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Abstract: We consider the standard first passage percolation model in the rescaled graph Z?/n
for d > 2, and a domain Q of boundary I' in R%. Let I'' and I'? be two disjoint open subsets of T,
representing the parts of I' through which some water can enter and escape from 2. We investigate
the asymptotic behaviour of the flow ¢, through a discrete version 2, of 2 between the correspond-
ing discrete sets ', and I'2. We prove that under some conditions on the regularity of the domain
and on the law of the capacity of the edges, the lower large deviations of ¢,,/ n?1 below a certain
constant are of surface order.
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1 First definitions and main result

We use many notations introduced in [§] and [9]. Let d > 2. We consider the graph (Z¢ E?) having
for vertices Z4 = Z9/n and for edges E, the set of pairs of nearest neighbours for the standard L*
norm. With each edge e in E¢ we associate a random variable ¢(e) with values in RT. We suppose
that the family (¢(e), e € EZ) is independent and identically distributed, with a common law A: this
is the standard model of first passage percolation on the graph (Z¢ EZ). We interpret t(e) as the
capacity of the edge e; it means that t(e) is the maximal amount of fluid that can go through the
edge e per unit of time.

We consider an open bounded connected subset Q of R? such that the boundary T' = 9 of Q
is piecewise of class C! (in particular T' has finite area: H% (') < o). It means that I" is included
in the union of a finite number of hypersurfaces of class C', i.e., in the union of a finite number of
C' submanifolds of R? of codimension 1. Let I'', I'? be two disjoint subsets of I" that are open in


http://uk.arxiv.org/abs/0907.5501v1

1 FIRST DEFINITIONS AND MAIN RESULT

I'. We want to define the maximal flow from I'' to T'? through § for the capacities (¢(e),e € E%).
We consider a discrete version (€, T, 'L, T2) of (2,T,T'!,T?) defined by:

Qp = {2 €78 |do(x,Q) < 1/n},
I ={zeQ|ye,, (x,y) c EL},
' = {x €Ty |doo(z,T%) < 1/n, doo(z,I37%) >1/n} fori=1,2,

where d is the L*°-distance, the notation (z,y) corresponds to the edge of endpoints x and y (see
figure []).

Figure 1: Domain (2.

We shall study the maximal flow from T'} to T'2 in Q,. Let us define properly the maximal
flow ¢(F} — Fy in C) from Fy to I in C, for C C R (or by commodity the corresponding graph
C NZ%n). We will say that an edge e = (z,y) belongs to a subset A of R?, which we denote by
e € A, if the interior of the segment joining x to y is included in A. We define Efl as the set of all the
oriented edges, i.e., an element € in Eg is an ordered pair of vertices which are nearest neighbours.
We denote an element ¢ € E2 by ((x,y)), where z, y € ZZ are the endpoints of € and the edge is
oriented from x towards y. We consider the set S of all pairs of functions (g,0), with g : E¢ — R+
and 0 : B¢ — E< such that o((z,y)) € {{(z, 1)), ((y, x))}, satisfying:

e for each edge e in C we have
0 < gle) < te),

e for each vertex v in C ~\ (F} U Fy) we have

S g = 9(e).

e€C:o(e)=((v,)) e€C': o(e)=((-v))

where the notation o(e) = ((v,.)) (respectively o(e) = ({.,v))) means that there exists y € Z¢ such
that e = (v,y) and o(e) = ((v,y)) (respectively o(e) = ((y,v))). A couple (g,0) € S is a possible
stream in C from F} to Fy: g(e) is the amount of fluid that goes through the edge e, and o(e) gives
the direction in which the fluid goes through e. The two conditions on (g,0) express only the fact
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that the amount of fluid that can go through an edge is bounded by its capacity, and that there is
no loss of fluid in the graph. With each possible stream we associate the corresponding flow

flow(g,0) = > 9w ) Loy =((u,v)) = 9t V) Lo((u00)=((vu)) -
u€Fs ,v¢C : (u,v)eEL

This is the amount of fluid that crosses C from Fj to Fy if the fluid respects the stream (g,0). The
maximal flow through C' from F} to F5 is the supremum of this quantity over all possible choices of
streams

¢(Fy — Fy in C) = sup{flow(g,0) | (g,0) € S}.

We recall that we consider an open bounded connected subset © of R whose boundary T is
piecewise of class C!, and two disjoint open subsets I'; and I'? of I'. We denote by

¢n = oI}, = T2 in Q)

the maximal flow from T’} to I'? in 2,,. We will investigate the asymptotic behaviour of ¢, /n?!
when n goes to infinity. More precisely, we will show that the lower large deviations of ¢, /n?!
below a constant ¢q are of surface order. The description of ¢ will be given in section 2, and p.(d)
is the critical parameter for the bond percolation on Z?. Here we state the precise theorem:

Theorem 1. If the law A of the capacity of an edge admits an exponential moment:
30 > 0 / " dA(z) < 400,
R+
and if A(0) < 1 —pc(d), then there exists a finite constant ¢q such that for all A < ¢q,

1
limsup =1 IOgP[¢n < )\nd_l] < 0.
n

n—00

Remark 1. The lower large deviations we obtain are of the relevant order. Indeed, if all the edges
in a flat layer that separates I'} from T'2 in €, have abnormally small capacity, then ¢, will be
abnormally small. Since the cardinality of such a set of edges is D'n®! for a constant D', the
probability of this event is of order exp —Dn?~! for a constant D.

Remark 2. The condition A(0) < 1 — p.(d) is optimal. Indeed, Zhang proved in [II] that in the
particular case where d = 3 and 2 is a straight cube of bottom I'! and top I'%, if A admits an
exponential moment and A(0) = 1 — p.(d), then lim, . ¢,/n% 1 = 0 a.s. The heuristic is the
following: if A(0) > 1 — p.(d), then the edges of capacity strictly positive do not percolate, and
therefore they cannot convey a strictly positive amount of fluid through € when n goes to infinity.
Kesten obtained the first results about maximal flows in this model in [9] under a stronger hypothesis
on A(0). Zhang succeeded in relaxing the constraint on A in his remarkable article [I2].

