαdr
d
i ,

∀i ∈ J , xi ∈ Γ1 ∩ ∂∗(Ω r F ) , ri ∈]0, 1[ , ∂Ω ∩ Bi ⊂ Γ1 , Ld((Bi ∩ Ω)△B−
i ) ≤ δαdr

d
i ,

∀i ∈ K , xi ∈ Γ2 ∩ ∂∗F , ri ∈]0, 1[ , ∂Ω ∩ Bi ⊂ Γ2 , Ld((F ∩ Bi)△B−
i ) ≤ δαdr

d
i ,13



5.2 De�nition of a lo
al event 5 COVERING OF ∂F BY BALLSand �nally ∣∣∣∣∣IΩ(F ) −
∑

i∈I∪K

αd−1r
d−1
i ν(vF (xi)) −

∑

i∈J

αd−1r
d−1
i ν(vΩ(xi))

∣∣∣∣∣ ≤ η .It is obvious that φΩ < ∞ be
ause
φΩ ≤ IΩ(Ω) =

∫

Γ2∩∂∗Ω
ν(vΩ(x))dHd−1(x) ≤ νmaxHd−1(Γ2) < ∞ .We suppose for the rest of the arti
le that φΩ > 0 otherwise we do not have to study any lowerlarge deviations. We 
onsider λ < φΩ. There exists a positive s (we 
an 
hoose it smaller than 1)su
h that λ ≤ φΩ(1 − 2s) ≤ IΩ(F )(1 − 2s). We 
hoose

η =
sIΩ(F )

4
,and then we obtain that

∣∣∣∣IΩ(F ) −
∑

i∈I∪K

αd−1r
d−1
i ν(vF (xi)) −

∑

i∈J

αd−1r
d−1
i ν(vΩ(xi))

∣∣∣∣

≤
(
∑

i∈I∪K

αd−1r
d−1
i ν(vF (xi)) +

∑

i∈J

αd−1r
d−1
i ν(vΩ(xi))

)
s

2
,and that

λ ≤
(
∑

i∈I∪K

αd−1r
d−1
i ν(vF (xi)) +

∑

i∈J

αd−1r
d−1
i ν(vΩ(xi))

)
(1 − s) .Sin
e the (Bi)i∈I∪J∪K are disjoint, we also know that

φn ≥
∑

i∈I∪J∪K

V (En ∩ Bi) .Then
P[V (En) ≤ λnd−1 and Ld(En△F ) ≤ εF ]

≤ P



∑

i∈I∪J∪K V (En ∩ Bi) ≤ (1 − s) nd−1
(∑

i∈I∪K αd−1r
d−1
i ν(vF (xi))

+
∑

i∈J αd−1r
d−1
i ν(vΩ(xi))

)and Ld(En△F ) ≤ εF


 .From now on we 
hoose εF to be

εF = min
i∈I∪J∪K

αdr
d
i δ ,for a �xed δ that we will 
hoose later. For all i ∈ I, we then have

Ld((En ∩ Bi)△B−
i ) ≤ Ld((F ∩ Bi)△B−

i ) + Ld(En△F ) ≤ 2δαdr
d
i .We want to evaluate card(((En ∩ Bi)△B−

i ) ∩ Z
d
n). It is equivalent to evaluate

ndLd(((En ∩ Bi)△B−
i ) ∩ Z

d
n + [−1/2n, 1/2n]d) .14



5 COVERING OF ∂F BY BALLS 5.2 De�nition of a lo
al eventBy de�nition, for all x ∈ En ∩ Z
d
n = Ẽn, x + [−1/2n, 1/2n]d ⊂ En, so

((En ∩ Bi)△B−
i ) ∩ Z

d
n + [−1/2n, 1/2n]d

⊂ ((En ∩ Bi)△B−
i ) ∪ (V∞(Bi, 1/n) r Bi) ∪ (V∞(B−

i , 1/n) r B−
i )

