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1. Introduction

We are concerned with the problem of representing the values of a vector measure
through its restriction to a nice family of sets. This problem has been handled for a vector
measure defined on an interval and admitting a continuous density function forming a
Chebyshev system (a function f : [0, 1] → Rn is a T–system if det[f(x1), · · · , f(xn)] > 0
when x1 < · · · < xn)[4,5]. In this case, to each interior point of the range correspond
exactly two dual canonical finite unions of intervals. The proof relies on geometrical con-
siderations and on the fact that a linear combination of the components of a n–dimensional
vector function which is a T–system has at most n zeroes. T–systems have been tradition-
ally applied to approximation theory and to moment problems in statistics [4,5]; here we
consider them from the point of view of Measure Theory.
In dealing with Lyapunov theorem on the range of vector measures and a bang–bang con-
trol problem [1,2], we were led incidentally to prove a weaker version of the aforementioned
theorem. We thank warmly Fabrice Gamboa for introducing us to the field of Chebyshev
systems, especially because their relationship with Lyapunov theorem does not appear at
all in control theory literature. Our proofs differed strongly from the previous ones. In
the case of continuous densities [2], they were based on the differentiability of the measure
and on a global inversion argument. We generalized the result to unnecessarily absolutely
continuous measures, but still with n determinant conditions (oriented measures)[3] which
allowed us to prove inductively the representation theorem with the help of an elementary
topological argument.
The knowledge of the previous works on T–systems suggested us that our result should
hold with only one determinant condition. Here we introduce Chebyshev measures: they
form a broad class of vector measures (unnecessarily defined on an interval) admitting a
representation property through canonical sets and whose range is strictly convex.
Our new argument is direct and uses the invariance domain theorem.

2. General framework

Throughout the paper, we deal with the following objects:
• a measurable space (X,A),
• a non–trivial positive measure ν defined on A,
• a vector measure µ = (µ1, · · · , µn) defined on A with values in Rn,
• an increasing family of measurable sets (Mi)i∈[0,1] such that M0 = ∅,M1 = X.

We suppose that the Mi’s are distinct modulo ν i.e.

∀i, j ∈ [0, 1] i < j =⇒ ν(Mi) < ν(Mj).

The total variation |µ| is the scalar measure |µ| = |µ1|+ · · ·+ |µn| where the |µi| are the
usual total variations of the scalar measures µi. We make the following assumption.
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Assumption. The measures ν and µ are non–atomic with respect to the family (Mi) i.e.

∀E ∈ A ν(E) 6= 0 =⇒ ∃ i ∈[0, 1] 0 < ν(E ∩Mi) < ν(E),

∀E ∈ A |µ|(E) 6= 0 =⇒ ∃ i ∈[0, 1] 0 < |µ|(E ∩Mi) < |µ|(E).

Remark. This assumption guarantees that the maps i 7→ ν(Mi) and i 7→ µ(Mi) are con-
tinuous. Moreover the measures ν and µ are non–atomic.

Example 2.1. (linear intervals)
This general framework stems from the case where X is the interval [0, 1] of R, A is the
Lebesgue σ–field, ν is the Lebesgue measure, the Mi’s are the intervals [0, i] and µ is a
non–atomic vector measure on [0, 1]. In this situation, the previous assumption on µ turns
out to be equivalent to the non–atomicity of µ.

Example 2.2. (circular annulus)
Let X = Bm be the unit ball of Rm equipped with the Lebesgue measure (ν,A). We
take Mi to be the ball of radius i. Finally let µ be any vector measure which is absolutely
continuous with respect to ν. The assumption on µ is here equivalent to the fact that the
spheres have a zero |µ|–measure.

3. Chebyshev measures

We denote by Sn the symmetric group of order n and, for σ in Sn, by ε(σ) its sign.
To the vector measure µ we associate a determinant measure detµ.

Definition 3.1. (determinant measure)
The measure detµ is the measure defined on the product space (Xn,A⊗n) by

detµ =
∑
σ∈Sn

ε(σ)µσ(1) ⊗ · · · ⊗ µσ(n).