Remark 3. In the two companion papers [4] and [5], we prove in fact that ¢q is the almost sure
limit of ¢,,/ n?1 when n goes to infinity, and that the upper large deviations of ¢, / n?=1 above ¢q
are of volume order.
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2 Computation of ¢q

2.1 Geometric notations

We start with some geometric definitions. For a subset X of R% we denote by H*(X) the s-
dimensional Hausdorff measure of X (we will use s =d — 1 and s = d — 2). The r-neighbourhood
Vi(X,r) of X for the distance d;, that can be the Euclidean distance if i = 2 or the L*>-distance if
i = 00, is defined by

Vi(X,r) = {y € R [di(y, X) <r}.

If X is a subset of R? included in an hyperplane of R? and of codimension 1 (for example a non
degenerate hyperrectangle), we denote by hyp(X) the hyperplane spanned by X, and we denote by
cyl(X, h) the cylinder of basis X and of height 2h defined by

cyl(X,h) = {x+tv|z e X, te|[—h,h|},

where v is one of the two unit vectors orthogonal to hyp(X) (see figure [2)).

Figure 2: Cylinder cyl(X,h).

For 2 € R? 7 > 0 and a unit vector v, we denote by B(z,r) the closed ball centered at x
of radius r, by disc(z,r,v) the closed disc centered at x of radius r and normal vector v, and by
BT (x,7,v) (respectively B~ (z,r,v)) the upper (respectively lower) half part of B(xz,r) where the
direction is determined by v (see figure ), i.e.,

Bt (xz,r,v) = {y € B(z,7)|(y —x) -v >0},

B (z,r,v) = {y € B(z,r)|(y —x) -v < 0}.

We denote by oy the volume of a unit ball in R%, and ayz_; the H% ! measure of a unit disc.

2.2 Flow in a cylinder

Here are some particular definitions of flows through a box. It is important to know them, because
all our work consists in comparing the maximal flow ¢, in €, with the maximal flows in small
cylinders. Let A be a non degenerate hyperrectangle, i.e., a box of dimension d — 1 in R%. All
hyperrectangles will be supposed to be closed in R%. We denote by v one of the two unit vectors
orthogonal to hyp(A). For h a positive real number, we consider the cylinder cyl(A,h). The
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‘ disc(z, r,v)

Figure 3: Ball B(z,).

set cyl(A, h) \ hyp(A) has two connected components, which we denote by Ci(A,h) and Ca(A, h).
For ¢ = 1,2, let Alh be the set of the points in C;(A, h) N Z< which have a nearest neighbour in
78 < cyl(A, h):

Al = {z e Ci(A,R)NZE Ty € 78 < cyl(A,h), (x,y) € B4},

Let T'(A, h) (respectively B(A,h)) be the top (respectively the bottom) of cyl(A, h), i.e.,

T(A,h) = {x € cyl(A,h) |y ¢ cyl(A,h), (x,y) € EL and (z,y) intersects A+ hv}
and

B(A,h) = {x € cyl(A,h) |3y ¢ cyl(A, ), (z,y) € EL and (z,y) intersects A — hv} .
For a given realisation (t(e),e € EZ) we define the variable 7(A, h) = 7(cyl(A, h),v) by

7(A,h) = 7(cyl(A, h),v) = ¢(AY — Al in cyl(A,h)),
and the variable ¢(A, h) = ¢(cyl(A, h),v) by
P(A,h) = o(cyl(A,h),v) = ¢(B(A,h) — T(A,h) in cyl(A,h)),

where ¢(Fy, — Fy in C) is the maximal flow from Fy to Fy in C, for C € R? (or by commodity the
corresponding graph C'NZ? /n) defined previously. The dependence in n is implicit here, in fact we

can also write 7,(A, h) and ¢, (A, h) if we want to emphasize this dependence on the mesh of the
graph.

2.3 Max-flow min-cut theorem

The maximal flow ¢(F; — F5 in C) can be expressed differently thanks to the max-flow min-cut
theorem (see [2]). We need some definitions to state this result. A path on the graph ZZ from wvg
to v, is a sequence (vg, €1,V1, ..., €m, Uy ) Of vertices vy, ..., vy, alternating with edges e, ..., e, such
that v;_; and v; are neighbours in the graph, joined by the edge e;, for 7 in {1,...,m}. A set E of
edges in C'is said to cut F} from F5 in C' if there is no path from F; to F» in C'~\ E. We call E an



2.4 Definition of v 2 COMPUTATION OF o¢q

(Fy, Fy)-cut if E cuts Fy from F, in C and if no proper subset of E' does. With each set F of edges
we associate its capacity which is the variable

The max-flow min-cut theorem states that

¢(F1 — Fyin C) = min{ V(E) | E is a (Fy, Fy)-cut }.

2.4 Definition of v

The asymptotic behaviour of the rescaled expectation of 7,,(4, h) for large n is well known, thanks
to the almost subadditivity of this variable. We recall the following result:

/ rdA(z) < co.
[0,+00]

Then for each unit vector v there exists a constant v(d,A,v) = v(v) (the dependence on d and A is
implicit) such that for every non degenerate hyperrectangle A orthogonal to v and for every strictly
positive constant h, we have

Theorem 2. We suppose that

. Elr.(A,h
nli%% = v(v).

For a proof of this proposition, see [I0]. We emphasize the fact that the limit depends on the
direction of v, but not on A nor on the hyperrectangle A itself.