⊂ ((En ∩ Bi)△B−
i ) ∪ (V2(Bi, 2d/n) r Bi) ∪ (V2(B

−
i , 2d/n) r B−

i ) .Sin
e ∂Bi and ∂B−
i are very regular, the result about the Minkowski 
ontent implies that

lim
n→∞

n

2d
Ld(V2(Bi, 2d/n) r Bi) = Hd−1(∂Bi)and

lim
n→∞

n

2d
Ld(V2(B

−
i , 2d/n) r B−

i ) = Hd−1(∂B−
i ) .For n large enough, we then obtain that

Ld(((En ∩ Bi)△B−
i ) ∩ Z

d
n + [−1/2n, 1/2n]d) ≤ 2δαdr

d
i +

4d(Hd−1(∂Bi) + Hd−1(∂B−
i ))

n
,and then for all n large enough

card(((En ∩ Bi)△B−
i ) ∩ Z

d
n) ≤ 2δαdr

d
i n

d + 4d(Hd−1(∂Bi) + Hd−1(∂B−
i ))nd−1

≤ 4δαdr
d
i n

d .For i ∈ K, exa
tly the same arguments imply that
card(((En ∩ Bi)△B−

i ) ∩ Z
d
n) ≤ 4δαdr

d
i n

dfor n large enough.We study now what happens in the balls Bi for i ∈ J . We re
all that Ẽn = En ∩Z
d
n. We de�ne

Ẽ′
n = Ẽn ∪Ωc

n (where Ωc
n = Z

d
n r Ωn) and E′

n = Ẽ′
n + [−1/(2n), 1/(2n)]d−1 . Then E′

n ∩Ω = En. Ina ball Bi, we have ∂eẼ′
n ∩Bi = En ∩Bi. Indeed, we know that Γ∩Bi ⊂ Γ1. The sets Γ1 and Γ2 areopen in Γ and disjoint, so Γ1∩Γ2 = ∅, where Γ2 is the adheren
e of Γ2, and then Bi∩Γ2 = ∅. Sin
e

Bi is 
losed, we obtain that d(Bi,Γ2) > 0, and thus for n large enough, Γn ∩ Bi ⊂ Γ1
n. Moreover,we know that Γ1

n ⊂ Ẽn ⊂ Ẽ′
n. We obtain that ∂eẼ′

n ∩Ωc
n ∩Bi = ∅, i.e., all the edges of ∂eẼ′

n in Bihave both endpoints in Ωn (see �gure 5). Now we have
Ld((E′

n ∩ Bi)△B+
i ) ≤ Ld((E′

n ∩ Bi)△(Ωc ∩ Bi)) + Ld((Ωc ∩ Bi)△B+
i )

≤ Ld(E′
n ∩ Bi ∩ Ω) + Ld((Ωc

r E′
n) ∩ Bi) + Ld((Ω ∩ Bi)△B−

i )

≤ Ld(En△F ) + Ld(V∞(Γ, 1/n) ∩ Bi) + δαdr
d
i

≤ εF + Ld(V∞(Γ, 1/n) ∩ Bi) + δαdr
d
i

≤ 3δαdr
d
i ,for n large enough, where the last inequality is a 
onsequen
e of the properties of the Minkowski
ontent. As previously, we obtain that for n large enough,

card(((E′
n ∩ Bi)△B+

i ) ∩ Z
d
n) ≤ 4δαdr

d
i n

d .15
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Bi

xi

edges of
En ∩ Bi

Γ ∩ Bi ⊂ Γ1

Γn ∩ Bi ⊂ Γ1
n ⊂ eEn

eEn + [−1/(2n), 1/(2n)]d

vi

Ωc

n + [−1/(2n), 1/(2n)]d

Figure 5: A ball Bi for i ∈ J .We 
on
lude that for n large enough,
P[V (En) ≤ λnd−1 and Ld(En△F ) ≤ εF ]

≤
∑

i∈I

P

[
V (∂eẼn ∩ Bi) ≤ (1 − s)αd−1r

d−1
i ν(vF (xi)) and

card((Ẽn ∩ Bi)△(B−
i ∩ Z

d
n)) ≤ 4δαdr

d
i n

d

]

+
∑

i∈J

P

[
V (∂eẼ′

n ∩ Bi) ≤ (1 − s)αd−1r
d−1
i ν(vF (xi)) and

card((Ẽ′
n ∩ Bi)△(B+

i ∩ Z
d
n)) ≤ 4δαdr

d
i n

d

]