This is the only measure whose restrictions to the product sets A1 × · · · × An satisfy
detµ(A1 × · · · ×An) = det[µ(A1), · · · , µ(An)].

The definition of a Chebyshev measure will involve the following subset of Xn:

P =
⋃

0≤i1≤···≤in−1≤1

Mi1 × (Mi2 \Mi1)× · · · × (Min−1 \Min−2)× (X \Min−1).

Obviously P belongs to the product σ–field A⊗n.

Examples. In the case of the linear intervals (example 2.1) we have P = { (x1, · · · , xn) ∈
[0, 1]n : 0 ≤ x1 ≤ · · · ≤ xn ≤ 1 }. In the case of the circular annulus (example 2.2) we have
P = { (x1, · · · , xn) ∈ (Bm)n : 0 ≤ |x1| ≤ · · · ≤ |xn| ≤ 1 }.
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Definition 3.2. (Chebyshev measure)
The vector measure µ is a Tν–measure if the measure detµ satisfies

∀A ∈ A⊗n, A ⊂ P, ν⊗n(A) > 0 =⇒ detµ(A) > 0.

The symbol Tν stands for Chebyshev measure.

Remark. Any non–atomic positive scalar measure µ is a Chebyshev measure with respect
to itself. In fact, Lyapunov theorem yields the existence of an increasing family (Mi)
such that µ(Mi) = iµ(X) for i in [0, 1]. Using the Hahn decomposition, any non–atomic
scalar signed measure is the difference of two Chebyshev measures with respect to its total
variation.

If µ is absolutely continuous with respect to ν, this definition might be translated in
terms of the density function.

Definition 3.3. Let f = (f1, · · · , fn) be a measurable vector–valued function defined
on X. We say that f = (f1, · · · , fn) is a Tν–system if the determinant det[f(x1), · · · , f(xn)]
is positive for ν⊗n almost all (x1, · · · , xn) in P .

This definition is a slight generalization of the classical one which deals only with func-
tions defined on an interval.

Theorem 3.4. Suppose µ is absolutely continuous with respect to ν. Let f = (f1, · · · , fn)
be its density function. Then µ is a Tν–measure if and only if f is a Tν–system.

Proof. Remark first that for any measurable set A of Xn we have

detµ(A) =
∫
A

∑
σ∈Sn

ε(σ) fσ(1)(x1) · · · fσ(n)(xn) dν⊗n(x1, · · · , xn)

=
∫
A

det[f(x1), · · · , f(xn)] dν⊗n(x1, · · · , xn).

Suppose that f is a Tν–system. Let A be a measurable subset of P of positive ν⊗n measure.
The domain of integration has a positive measure and the integrand is positive ν⊗n almost
everywhere on this domain. It follows that detµ(A) is positive.
Conversely, assume that µ is Tν–measure and set

A = { (x1, · · · , xn) ∈ P : det[f(x1), · · · , f(xn)] ≤ 0 }.

Clearly
∫
A

det[f(x1), · · · , f(xn)] dν⊗n(x1, · · · , xn) ≤ 0. Assume that ν⊗n(A) > 0. By the
very definition of a Tν–measure, we have detµ(A) > 0. However the initial formula yields

detµ(A) =
∫
A

det[f(x1), · · · , f(xn)] dν⊗n(x1, · · · , xn) ≤ 0 ,
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which is absurd. Thus ν⊗n(A) = 0. �

There is a huge literature concerning Chebyshev systems of continuous functions defined
on an interval. They were originally introduced in interpolation theory. Their general
properties (in the case of continuous functions) have been thoroughly studied [4,5].

Example 3.5. (circular annulus) Let f = (f1, · · · , fn) : [0, 1] → Rn be a T–system with
respect to the Lebesgue measure on [0, 1] and the family of intervals [0, i]. Then the
function g(x) = f(|x|) defined on the unit ball Bm is a T–system with respect to the
elements defined in example 2.2.

4. Fundamental properties

Notation. For a k–tuple of measurable sets A1, · · · , Ak by A1 < · · · < Ak we mean
that the Ai’s are non negligible for ν and that there exists i0 < · · · < ik such that
A1 ⊂Mi1 \Mi0 , · · · , Ak ⊂Mik \Mik−1 .