In fact, Rossignol and Théret proved in [10] that under some moment conditions and/or some
condition on A, v(v) is the limit of the rescaled variable 7, (A, h)/(n%"'H?1(A)) almost surely and
in L'. We also know, thanks to the works of Kesten [9], Zhang [I2] and Rossignol and Théret [I0]
that the variable ¢, (A, h)/(n?1HY1(A)) satisfies the same law of large numbers in the particular
case where A is a straight hyperrectangle, i.e., a hyperrectangle of the form Hf;ll [0, k;] x {0} for
some k; > 0. In his article [I2], Zhang obtains a control on the number of edges in a minimal cutset.
We will present and use this result in section @l

We recall some geometric properties of the map v : v € S41 — v(v), under the only condition
on A that E(t(e)) < oco. They have been stated in section 4.4 of [I0]. There exists a unit vector
vo such that v(vg) = 0 if and only if for all unit vector v, v(v) = 0, and it happens if and only if
A(0) > 1 — pc(d). This property has been proved by Zhang in [I1]. Moreover, v satisfies the weak
triangle inequality, i.e., if (ABC) is a non degenerate triangle in R? and v4, vp and vo are the
exterior normal unit vectors to the sides [BC], [AC], [AB] in the plane spanned by A, B, C, then

M ([AB))v(ve) < HN[AC)v(vp) + H ([BC)w(va) -

This implies that the homogeneous extension vy of v to R?, defined by 14(0) = 0 and for all w in
R?,

w(w) = |wlav(w/|wlz),
is a convex function; in particular, since vy is finite, it is continuous on R%. We denote by vmin
(respectively vpay) the infimum (respectively supremum) of v on S9-1.

The last result we recall is Theorem 3.9 in [I0] concerning the lower large deviations of the
variable 7,(A, h) below v(v):
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Theorem 3 (Rossignol and Théret). We suppose that ﬁ07+m[wdA(w) < o0 and that A(0) < 1 —
pe(d). Then for every e there exists a positive constant K(d,A,e) such that for every unit vector
v and every non degenerate hyperrectangle A orthogonal to v, there exists a constant K'(d, A, A, ¢)
such that for every strictly positive constant h we have

Tn(A, h)

P ndledfl(A)

IN

v(v) —e| < K'(d,A, A ) exp <—K(d,A,e)nd_1Hd_1(A)> .

We shall rely on this result for proving Theorem [l Moreover, Theorem [ is a generalisation of
Theorem [3, where we work in the domain €2 instead of a parallelepiped.

2.5 Definition of ¢q

We give here a definition of ¢q in terms of the map v. For a subset F' of R?, we define the perimeter
of F'in Q by

P(F,Q) = sup{/Fdivf(x)dEd(a:), f ec;’O(Q,B(o,n)} ,

where C2°(€2, B(0,1)) is the set of the functions of class C* from R? to B(0, 1), the ball centered at
0 and of radius 1 in R?, having a compact support included in 2, and div is the usual divergence
operator. The perimeter P(F) of F is defined as P(F,R%). We denote by dF the boundary of F,
and by 0*F the reduced boundary of F. At any point z of 9*F, the set F' admits a unit exterior
normal vector vp(z) at = in a measure theoretic sense (for definitions see for example [6], section
13). For all F C R? of finite perimeter in Q, we define

= v(vp(x d=1(y v(v x =1y
Tol) = [ @@ [ sl @) @

+/ v(vg(x))dH ().
I1N8* (Q~F)
If P(F,§) = +o0, we define Zo(F) = +o00. Finally, we define
po = inf{Zq(F)|F c R} = inf{Zq(F)|F C Q}.

In the case where OF is C!, Zo(F) has the simpler following expression:

TalF) = /8Fﬁ§2 V(or (@) () +/ V(”(Fmﬂ)(w))de_l(w)

I2n9(FNQ)

d—1
+ /F oy VD).

The localization of the set along which the previous integrals are done is illustrated in figure @l
Since v(v) is the average amount of fluid that can cross a hypersurface of area one in the direction
v per unit of time, it can be interpreted as the capacity of a unitary hypersurface orthogonal to v.
Thus Zo(F) can be interpreted as the capacity of (OF N Q) U (T2 NI(FNQ)) U (T NaQ\ F)).
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OFNQYUITNIAFNQ)) U NIQ N F))

Figure 4: The set (OF NQ)U (T2 NA(FNQ)) U (T NIQ N\ F)).

3 Sketch of the proof

We are studying the lower large deviations of ¢, /n?~!: they are controlled by what happens around
a minimal cutset. First, we will use the estimate of the number of edges in a minimal cutset made
by Zhang in [12] to restrict the problem to cutsets having a number of edges at most cn?~! for a
constant ¢; we can then conclude that the minimal cutset is "near" the boundary of a subset F' of
Q) belonging to a compact space. By making an adequate covering of this space, we need only to
deal with a finite number of sets and their neighbourhoods. We will then cover the boundary of
such a set F' by balls of very small radius, such that JF is "almost flat" in each ball; we will also
show that if ¢, is smaller than ¢q(1 —)n?"! for some positive ¢, then some local event happens in
each ball of the covering of OF (this event will be denoted by G(B,vr(x)) for the ball B centered
at x € OF). After that, we will construct a link between this local event in a ball and the fact
that the maximal flow through a cylinder (included in the ball) is abnormally small. The lower
large deviations for the maximal flow through a cylinder are already known (see [10]). Finally, we
calibrate the constants to get Theorem [II

This proof is largely inspired by the methods used to study the Wulff crystal in Ising model in
dimension d > 3 (see for example [0]).