+
∑

i∈K

P

[
V (∂eẼn ∩ Bi) ≤ (1 − s)αd−1r

d−1
i ν(vF (xi)) and

card((Ẽn ∩ Bi)△(B−
i ∩ Z

d
n)) ≤ 4δαdr

d
i n

d

]

≤
∑

i∈I∪J∪K

P[G(xi, ri, vi)] ,where G(x, r, v) is the event that there exists a set U ⊂ B ∩ Z
d
n su
h that:

{
card(U△B−) ≤ 4δαdr

dnd ,
V (∂eU ∩ B) ≤ (αd−1r

d−1ν(v(x)))(1 − s)nd−1 .Noti
e that this event depends only on the edges in B = B(x, r). This event seems to be 
ompli
ated,but indeed when G(x, r, v) happens, it means in a sense that the �ow between the lower half part16



6 SURGERY IN A BALL TO DEFINE AN ALMOST FLAT CUTSETof B(x, r) (for the dire
tion v) and the upper half part of B is abnormally small. We will examinethe 
onsequen
e of the event G(x, r, v) over the maximal �ow in B(x, r) in the next se
tion.6 Surgery in a ball to de�ne an almost �at 
utsetWe 
onsider a �xed ball B = B(x, r) and a unit ve
tor v (
orresponding to one generi
 ball of theprevious 
overing). We want to interpret the event G(x, r, v) in term of the maximal �ow through a
ylinder whose basis is a dis
, in
luded in the ball B, and oriented along the dire
tion v. We de�ne
γmax = ρr ,where ρ is a 
onstant depending on δ and B whi
h we 
an imagine very small, it will be 
hosenlater. The 
onstant γmax is in fa
t the height of the 
ylinder we are 
onstru
ting, namely

C = cyl(disc(x, r′, v), γmax) .We want C to be in
luded in B, so we 
hoose
r′ = r cos(arcsin ρ) .We would like to analyse the impli
ation of the event G(x, r, v) on the �ow φC between the topand the bottom of C for the dire
tion v (we will de�ne it properly soon). As we said previously,the event G(x, r, v) means that the maximal �ow between a set U that "looks like" B− (for thedire
tion given by v) and the set U c that "looks like" B+ is a bit too small. Here "looks like" meansthat B− and U are 
losed in volume, but the set U might have some thin strands (of small volume,but that 
an be long) that go deeply into B+ and symmetri
ally the set U c might have some thinstrands that go deeply into B− (see �gure 6). What we have to do to 
ontrol φC is to 
ut these
B

U

Uc

x

v

Figure 6: Event G(x, r, v).strands: by adding edges to ∂eU at a �xed height in C to 
lose the strands, we obtain a 
utset in
C. The point is that we have to 
ontrol the 
apa
ity of these edges we have added to ∂eU . This isthe reason why we 
hoose the height at whi
h we add edges to be sure we add not too many edges,and then we 
ontrol their 
apa
ity thanks to a property of independen
e.We suppose that the event G(x, r, v) happens, and we denote by U a �xed set satisfying theproperties des
ribed in the de�nition of G(x, r, v). For ea
h γ in {1/n, ..., (⌊nγmax⌋ − 1)/n}, we17



6 SURGERY IN A BALL TO DEFINE AN ALMOST FLAT CUTSETde�ne 



D(γ) = cyl(disc(x, r′, v), γ) ,
∂+D(γ) = {y ∈ D(γ) | ∃z ∈ Z

d
n , (z − x) · v > γ and |z − y| = 1} ,

∂−D(γ) = {y ∈ D(γ) | ∃z ∈ Z
d
n , (z − x) · v < −γ and |z − y| = 1} .These sets are represented in �gure 7. The sets ∂+D(γ)∪ ∂−D(γ) are pairwise disjoint for di�erent

γ

B+(x, r, v)

v

x

r

B−(x, r, v)

∂+D(γ)