The non–atomicity assumption on ν implies the following result.

Proposition 4.1. For each non–negligible set E and for each integer m there exist
measurable sets E1, · · · , Em such that

E = E1 ∪ · · · ∪ Em and E1 < · · · < Em.

In particular P is not ν⊗n negligible.

Proof. Let E be a set of positive ν measure. The map i ∈ [0, 1] 7→ ν(Mi ∩ E) being
continuous and increasing, there exist 0 < i1 < · · · < im−1 ≤ 1 such that ν(Mil ∩ E) =
(l/m) ν(E) for l in {1 · · ·m−1}. Then the sets El = (Mil \Mil−1)∩E for l ∈ {1 · · ·m−1},
Em = E\Mim−1 , satisfy the required conditions. Applying this result to E = X andm = n,
we obtain a subset of P of positive ν⊗n measure. �

If ρ is a measurable function on X, its support is the set supp ρ = {x : ρ(x) 6= 0 }. If ρ
belongs to L1

µ(X), by µ(ρ) we denote the column vector

µ(ρ) =
∫
X

ρ dµ =
t(∫

X

ρ dµ1, · · · ,
∫
X

ρ dµn

)
.

A direct consequence of the definitions is that if A1 < · · · < An then the determinant
det[µ(A1), · · · , µ(An)] is positive. A more important fact concerning Tν–measures is that
this characteristic property carries on from sets to positive functions.

Theorem 4.2. Suppose µ is a Tν–measure. If ρ1, · · · , ρn are n µ–integrable non–negative
functions such that supp ρ1 < · · · < supp ρn then the determinant det[µ(ρ1), · · · , µ(ρn)]
is positive.

Let us first state a preparatory lemma.
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Lemma 4.3. Let ρ1, · · · , ρn be n µ–integrable functions. Then

det
[ ∫

X

ρ1 dµ, · · · ,
∫
X

ρn dµ

]
=
∫
X

· · ·
∫
X

ρ1(s1) · · · ρn(sn) detµ(s1, · · · , sn).

Proof of the lemma. The identity is obviously true whenever ρ1, · · · , ρn are characteristic
functions. The monotone class theorem yields the result. Another scheme of proof is to
develop the determinant and to transform each product of integrals into an n–dimensional
integral with respect to a judicious product measure. �

Proof of theorem 4.2. We apply the lemma. The domain of integration of the n–fold
integral is reduced to supp ρ1 × · · · × supp ρn on which the determinant measure detµ is
positive (by the definition of a Tν–measure). Hence the n–fold integral is positive. �

Corollary 4.4. Suppose µ is a Tν–measure and let ρ1, · · · , ρp be p non–negative µ–
integrable functions such that supp ρ1 < · · · < supp ρp. If

λ1

∫
X

ρ1 dµ + · · · + λp

∫
X

ρp dµ = 0

for some (λ1, · · · , λp) 6= (0, · · · , 0), then p is strictly greater than n.

Proof. If p = n theorem 4.2 yields det[µ(ρ1), · · · , µ(ρn)] 6= 0, a contradiction.
If p < n, by proposition 4.1, we can decompose supp ρ1 into the union of n − p + 1
non–negligible sets Ai, 1 ≤ i ≤ n− p+ 1. Then if we set

(λ̃k, ρ̃k) =
{

(λ1, ρ1χAk) if 1 ≤ k ≤ n− p+ 1
(λk−n+p, ρk−n+p) if n− p+ 2 ≤ k ≤ n

we have
∑n
k=1 λ̃kµ(ρ̃k) = 0. Moreover supp ρ̃1 < · · · < supp ρ̃n; we are thus led to the

previous case and the conclusion follows. �

Funny corollary 4.5. Suppose µ is a Tν–measure and let ρ be a non–negative µ–
integrable function whose support is not negligible. Then µ(ρ) is non–zero.
In particular, µ(E) is non–zero whenever ν(E) is non–zero.