4 Number of edges in a minimal cutset and compactness

We consider a (I'L,T2)-cut &, in 2, of minimal capacity, i.e., ¢, = V(&,), and of minimal number
of edges (if there are more than one such cutset, we select one of them by a deterministic algorithm).
According to Theorem 1 in [I2], adapted to our case as said in Remark 2 in [I2], we know that:

Theorem 4 (Zhang). If the law of the capacity of the edges admits an exponential moment, and
if A(0) < 1 — p.(d), then there exist constants By = [o(A,d), C; = Ci(A,d) for i = 1,2 and
N = N(A,d,Q,T, T, T?) such that for all 3 > g, for alln > N, we have
Plcard(&,) > n?!] < Cpexp(—Cofn?™t).
We will always consider such large n > N. Thus with high probability the ('}, T2)-cut &, has
not "too much" edges. We want now to change a little bit our point of view in order to work with a
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subset of R rather than the cutset £,. We define for each edge e the variable #'(e) = Liege, ), and
the set E,, C 74 by

E, = {x € Q, |z is in an open cluster connected to I’} for the percolation process (£'(€))ecq, }-
Then the edge boundary 9°E, of E’n, defined by
OFE, = {e=(x,y) € 2N Q, |z € E,and y ¢ E,},
is exactly equal to &,. We consider now the "non discrete version" FE,, of E,, defined by
B, = {z € Q|du(z, E,) <1/(2n)} = (En +[-1/(2n), 1/(2n)]d) na.

For all F C R?, we recall that the perimeter of F in € is defined by
P(F,Q) = sup{/ div f(x)dL%(z), f 6030(9,3(0,1))} .
F

We know that if card(&,) < pn?~!, then P(E,, Q) < 3.
We define
Cs = {F CQ|P(F,Q) <G},

endowed with the topology L' associated to the distance d(F, F') = LY FAF"), where FAF' is the
symmetric difference between these two sets. For this topology the set Cg is compact. With every I
in Cg we associate a positive e, that we will choose later. The collection of sets V(F,er), F' € Cg,
where V(F,er) is the neighbourhood of F' of size e for the distance defined previously, covers Cg
so we can extract a finite covering: Cg C U;j—1._ NV(Fi,eF,). We then obtain that for a fixed 5 > fy,
for all A we have

e P L PIV(E,) < At and P(E,, Q) < B
N

eI L STPV(E) < At and LYB,AF) <&
i=1

Plp, < And1]

IN

It remains to study
PV (&) < An® ! and LY E,AF) < ep]

for a generic F' in Cg and the corresponding ep.

5 Covering of 0F by balls

5.1 Geometric tools

We recall an important result about the Minkowski content of a subset of R? (see for example
Appendix A in [3]). Whenever E is a closed (d — 1)-rectifiable subset of R? (i.e., there exists a
Lipschitz function mapping some bounded subset of R4~! onto F), the Minkowski content of E,
defined by

lim — £9(Vy(E, 7)) |

r—0 2r
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exists and is equal to HYH(E).

We will also use the Vitali covering theorem for H?1. A collection of sets U is called a Vitali
class for a Borel set E of R if for each € E and § > 0, there exists a set U € U containing x such
that 0 < diam U < ¢, where diam U is the diameter of the set U. We now recall the Vitali covering
theorem for H4~! (see for instance [7], Theorem 1.10):

Theorem 5. Let E be a H?™! measurable subset of R and U be a Vitali class of closed sets for E.
Then we may select a (countable) disjoint sequence (U;);er from U such that

either Z(diam Ut = 400 or H"HE N\ Ui U;) = 0.
icl

If H¥1(E) < oo, then given € > 0, we may also require that

d— Qd—1 . d—
HIYE) < a1 (diam U;)?.
i€l
We recall next the Besicovitch differentiation theorem in R? (see for example [I]):

Theorem 6. Let 9 be a finite positive Radon measure on R, For any Borel function f € L'(9),

the quotient
1

MBr) /B . f(y)dM(y)

converges M-almost surely towards f(x) as r goes to 0.
We state a result of covering that we will use in our study of the lower deviations of ¢,,:

Lemma 1. Let F' be a subset of Q of finite perimeter. For every positive constants § and 7, there
exists a finite family of closed disjoint balls (B;)icrujux = (B(xi,7i),vi)icrujux such that (the
vector v; defines B;")

Viel, ;€ 0'FNQ, r€]0,1], B, CQ, LY(FNB)AB;) < dagré,
ViedJ, z; eT'NO*(QNF), r; €0,1[, 90N B; CI'Y, £Y(B; N Q)AB;) < dagrd,
Vie K, z; e T2N0*F, r; €0,1[, 00N B; cI'?, LY(FNB;))AB;) < daygrd,
and finally
Ia(F) — Z ad_lrg_ly(vp(xi)) - Zad_lrg_ll/(vg(xi))
i€elUK ied

We will prove Lemma [1 with the help of Theorems [ and [6 following the proof of Lemma 14.6
in [6]. First notice that for F' C €2, we have

<.

To(F) = /B*Frm v(vp(z)dH"" (z) —i—/ v(vp(z))dH 1 (z)

2no*F

d—1
+ /Flmf)*(Q\F) v(vo(z))dH* ().

For E a set of finite perimeter, we denote by ||V, || the measure defined by

VA Borel set in R [|V,,[|[(4) = HTYANG*E).

10
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We consider a subset F of Q of finite perimeter. We recall that the function v : S9! — Rt ig
continuous. The map x € 0*F N Q) — vp(x) is ||V, ||-measurable, so we can apply the Besicovitch
differentiation theorem in R? to the maps x € 9*F NQ — v(vp(x)) and z € 9* FNQ +— 1 to obtain
that for H% 1-almost all z € 9*F N Q)

1

: d—1 * _
}Er(l) ad_lrdle (B(x,r)NO*"FNQ) =1,

1
i T /
r—0 Qg7 B(z,r)Nd* FNQ
We denote by Ry the set of the points of 0* F N Q) where the two preceding identities hold simulta-
neously, thus H?~1((0* F N Q) ~ R1) = 0. Similarly, let R be the set of the points 2 belonging to
I'? N O* F such that

v(vr(y))dHHy) = v(vp(z)).