∂−D(γ)

r′

Figure 7: Representation of D(γ).
γ, and we know that

∑

γ=1/n,...,(⌊nγmax⌋−1)/n

card((∂+D(γ) ∩ U) ∪ (∂−D(γ) ∩ U c)) ≤ 4δαdr
dnd ,so there exists a γ0 in {1/n, ..., (⌊nγmax⌋ − 1)/n} su
h that

card((∂+D(γ0) ∩ U) ∪ (∂−D(γ0) ∩ U c)) ≤ 4δαdr
dnd

⌊nγmax⌋ − 1
≤ 5δαdr

dnd−1

γmaxfor n su�
iently large. We de�ne the event G∗(x, r, v, γ) (depending only on the edges in D(γ))) tobe the existen
e of a set X ⊂ D(γ) ∩ Z
d
n with the following properties:

{
card((∂+D(γ) ∩ X) ∪ (∂−D(γ) ∩ Xc)) ≤ 5δαdr

dnd−1γ−1
max = 5δαdρ

−1rd−1nd−1 ,
V (∂eX ∩ D(γ)) ≤ αd−1r

d−1ν(v)(1 − s)nd−1 .We have proved that if G(x, r, v) o

urs, there exists a γ in {1/n, ..., (⌊nγmax⌋ − 1)/n} su
h that
G∗(x, r, v, γ) happens. On G∗(x, r, v, γ), we sele
t a set of edges X that satis�es the propertiesdes
ribed in the de�nition of G∗(B, v(x), γ) with a deterministi
 pro
edure, and we de�ne

{
X+ = {〈x, y〉 |x ∈ ∂+D(γ) ∩ X , y /∈ D(γ)} ,
X− = {〈x, y〉 |x ∈ ∂−D(γ) r X , y /∈ D(γ)} .18



6 SURGERY IN A BALL TO DEFINE AN ALMOST FLAT CUTSETThe set of edges (∂eX ∩D(γ))∪X+ ∪X− 
uts the top ∂+D(γmax) from the bottom ∂−D(γmax) of
C = D(γmax). If we de�ne

φC = φ(∂+D(γmax) → ∂−D(γmax) in C) ,on G∗(x, r, v, γ), we have
φC ≤ V (∂eX ∩ D(γ)) + V (X+ ∪ X−) .(Re
all that ∂eX ∩ D(γ) is the set of the edges of ∂eX whi
h are in
luded in D(γ)). Moreover

card(X+ ∪ X−) ≤ 2d card((∂+D(γ) ∩ X) ∪ (∂−D(γ) r X))

≤ 2d
5δαdr

dnd−1

γmax
= Crd−1δρ−1nd−1 ,where C = 10dαd is a 
onstant depending on the dimension. We obtain that

P[G(x, r, v)] ≤
∑

γ=1/n,...,(⌊nγmax⌋−1)/n

P[G∗(x, r, v, γ)]

≤
∑

γ

P[G∗(x, r, v, γ) ∩ {V (X+ ∪ X−) ≤ αd−1r
d−1ν(v)nd−1s/4}]

+ P[G∗(x, r, v, γ) ∩ {V (X+ ∪ X−) ≥ αd−1r
d−1ν(v)nd−1s/4}] .On one hand, we have proved that

P[G∗(x, r, v, γ) ∩ {V (X+ ∪ X−) ≤ αd−1r
d−1ν(v)nd−1s/4}]

≤ P[φC ≤ αd−1r
d−1ν(v)(1 − 3s/4)nd−1] .On the other hand, we have

P[G∗(x, r, v, γ) ∩ {V (X+ ∪ X−) ≥ αd−1r
d−1ν(v)nd−1s/4}]

≤ E

(
P(G∗(x, r, v, γ) ∩ {V (X+ ∪ X−) ≥ αd−1r

d−1ν(v)nd−1s/4} | (t(e))e∈D(γ))
)

≤ E

(
P(G∗(x, r, v, γ) ∩

⋃

F⊂Ed
n

({X+ ∪ X− = F}

∩ {V (F ) ≥ αd−1r
d−1ν(v)nd−1s/4}) | (t(e))e∈D(γ))

)

≤ E

(1G∗(x,r,v,γ)