Proof. We apply corollary 4.4 with p = 1, λ1 = 1. �

Remark. This assertion sounds trivial; however the point is that µ is a vector measure
whose components are scalar signed measures. This makes life more difficult. Instead, in
the case of oriented measures, this fact is a direct consequence of the definition (since µ1

is then positive). A consequence of the funny corollary is that if µ is a Tν–measure, then ν
is absolutely continuous with respect to the total variation of µ!
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Lemma 4.6. (perturbation lemma)
Suppose µ is a Tν–measure and let A0 < A1 < · · · < An be n + 1 measurable sets. Given
a positive ε, there exist n+ 1 real numbers λ0, · · · , λn such that

∀l ∈ { 0, · · · , n } 0 < λl < ε and
n∑
l=0

(−1)lλl µ(Al) = 0.

Proof. Consider the n× n linear system

λ0µ(A0)− λ1µ(A1) + · · ·+ (−1)n−1λn−1µ(An−1) = (−1)n−1λnµ(An).

where λn is a parameter. The determinant of the system is

ωn = (−1)
n(n−1)

2 det [µ(A0), · · · , µ(An−1)].

Since µ is a Tν–measure, ωn is not zero. For each i in { 0, · · · , n− 1 }, let ωi be∣∣∣∣∣∣∣∣∣∣∣∣

µ1(A0) · · · (−1)i−2µ1(Ai−2) (−1)n−1µ1(An) (−1)iµ1(Ai) · · · (−1)n−1µ1(An−1)

µ2(A0) · · · (−1)i−2µ2(Ai−2) (−1)n−1µ2(An) (−1)iµ2(Ai) · · · (−1)n−1µ2(An−1)

...
. . .

...
...

...
. . .

...

µn(A0) · · · (−1)i−2µn(Ai−2) (−1)n−1µn(An) (−1)iµn(Ai) · · · (−1)n−1µn(An−1)

∣∣∣∣∣∣∣∣∣∣∣∣
i.e. ωi = (−1)

n(n−1)
2 det [µ(A0), · · · , µ(Ai−2), µ(Ai), · · · , µ(An)].

By Cramer formula, λi equals λnωi/ωn. The measure µ being is a Tν–measure, ωi and
ωn have the same sign so that λi is positive whenever λn is positive. Choosing λn such
that 0 < λn < min(εωn/ω0, · · · , εωn/ωn−1, ε) we obtain an (n+ 1)–tuple which solves the
problem. �

5. The representation theorem

We are about to state the main result which allows us to represent the values of a
Tν–measure through canonical sets, that we define now.

Notation. (canonical sets) The set Γ is the subset of [0, 1]n defined by

Γ = { (γ1, · · · , γn) ∈ Rn : 0 ≤ γ1 ≤ · · · ≤ γn ≤ 1 }.
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The interior of Γ is int Γ = { (γ1, · · · , γn) ∈ Rn : 0 < γ1 < · · · < γn < 1 }.
For γ = (γ1, · · · , γn) in Γ, we use the convention γ0 = 0, γn+1 = 1.
For each γ = (γ1, · · · , γn) in Γ, we set

Eγ =
⋃

0≤i≤n
i odd

(
Mγi+1 \Mγi

)
.

Theorem 5.1 below was obtained in [3,4] in the case where µ is defined on [0, 1] and ν
is the Lebesgue measure under some stronger assumptions: in [4], for classical T–systems,
µ is assumed to have a continuous density with respect to ν whereas in [3] µ satisfies n
determinant conditions (instead of one).

Theorem 5.1. (representation theorem) Suppose µ is a Tν–measure and let ρ be a mea-
surable function such that 0 < ρ < 1 ν–a.e. There exist unique α and β in Γ satisfying

µ(Eα) =
∫
X

ρ dµ = µ(X \ Eβ).

Moreover these α and β belong to the interior of Γ.

Remark. The set X \ Eβ is dual to the set Eβ . In fact

X \ Eβ =
⋃

0≤i≤n
i even

(
Mβi+1 \Mβi

)
.