. 1 d—1 2 * o
llgtl)ad_lrdle (B(z,r)NT“*No*F) = 1,

. 1
r—0 Qqg_17 B(z,r)NC2N0* F

We also know that HY'((T2 N 0*F) ~ Ry) = 0. Since the map z € T' N J* (2~ F) — vg(x) is
||V xq||-measurable, the same arguments imply that the set R3 of the points z of I'' N 9*(Q \ F)
such that

v(vr(y))dH (y) = v(vp(z)).

lim ¥Hd71(3(x,7’) Nrin I'OQNF)) =1,

1
lim

_ v(va(y)dHI 1 (y) = v(va(z)),
r—0 org_1r?t /B(z,r)mFlﬂa*(Q\F) (va(@) ) (va(z)

satisfies HH T N 9*(Q \ F) ~ R3) = 0. Moreover, from the theory of sets of finite perimeter (see
for example section 13 in [6]), we know that

Vo € OFF, lim, .or LY FAB™(z,7,vr(x))) = 0,
Vo € 0*(QUN F), lim,_or LY QAB™ (x,r,va(z))) = 0.

We fix two parameters n > 0 and 6 > 0. For all € R4, there exists a positive r(x,n,d) such that
for all r < r(x,n,d) we have

]Hdil(B(x, rYNIFNQ) — ad,lrdfll < nog_1r?t,

1

— <
g1t 7

— )

/ (or ()K" () — v(op(@)
B(z,r)N0* FNQ

LY(F N B(z,r)AB™ (z,r,vp(z))) < dagrd and B(z,r) C Q.

For all z in Ry, there exists a positive r(x,n,d) such that for all r < r(z,n,d) we have
]Hd_l(B(x, rYNT2NO*F) — ad,lrd_l\ < nag_rtt,

1

m /B(m r)ﬁF2ma*F V(UF(y))de_l(y) B V(UF(x))

<

— )
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5.1 Geometric tools 5 COVERING OF O0F BY BALLS

LYF N B(z,r)AB (z,r,vp(x))) < dogrd and B(z,r)NT c I'2.

For all z in R3, there exists a positive r(x,n,d) such that for all r < r(z,n,d) we have
\'Hd_l(B(x, NI N (Q N F)) — ad,lrd_l\ < nog_q1r®t,

1

] W(wo(y) AR (5) ~ viva()| < 7.
d—1T B(z,r)NT1N* (QNF)

LY(Q N B(z,r))AB™ (z,r,vp(x))) < dagr? and B(z,r)NT c T,
The family of balls
(B(z,r),z € Rit UR2 U R3, 7 < r(z,n,9))

is a Vitali relation for R; U Ry U R3. By the Vitali covering theorem for H% !, we may select from
this collection of balls a finite or countable collection of disjoint balls B(x;,7;),i € I; such that
either

'Hdil (Rl URy U Rg) ~ U B(xiari) =0
i€l

g rffl = 00.

el
We know that 2 and F have finite perimeter, and that

or

(O FNQUMN*F)UT no*(Q~F)) c TUI'F,
SO

(1= agrrft < HEL(@FNQ)UINIF)U (TN o"(Q~ F)))
i€y
< HTY T UO'F) < o0,

thus the first case occurs in the Vitali covering theorem, so we may select a finite subset I of Iy
such that

Hdil (Rl URs U Rg) N U B(.%'Z',Tz‘) < UHdil(Rl URs U Rg) .
i€la

We claim that the collection of balls (B(x;,7;),7 € I2) enjoys the desired properties. We define the

sets
I ={iclh|z e d"FNQ},

J={ieh|zel'nd (Q~F)},
K ={ich|z;eT?’No*F},

and v; = vp(x;) for i € I UK and v; = vq(x;) for i € J. Finally, we only have to check that

To(F) = > agar! wlvp(:) =Y agarivlvale))| < 7.
1€ lUK e

12



5 COVERING OF OF BY BALLS 5.2 Definition of a local event

We recall that vpmax is the supremum of v over S41: we have

1€]UK

<

<

IN

<
<

~ Y e

ot (o) = 3 art )

[ verma )~ T ewartterts >>‘
+ /R oo (y))dH( Z;(ad (o (7))
o[ v )= Casurt- m(scm‘

/ v(op(y)dH (y)
Ri~UserB(xi,rs)

+ Z /72103(93“”) V(UF(y))defl(y) - ad—ﬂ“gl_ll/(vp(x))‘

el

+ [ v(op(y)dHE (y)
Ro~Uick B(zi,ri)

* ZEZI:( /RzﬂB(xm) v(vp(y))dH" (y) — O‘d—lrldll/(vp(x))‘

n / v(va(y))dH ()
Rs \UiEJB(l’i )

3 /R e al)AH T 5) = g ard v a(e)

e

+

NHYH(R1 U R2 UR3)Vmax + 1 Z gt
i€IUJUK

THY Y (R U Ry URs)vmax + 20HY (R URy U R3)
N(Vmax + 2)(P(F, Q) + P()) .

Since (Vmax + 2)(P(F, Q) + P(Q2)) does not depend on 7, we have the required estimate.