∑

F⊂Ed
n

1{X+∪X−=F}P(V (F ) ≥ αd−1r
d−1ν(v)nd−1s/4)

)

≤ P




Crd−1δρ−1nd−1∑

i=1

t(ei) ≥ αd−1r
d−1ν(v)nd−1s/4


 ,where the last inequality 
omes from the fa
t that for all F su
h that P[X+ ∪ X− = F ] > 0,

card(F ) ≤ Crd−1δρ−1nd−1. Here we have used the following essential property of X+ ∪ X−:19



6 SURGERY IN A BALL TO DEFINE AN ALMOST FLAT CUTSETthe position of the edges of X+ ∪ X− is σ(t(e), e ∈ D(γ))-measurable, but their 
apa
ities areindependent of (t(e))e∈D(γ). Finally, we obtain that
P[G∗(x, r, v, γ)] ≤ γmaxnP[φC ≤ (αd−1r

d−1ν(v))(1 − 3s/4)nd−1]

+ γmaxnP




Crd−1δρ−1nd−1∑

i=1

t(ei) ≥ (αd−1r
d−1ν(v))nd−1s/4


 .We want to 
onsider 
ylinders whose basis are hyperre
tangles instead of dis
s, and the variable τinstead of φ in these 
ylinders, be
ause we only know the lower large deviations of the �ow in this
ase (see [10℄). There exists a 
onstant c = c(d) su
h that, for any positive κ, there exists a �nitefamily (Ai)i∈I of disjoint 
losed hyperre
tangles in
luded in disc(x, r′, v) su
h that

{ ∑
i∈I Hd−1(Ai) ≥ αd−1r

′d−1 − κ ,∑
i∈I Hd−2(∂Ai) ≤ cr′d−2 ,(see �gure 8). Thanks to the max-�ow min-
ut theorem, we know that for ea
h i, the maximal

Ai

x

r′

disc(x, r′, v)

Figure 8: Dis
 disc(x, r′, v).�ow τ(cyl(Ai, γmax), v) is equal to the smallest 
apa
ity of a set of edges in cyl(Ai, γmax) that 
utsthe lower half part from the upper half part of the boundary of the 
ylinder along the dire
tiongiven by v. We denote by Ei su
h a 
utset in cyl(Ai, γmax). This set of edges is pinned at theboundary of Ai (whi
h is the 
ommon boundary of the two halves of the boundary of the 
ylinder
cyl(Ai, γmax) between whi
h the �ow τ(cyl(Ai, γmax), v) goes). Thus the di�erent sets Ei in ea
h
ylinder cyl(Ai, γmax) 
an be glued together along ∪i∈I∂Ai to 
reate a 
utset in C if we providesome "glue", i.e., if we add some edges in a small neighbourhood of ∪i∈I∂Ai. For ea
h i ∈ I, wede�ne the set Pi(n) ⊂ R

d by
Pi(n) = cyl(V(∂Ai, ζ/n) ∩ hyp(Ai), γmax) ,where ζ is a �xed 
onstant bigger than 2d, and we denote by Pi(n) the set of the edges in
luded in

Pi(n). Then ∪i∈IEi ∪ Pi(n) 
uts the top from the bottom of C. Thanks to the max-�ow min-
uttheorem again, we thus obtain that
φC ≤

∑

i∈I

τ(cyl(Ai, γmax), v) + V (∪i∈IPi(n)) .20



7 CALIBRATION OF THE CONSTANTSWe 
an evaluate the number of edges in ∪i∈IPi(n) as follows:
card(∪i∈IPi(n)) ≤ c′r′d−2γmaxn

d−1 ≤ c′ρrd−1nd−1 ,where c′ is a 
onstant depending on ζ and d. Therefore
P[φC ≤ αd−1r

d−1ν(v)(1 − 3s/4)nd−1]

≤ P

[
∑

i∈I

τ(cyl(Ai, γmax), v) ≤ αd−1r
d−1ν(v)(1 − s/2)nd−1

]

+ P




c′ρrd−1nd−1∑

i=1

t(ei) ≥ αd−1r
d−1ν(v)

s

4
nd−1




≤ P

[
∑

i∈I

τ(cyl(Ai, γmax), v) ≤ (1 − s/4)nd−1
∑

i∈I

Hd−1(Ai)ν(v)