Proof of theorem 5.1. Assume that the claim concerning the existence and uniqueness of
the set Eα has been proved. We apply it to the function 1− ρ. This yields a set Eβ such
that µ(Eβ) = µ(1 − ρ), which may be rewritten as µ(X \ Eβ) = µ(ρ). We will thus only
deal with the sets of the form Eα.

Strict inequalities. Let α be a point of Γ such that µ(Eα) = µ(ρ). We show that α
belongs to the interior of Γ. We rewrite µ(Eα) = µ(ρ) as∑

0≤i≤n
i odd

∫
Mαi+1\Mαi

(1− ρ) dµ −
∑

0≤i≤n
i even

∫
Mαi+1\Mαi

ρ dµ = 0.

If we set

λi = (−1)i+1, ρi =

{
ρχMαi+1\Mαi

if i is odd

(1− ρ)χMαi+1\Mαi
if i is even

the equation becomes

λ0

∫
X

ρ0 dµ + · · · + λn

∫
X

ρn dµ = 0.
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Let I = { i : 0 ≤ i ≤ n, αi < αi+1}; remark that for i in I the function ρi is strictly
positive on Mαi+1 \Mαi . Assume that the n–tuple α does not belong to the interior of Γ.
Then |I| ≤ n; if we write I = { i1, · · · , ip }, where i1 < · · · < ip, we have

1 ≤ p ≤ n,
p∑
j=1

λij

∫
X

ρij dµ = 0, supp ρi1 < · · · < supp ρip , λij ∈ {−1, 1}.

Corollary 4.4 yields a contradiction. It follows that 0 < α1 < · · · < αn < 1.

Uniqueness. Let δ = (δ1, · · · , δn) and γ = (γ1, · · · , γn) be two elements of Γ such that
µ(Eδ) = µ(ρ) = µ(Eγ). The first part of the proof (strict inequalities) shows that
0 < δ1 < · · · < δn < 1 and 0 < γ1 < · · · < γn < 1.
Assume for instance that δ1 ≤ γ1; then Eδ ∩ Mδ1 = Eγ ∩ Mδ1 so that the equality
µ(Eδ) = µ(Eγ) becomes ∫

X\Mδ1

(χEδ − χEγ ) dµ = 0.

The sets (Mδi+1 \Mδi)1≤i≤n cover X \Mδ1 ; moreover on Mδi+1 \Mδi we recall that χEδ = 1
if i is odd and χEδ = 0 if i is even. The above equality then yields

∑
0≤i≤n
i odd

∫
Mδi+1\Mδi

(1− χEγ ) dµ −
∑

2≤i≤n
i even

∫
Mδi+1\Mδi

χEγ dµ = 0

which may be rewritten

n∑
i=1

λi

∫
X

ρi dµ = 0 where λi = (−1)i+1, ρi = |χEδ − χEγ |χMδi+1\Mδi
.

Now each ρi is non–negative. If δ 6= γ there exists j such that ρj is positive on a non–
negligible set. By corollary 4.5, µ(ρj) is non–zero so that the set J = { i : µ(ρi) 6= 0 } is
not empty. Writing J = { i1, · · · , ip }, where i1 < · · · < ip, we have

1 ≤ p ≤ n,
p∑
k=1

λik

∫
X

ρik dµ = 0, supp ρi1 < · · · < supp ρip , λik ∈ {−1, 1}.

Corollary 4.4 yields a contradiction. It follows that δ = γ.
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Existence. Let θ : Γ → Rn be the map defined by θ(α) = µ(Eα). The non–atomicity
of µ with respect to the Mi’s implies that this map is continuous. Moreover the second
part of the proof (uniqueness) shows that the map θ is injective on int Γ. The invariance
domain theorem [6] then implies that θ(int Γ), the image of int Γ, is open in Rn.
Surprisingly θ(int Γ) is contained in the convex set

C =
{ ∫

X

ρ dµ : 0 < ρ < 1 ν − a.e.
}
.