5.2 Definition of a local event

We consider a set F' in Cg, and a positive e that we have to choose adequately. Thanks to Lemma
[, we know that for every positive fixed 0 and 7, there exists a finite family of closed disjoint balls
(Bi)icrusur = (B(x4,7i),vi)icrujuk such that (the vector v; defines B;)

Viel, v; € 0"FNQ,
VieJ, z; eI NI (QANF)

T 6]0,1[ B;CQ, Ld((FﬂB)AB Sagrd,

) <
€0,1], 92N B, C IV, L4(B, NQAB;) < dagrd,

Vie K, z;, € T2N0*F, 6]0,1[, amei cT?, L4(FNB)AB;) < dagrd,

13



5.2 Definition of a local event 5 COVERING OF 0F BY BALLS

and finally

— Z ag i u(vp(z Zad 1w (va(x)| < 0.

i€ lUK e

It is obvious that ¢q < oo because
b0 < To(Q) = / V(wa(@))dHY (2) < veaH (T2) < o0
T2no*

We suppose for the rest of the article that ¢o > 0 otherwise we do not have to study any lower
large deviations. We consider A < ¢q. There exists a positive s (we can choose it smaller than 1)
such that A < ¢q(1 —2s) < Zo(F)(1 —2s). We choose

_ sIg(F)
n = 4 ’

and then we obtain that

S ot (@) — 3 et u(wa ()

e UK icJ
1 S
Z ag_yr{ v(vp(z;)) +Zad 1 (v () 5
e UK icJ

and that

(Z g1 v (vp () +Zad a1 (vg(w,))> (1—-1s).

icelUK icJ

Since the (B;)icrujuk are disjoint, we also know that

1€ JUJUK

Then
PV (&,) < An® ! and LY E,AF) < ep]
Yictosug VENB) < (1—s) n (X icuk ag-1r{ v(vp(a;))
<P +ZieJ Ozd_nglfly(vQ(xi)))
and LYE,AF) < ep
From now on we choose r to be

ep = min agr; 6
icelUJUK

for a fixed § that we will choose later. For all 7 € I, we then have
LY(E,NB)AB;) < LY(F N B)AB;) + LYYE,AF) < 26agr.
We want to evaluate card(((E, N B;)AB; ) NZ2). It is equivalent to evaluate

nLY((E, N B)AB;)NZE + [~1/2n,1/2n]?) .

14



5 COVERING OF OF BY BALLS 5.2 Definition of a local event

By definition, for all z € E, N Z% = E,, o+ [~1/2n,1/2n)? C E,, so

((E, N B)AB;)NZ& + [~1/2n,1/2n]¢
C (EnNBj)AB; ) U (Voo (Bi, 1/n) N Bj) U (Voo (B ,1/n) N B;")
C (BEn,NB)AB; ) U (Va(B;,2d/n) ~ B;) U (Va(B; ,2d/n) \ B;") .

Since 0B; and 0B, are very regular, the result about the Minkowski content implies that

lim —dﬁd(Vg( B;,2d/n) ~ B;) = H¥1(8B;)
and
lim —dﬁd(Vg(B ,2d/n) ~ B;) = H*Y9B;).

n—oo 2
For n large enough, we then obtain that
4d(H*=1(0B; =1(9B-
LU((By 1 BYAB) A ZE 4 [~1/2n,1/2n)%) < 26agrd + T (OB) THT(0B5;)).

n

and then for all n large enough

card(((E, N B;)AB; ) NZY) < 25agrin® 4+ 4d(H1(0B;) + HY (0B, ))n !

< 45adrd .

For i € K, exactly the same arguments imply that
card(((E, N B;)AB; )N Z%) < 45ayrin?

for n large enough.

We study now what happens in the balls B; for ¢ € J. We recall that En =FE,N Z;il. We define
E| = E,UQ¢ (where Qf = Z% \ Q) and E], = E! 4+[-1/(2n),1/(2n)]% . Then E/,NQ = E,. In
a ball B;, we have aeE' NB; = &, N B;. Indeed, we know that I'N B; C I't. The sets Fl and T'? are
open in I and disjoint, so I'! NI2 = @, where F2 is the adherence of I'?, and then B;NI'2 = &. Since
B; is closed, we obtain that d(B;,T2) > 0, and thus for n large enough I, N B; C L. Moreover,
we know that T'L ¢ E, C E/,. We obtain that 0°E/, N Q¢ N B; = @, i.e., all the edges of 9°E!, in B;
have both endpoints in €, (see figure Bl). Now we have

LY(EL N B)AB;") < LYE, N B)AQCN By)) + L4(Q° N B)AB;)

LYE, N B;NQ)+ LY(Q° N EL) N By) + LN B)AB;)
LYUE,AF) + LY (Vso (D, 1/n) N B;) + dagrd

e + Ed(Voo(F, 1/n) N B;) + 5adrzd

35adrld,

VAN VAN VAN VAN

for n large enough, where the last inequality is a consequence of the properties of the Minkowski
content. As previously, we obtain that for n large enough,

card(((E!, N B;)AB;" ) NZ%) < 45agrin?.

15



5.2 Definition of a local event 5 COVERING OF OF BY BALLS

%+ [=1/(2n), 1/ (2n)]

I'nNB; CTL C B,

rnB;crt

edges of
EnN By

E. +[-1/(2n),1/(2n))

Figure 5: A ball B; for i € J.

We conclude that for n large enough,
P[V(E,) < Mt and LYE,AF) < ep]

< Z]}» V(o E ﬂB) (1—s)ag- 17“d ! v(vp(x;)) and ]

port card((E, N By)A(B; NZ3)) < 46a4rin?
By V(0°E}, N B;) < (1 = s)ag-17{ 'v(vr(x)) and
— card((El, N By)A(Bf NZ23)) < 46agrin
n Z V(°E, N | B;) < (1= s)aa- 1w (vp(2;)) and
= card((E, N B;)A(B; NZ4)) < 45agrin?
< Y PG(xiri,vi)],
i€elUJUK

where G(z,7,v) is the event that there exists a set U € BN Z% such that:

{ card(UAB™) < 46agrin?,
V(0°UNB) < (ag_1r?w(v(z)))(1 — s)ndt.

Notice that this event depends only on the edges in B = B(x,r). This event seems to be complicated,
but indeed when G(z,r,v) happens, it means in a sense that the flow between the lower half part

16



6 SURGERY IN A BALL TO DEFINE AN ALMOST FLAT CUTSET

of B(z,r) (for the direction v) and the upper half part of B is abnormally small. We will examine
the consequence of the event G(x,r,v) over the maximal flow in B(z,r) in the next section.