]

+ P




c′ρrd−1nd−1∑

i=1

t(ei) ≥ αd−1r
d−1ν(v)

s

4
nd−1


 ,as soon as the 
onstants satisfy the 
ondition

(κ + αd−1(r
d−1 − r′d−1))(1 − s/2) ≤

∑

i∈I

Hd−1(Ai)νmins/4 . (1)Then
P[G∗(x, r, v, γ)] ≤ ρrn

∑

i∈I

P[τ(cyl(Ai, γmax), v) ≤ Hd−1(Ai)ν(v)(1 − s/4)nd−1]

+ ρrnP




Crd−1δρ−1nd−1∑

i=1

t(ei) ≥ αd−1r
d−1ν(v)nd−1s/4




+ ρrnP




c′ρrd−1nd−1∑

i=1

t(ei) ≥ αd−1r
d−1ν(v)nd−1s/4


 .

≤ ρrn
∑

i∈I

P[τ(cyl(Ai, γmax), v) ≤ Hd−1(Ai)ν(v)(1 − s/4)nd−1]

+ 2ρrnP




C′(δρ−1+ρ)rd−1nd−1∑

i=1

t(ei) ≥ αd−1r
d−1ν(v)nd−1s/2


 ,where C ′ is a 
onstant depending on ζ and d.7 Calibration of the 
onstantsFrom now on we suppose that the law Λ of the 
apa
ity of the edges admits an exponential moment.Then as soon as the 
onstants satisfy the 
ondition

C ′(ρ + δρ−1)rd−1
E(t(e)) < (αd−1r

d−1νmin)
s

2
, (2)21



REFERENCES REFERENCESthe Cramér Theorem in R allows us to a�rm that there exist positive 
onstants D and D′ (dependingon Λ, δ, ρ, ζ, s and d) su
h that
P




C′(δρ−1+ρ)rd−1nd−1∑

i=1

t(ei) ≥ (αd−1r
d−1ν(v)nd−1s/2


 ≤ D′e−Dnd−1

.If we also suppose that Λ(0) < 1− pc(d), we know from Theorem 3 (Theorem 3.9 in [10℄) that thereexist a positive 
onstant K(d,Λ, s) and a 
onstant K ′(d,Λ, Ai, s) su
h that
P[τ(cyl(Ai, γmax), v) ≤ Hd−1(Ai)ν(v)(1 − s/4)nd−1] ≤ K ′e−Knd−1Hd−1(Ai) .We have thus proved that if we 
an 
hoose, for a �xed F , the 
onstants δ, ρ and κ su
h that forevery ball B in the 
olle
tion of balls (Bi)i∈I∪J∪K the 
onditions (1) and (2) are satis�ed, then thereexists positive 
onstants D̃ and D̂ (depending on d, Λ, Ω, Γ1, Γ2 and λ) su
h that

P[φn ≤ λnd−1] ≤ D̂e−
eDnd−1

,and this yields Theorem 1.We just have to 
alibrate the 
onstants. In 
ondition (2) appears the fa
tor (ρ+ δρ−1): to makeit small, we 
hoose ρ =
√

δ. Then the 
ondition (2) is equivalent to
√

δ <
αd−1νmins

2C ′E(t(e))
,for a 
onstant C ′ that depends on ζ and d, and thus it is satis�ed if we 
hoose δ small enough(
learly sin
e Λ(0) < 1 − pc(d) we know that E(t(e)) > 0 and νmin > 0). To see that the 
ondition(1) 
an also be satis�ed, we just 
hoose κ ≤ αd−1(r

d−1−r′d−1)/2 (so κ depends on δ) and we remarkthat
1 − (cos arcsin

√
δ)d−1 = (d − 1)δ/2 + o(δ) ,so for δ small enough, 
ondition (1) is satis�ed as soon as

δ ≤ 2νmin

12(d − 1)(1 − s/2)
,whi
h 
an obviously be satis�ed (remember that s < 1 and νmin > 0). This ends the proof ofTheorem 1.Referen
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