In fact, let α = (α1, · · · , αn) belong to int Γ. Applying the perturbation lemma 4.6
to µ, Ai = Mαi+1 \Mαi and ε = 1/4 we obtain a (n+ 1)–tuple (λ0, · · · , λn) such that

∀i ∈ { 0, · · · , n } 0 < λi < 1/4 and
n∑
i=0

(−1)iλi µ(Ai) = 0.

Put
ρ =

∑
0≤i≤n
i even

λiχAi +
∑

0≤i≤n
i odd

(1− λi)χAi .

By construction we have 0 < ρ < 1 and µ(ρ) = θ(α) so that θ(α) belongs to C.
Now the second part of the proof (uniqueness) shows that θ(Γ) ∩ C = θ(int Γ); the com-
pactness of Γ then implies that θ(int Γ) is closed in C. The convex set C is connected;
θ(int Γ) is open and closed in C. Thus it coincides with the whole set C. �

Remark. The map θ was first introduced in [2] to prove theorem 5.1 under the stronger
assumptions that µ is defined on [0, 1] and admits a continuous density with respect to
the Lebesgue measure. In [2] however θ is differentiable and a local homeomorphism:
Caccioppoli’s global inversion theorem yields the injectivity of θ on int Γ and the fact that
θ(int Γ) is open; instead here we first prove directly the injectivity of θ (without being
differentiable) and then we apply the open mapping theorem.

A simple classical approximation argument yields the following corollary.

Corollary 5.2. Suppose µ is a Tν–measure.
Let ρ be a measurable function such that 0 ≤ ρ ≤ 1. There exist α and β in Γ satisfying

µ(Eα) =
∫
X

ρ dµ = µ(X \ Eβ).

We denote by R the range of µ i.e. R = {µ(E) : E ∈ A}.

Remark. The proof of Theorem 5.1 shows that θ(int Γ) is open and convex; by Corollary
5.2 its closure coincides with R. Then by [7, Th. 6.3] we obtain that int R = θ(int Γ).
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Corollary 5.3. Suppose µ is a Tν–measure. Let ρ be a measurable function such that
0 ≤ ρ ≤ 1 and 0 < ρ < 1 on a ν–non negligible set. Then µ(ρ) belongs to the interior of
R; in particular there exist unique α and β in the interior of Γ satisfying

µ(Eα) =
∫
X

ρ dµ = µ(X \ Eβ).

Proof. There exist a ν–non negligible set F and ε > 0 such that ε ≤ ρ ≤ 1− ε on F . The
non-atomicity assumption yields the existence of 0 < δ1 < · · · < δn < 1 = δn+1 such that
if for every i we set Ai = (Mδi+1 \Mδi) ∩ F then ν(Ai) > 0. Therefore A1 < · · · < An
and the vectors µ(A1), · · · , µ(An) are linearly independent. It follows that the open set
V = {

∑n
i=1 λiµ(Ai) : |λi| < ε, i = 1, · · · , n} is a neighborhood of O in Rn.

Now for every λ1, · · · , λn such that |λi| < ε we have 0 ≤ ρ +
∑n
i=1 λiχAi ≤ 1 a.e. on X;

it follows that the neighborhood µ(ρ) + V of µ(ρ) in Rn is contained in R. �

The following results have been stated in a less general context in [3] but they are still
valid in the present framework; Chebyshev measures provide a broad class of measures
whose range is strictly convex.

Theorem 5.3. The range R of a Tν–measure is strictly convex. The boundary points of
R admit a unique representation modulo µ. Moreover a point µ(E) belongs to the boundary
of R if and only if there exists γ in the boundary of Γ such that µ(E∆Eγ) = 0.

Finally, we remark that the same results would hold under a weaker assumption on the
measure. Namely, it is enough that for each n–tuple of measurable sets A1, · · · , An such
that A1 < · · · < An, the determinant det[µ(A1), · · · , µ(An)] is positive. The delicate point
concerns theorem 4.2 which is the key for proving the representation theorem. In this
situation, the proof should be done along the lines of theorem 2.2 of [3].
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Belzoni, 35100 Padova–Italy

E-mail address: Raphael.Cerf@math.u-psud.fr -- mariconda@pdmat1.math.unipd.it

11