6 Surgery in a ball to define an almost flat cutset

We consider a fixed ball B = B(z,r) and a unit vector v (corresponding to one generic ball of the
previous covering). We want to interpret the event G(x,r,v) in term of the maximal flow through a
cylinder whose basis is a disc, included in the ball B, and oriented along the direction v. We define

Ymax = PT,

where p is a constant depending on § and B which we can imagine very small, it will be chosen
later. The constant vy is in fact the height of the cylinder we are constructing, namely

C = cyl(disc(x,7,v), Ymax) -
We want C to be included in B, so we choose
r’ = rcos(arcsin p) .

We would like to analyse the implication of the event G(z,7,v) on the flow ¢¢ between the top
and the bottom of C for the direction v (we will define it properly soon). As we said previously,
the event G(x,r,v) means that the maximal flow between a set U that "looks like" B~ (for the
direction given by v) and the set U¢ that "looks like" B™ is a bit too small. Here "looks like" means
that B~ and U are closed in volume, but the set U might have some thin strands (of small volume,
but that can be long) that go deeply into BT and symmetrically the set U¢ might have some thin
strands that go deeply into B~ (see figure [B). What we have to do to control ¢¢ is to cut these

~ad

Figure 6: Event G(z,r,v).

N

strands: by adding edges to 0°U at a fixed height in C to close the strands, we obtain a cutset in
C. The point is that we have to control the capacity of these edges we have added to 9°U. This is
the reason why we choose the height at which we add edges to be sure we add not too many edges,
and then we control their capacity thanks to a property of independence.

We suppose that the event G(x,r,v) happens, and we denote by U a fixed set satisfying the
properties described in the definition of G(x,r,v). For each v in {1/n,...,(["Ymax] — 1)/n}, we

17



6 SURGERY IN A BALL TO DEFINE AN ALMOST FLAT CUTSET

define
D(v) = cyl(disc(z, 7", v),7),
O*D(y) ={yeD(")|3z€Z, (z—x)-v>vand |z —y| =1},
0 D(y) = {yGD(7)|E|z€Z‘fl, (z—2x)-v<—vyand |z —y| =1}.

These sets are represented in figure[[l The sets 9T D(v) Ud~ D(v) are pairwise disjoint for different

97 D(v)

Figure 7: Representation of D(7).

v, and we know that
> card((0TD(y) NU) U (0~ D(y) NU®)) < 4daqgrin?,
=1/ ([n9max | =1) /n
so there exists a 7o in {1/n, ..., (|nVmax| — 1)/n} such that
45 grind - 58agrind—1
[P max] =1 7 Ymax

for n sufficiently large. We define the event G*(z,r,v,7) (depending only on the edges in D(7))) to
be the existence of a set X C D(y) NZ4 with the following properties:

card((07D(y) N X) U (0~ D(y) N X€)) < 56agrin®ty Ll = 5sagptri—tnd=1,
V(©°X N D)) < ag_1r¥tv(v)(1 — s)nd L.

card((0" D(70) NU) U (97 D(3) NT*)) <

We have proved that if G(x,r,v) occurs, there exists a v in {1/n, ..., ([nYmax| — 1)/n} such that
G*(x,r,v,v) happens. On G*(z,r,v,7), we select a set of edges X that satisfies the properties
described in the definition of G*(B,v(z),~) with a deterministic procedure, and we define

{ Xt = {(z,y) |z cdtD)NX, y¢ DY)},
X~ ={(x,y)|x€cd D(y)~X, y¢ D(v)}.

18



6 SURGERY IN A BALL TO DEFINE AN ALMOST FLAT CUTSET

The set of edges (0°X N D(v)) UXT U X~ cuts the top " D(ymax) from the bottom 0~ D(Ymax) of
C = D(Ymax). If we define

¢c = ¢(6+D('YmaX) — 0" D(Ymax) in C),

on G*(x,r,v,7), we have
pc < V(O XNDH)+V(XTUX).

(Recall that 0°X N D(y) is the set of the edges of 9°X which are included in D(v)). Moreover

card(XTUX™) < 2dcard((0TD(y) N X)U (0” D(y) ~ X))
d,,d—1
- 2d56adr n

_ Crdfl(spflndfl
“Ymax ’

where C' = 10day is a constant depending on the dimension. We obtain that

P[G($,’f‘,’0)] < Z P[G*(x,r,v,v)]

’yzl/n7_..7(\_n’)/maxj_1)/n

ZP[G*(m,r,v,fy) N{VXTUX") < ag_1rt w(v)ndLs/4}]
v

IN

+ P[G* (2, m,0,7) N {V(XT UX7) > ag_1r4 w(v)ndLs/4}].
On one hand, we have proved that

P[G*(z,7,v,7) N{V(XTUX") < ag_17? tw(v)n?ts/4}]
< Plge < ag_1r ()1 — 3s/4)n?"1].

On the other hand, we have

P[G*(z,7,v,7) N{V(XTUX") > ag_17? tw(v)n?ts/4}]
< E (PG (2,r,0,7) N{V(XFTUXT) = ag 1w s/4} | (Ue)eeniy) )

< E(P(G*(x,r,v,v) nJ{xtux =r}
FCEZ

A V(E) > agorro(o)nds/43)| <t<e>>eeD@>>)

< E<]1G’*(J:,r,v,'y) Z l{X"‘UX_:F}P(V(F) > ad—lrd_ly(v)nd_18/4))
FCEZ

Crdfl(;pflndfl

P Z t(ei) > ag_1rw(w)nd s /4| |
i=1

IN

where the last inequality comes from the fact that for all F' such that P[XT U X~ = F] > 0,
card(F) < Cr®15p~'n4=1. Here we have used the following essential property of X* U X~:
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6 SURGERY IN A BALL TO DEFINE AN ALMOST FLAT CUTSET

the position of the edges of XT U X~ is o(t(e),e € D(v))-measurable, but their capacities are
independent of (t(e))cep(y). Finally, we obtain that

PIG*(z,7,1,7)] < YmaxnP[oe < (ag_1m4 1w (v))(1 — 3s/4)n%71]
Crdflépflndfl

+ Ymaxn P Z t(ei) = (ag_1r¥ v (v))nd s /4
1=1

We want to consider cylinders whose basis are hyperrectangles instead of discs, and the variable
instead of ¢ in these cylinders, because we only know the lower large deviations of the flow in this
case (see [I0]). There exists a constant ¢ = ¢(d) such that, for any positive s, there exists a finite
family (A;);cs of disjoint closed hyperrectangles included in disc(x,r’,v) such that

Zie[ del(Ai) > Ozdflr/dfl — K,
Zz‘el 'Hd_z(aAi) < CT,/d—Z ,

(see figure [). Thanks to the max-flow min-cut theorem, we know that for each i, the maximal

disc(z,r’,v)

Figure 8: Disc disc(x,r’,v).

flow 7(cyl(Ai, Ymaz),v) is equal to the smallest capacity of a set of edges in cyl(A;, ymax) that cuts
the lower half part from the upper half part of the boundary of the cylinder along the direction
given by v. We denote by & such a cutset in cyl(A;, Vmax). This set of edges is pinned at the
boundary of A; (which is the common boundary of the two halves of the boundary of the cylinder
cyl(A;, Ymax) between which the flow 7(cyl(A;, Ymax),v) goes). Thus the different sets &; in each
cylinder cyl(4;, Ymax) can be glued together along U;cr0A; to create a cutset in C if we provide
some "glue", i.e., if we add some edges in a small neighbourhood of U;c;0A;. For each i € I, we
define the set P;(n) C R? by

Pz(n) = Cyl(V(aAia C/n) N hyp(Ai)’ r)/max) )

where ( is a fixed constant bigger than 2d, and we denote by P;(n) the set of the edges included in
Pi(n). Then U;crE; U P;(n) cuts the top from the bottom of C. Thanks to the max-flow min-cut
theorem again, we thus obtain that

QSC < Z T(Cyl(Aia Wmax)a 'U) + V(UiGIPi(n)) :
1€l
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7 CALIBRATION OF THE CONSTANTS

We can evaluate the number of edges in UjerP;(n) as follows:

card(UserPy(n) < ¢r' ypn®™ < ¢prd It

)

where ¢’ is a constant depending on ¢ and d. Therefore

Plpe < ag_1rw(v)(1 — 3s/4)n? 1]

<P ZT(Cyl(Ai,’}/maX),U) < ag1r? ()1 - S/Q)nd_1]
i€l
clprdflndfl
s
+P t(e;) > ad_lrdflu(v)zndfl
i=1
< P[> 7(eyl(As, Ymax),v) < (1= s/4)n! ZHd_l(Ai)u(v)]
icl el
cIp,r.dflndfl
+P t(ei) > ad—ﬂ“d_ll/(v)znd_l ,
i=1
as soon as the constants satisfy the condition
(k4 ag 1 (" =) (1= 5/2) < Y HTH (A vinins /4 (1)
el
Then
P[G*(z,7,v,7)] < prr Y Plr(cyl(Ais max), v) < HT (A ()(1 = s/4)n ]
el
_Crd—l5p—1nd—1
+ prnlP Z t(e)) > ag_1r tw(v)ndts/4
i=1
:Clprdflndfl
+ prnlP Z t(e;) > ag_r tv(w)nd s /4
i=1
< prn Y PIr(eyl(Ai, Ymax), v) < HOH (Av(v)(1 = s/4)n® ]
el
C’((Sp*l—f—p)rd*lnd*l
+ 2prnP Z t(e;) > ag_r w(wndts/2] |

i=1

where C’ is a constant depending on ¢ and d.

7 Calibration of the constants

From now on we suppose that the law A of the capacity of the edges admits an exponential moment.
Then as soon as the constants satisfy the condition

C'(p+ 6o~ TE(H(e) < (a1 Vi) 2)
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the Cramér Theorem in R allows us to affirm that there exist positive constants D and D’ (depending
on A, 4§, p, ¢, s and d) such that

C’((Sp*l—f—p)rd*lnd*l
P Z t(e;) > (ag_1r@ v (v)ntts/2| < D'e P!
i=1

If we also suppose that A(0) < 1 —p.(d), we know from Theorem Bl (Theorem 3.9 in [I0]) that there
exist a positive constant K (d, A, s) and a constant K'(d, A, A;, s) such that

P[T(Cyl(Ai7’Ymax)7v) < Hdil(Ai)V(U)(l — 8/4)nd71] < K/efKndillHdil(Ai) .

We have thus proved that if we can choose, for a fixed F', the constants J, p and s such that for
every ball B in the collection of balls (B;)icrusur the conditions (Il) and (2) are satisfied, then there
exists positive constants D and D (depending on d, A, ©, I'', I'? and \) such that

Pl¢, < )\nd_l] < f)e—ﬁ"d_l ,

and this yields Theorem [II
We just have to calibrate the constants. In condition (Z)) appears the factor (p+3&p~1): to make
it small, we choose p = v/d. Then the condition (@) is equivalent to

Ad—1Vmin$S
Vi < 2CE(t(e))

for a constant C’ that depends on ¢ and d, and thus it is satisfied if we choose § small enough
(clearly since A(0) < 1 — p.(d) we know that E(t(e)) > 0 and vy > 0). To see that the condition
(@ can also be satisfied, we just choose x < ag_1(r¢t —r'@=1)/2 (so x depends on §) and we remark
that

1 — (cosarcsin V8)* 1 = (d —1)5/2 + 0(9),

so for § small enough, condition (D)) is satisfied as soon as

5 < 2Vmin
= 12(d-1)(1—s/2)°

which can obviously be satisfied (remember that s < 1 and vy, > 0). This ends the proof of
Theorem [l
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