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Abstract

We try to design a simple model exhibiting self-organized criticality, which
is amenable to a rigorous mathematical analysis. To this end, we modify
the generalized Ising Curie-Weiss model by implementing an automatic
control of the inverse temperature. For a class of symmetric distributions
whose density satisfies some integrability conditions, we prove that the
sum S, of the random variables behaves as in the typical critical gene-
ralized Ising Curie-Weiss model. The fluctuations are of order n®/* and
the limiting law is C exp(—Az*) dz where C' and X are suitable positive
constants.
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1 Introduction

In their famous article [2], Per Bak, Chao Tang and Kurt Wiesenfeld showed that
certain complex systems are naturally attracted by critical points, without any
external intervention. These systems exhibit the phenomenon of self-organized
criticality.

Self-organized criticality can be observed empirically or simulated on a computer
in various models. However the mathematical analysis of these models turns out
to be extremely difficult. Even models whose definition is seemingly simple, such
as those describing the dynamics of a sandpile, are poorly understood. Other
challenging models are the models for forest fires [14], which are built with the
help of the classical percolation process. Some simple models of evolutions also
lead to critical behaviours [6].

Our goal here is to design a model exhibiting self-organized criticality, which is as
simple as possible, and which is amenable to a rigorous mathematical analysis.
The most widely studied model in statistical mechanics, which exhibits a phase
transition and presents critical states, is the Ising model. Its mean field version
is called the Ising Curie-Weiss model (see for instance [9]). It has been extended
to real-valued spins by Richard S. Ellis and Charles M. Newman [10], in the
so called generalized Ising Curie-Weiss model. This model is our starting point
and we will modify it in order to build a system of interacting random variables,
which exhibits a phenomenon of self-organized criticality.

Let us first recall the definition and some results on the generalized Ising Curie-
Weiss model. Let p be a symmetric probability measure on R with positive
variance o2 and such that

vVt >0 / exp(tz?) dp(z) < oo
R

The generalized Ising Curie-Weiss model associated to p and the inverse tem-
perature 8 > 0 is defined through an infinite triangular array of real-valued
random variables (X¥);<p<, such that, for all n > 1, (X}, ..., X") has the
distribution

1 )2\ 14
Apin,p,p(T1, .. Ty) = 7.(5) exp (§M> Hdp(iﬁi)
n i=1

n

where Z,, () is a normalization. For any n > 1, we set S, = X! + ... + X"
When p = (6_1 + 1)/2, we recover the classical Ising Curie-Weiss model.

We denote by L the Log-Laplace of p (see section 6). Richard S. Ellis and Theo-
dor Eisele have shown in [8] that, if LB)(t) < 0 for any t > 0, then there exists a
map m which is null on ]0,1/02], real analytic and positive on ]1/0%, +-oc[, and

such that g 5 ¢ 5 / )
n L 0 i < 1/o

= = .
{ %(5_7”(,3) + 5m(,8)) if B> 1/0’2

The point 1/0? is a critical value and the function m cannot be extended ana-
lytically around 1/02. The main theorem of [10] states that, if 3 < 1/0?, then,

under iy p 3,
S, r o2
Vi N\ 0105

n n—oo



Moreover, for 3 = 1/02, there exists k € N\{0,1} and A > 0 such that, under
Hn,p,B5

Sn r 2k
AR ( @ni) *
where Cj, » is a normalization. This is a consequence of [10] and some properties
of m explained in [8] implying that the function s — L(sy/B) — s2/2 has a
unique maximum at 0 whenever 8 < 1/02 (see [12] for the details).

We will transform the previous probability distribution in order to obtain a
model which presents a phenomenon of self-organized criticality, i.e., a model
which evolves towards the critical state 8 = 1/0? of the previous model. More
precisely, the critical generalized Ising Curie-Weiss model is the model where
(X} ..., X") has the distribution

1 (x1+ 4z,
Z—nexp (W) Hdp IL’»L

We search an automatic control of the inverse temperature 5, which would be
a function of the random variables in the model, so that, when n goes to +o0,
[ converges towards the critical value of the model. We start with the following
observation : if (V,)nen is a sequence of independent random variables with
identical distribution p, then, by the law of large numbers,

Y2+ +Y2 9

—r O a.s
n n—00

Thus we are tempted to « replace 3 by n (2% +---+22)~1 » in the distribution

Znexp<2>Hdp x;)

Hence the model we consider in this paper is given by the distribution
1 1z +- - +xp)
il Bl St LI o L7200 dp(
Znexp<2 x%—i— s+ a2 >H Pl

These considerations suggest that this model should evolve spontaneously to-
wards a critical state. We will prove rigorously that our model indeed exhibits
a phenomenon of self-organized criticality.

Our main result states that, if p has an even density satisfying some integrability
conditions, then, asymptotically, the sum §,, of the random variables behaves
as in the typical critical generalized Ising Curie-Weiss model : if p4 denotes the
fourth moment of p, then

1/4 1/4 —-1 4
e 2 (5) r(5) e (5
o2n3/4 oo (3 r 4 P 12 ds
In section 2 we define properly our model. We state our main results and the

strategy for proving them in section 3. Next we split the proofs in the remaining
sections (4-10).




2 The model

Let p be a probability measure on R, which is not the Dirac mass at 0. We
consider an infinite triangular array of real-valued random variables (X,’f )i<k<n
such that for all n > 1, (X},..., X?) has the distribution f,, ,, where

. 1 1 (x4 4 ap)? -
dfin,p(1,. -, Tn) = 79Xp (2M ]l{x%+m+:c%>0} Hdﬂ(ﬂﬁi)
" n i=1

Zn = / exp <(1)> Liaziotaz oy [ [ dp(:)

2 ... 2
2 x{ 4+ a3 bt

with

We define S, = X} + -+ X" and T), = (X})2 +--- + (X1)2.

The indicator function in the density of the distribution [, , helps to avoid
any problem of definition if p({0}) is positive, since, if p({0}) > 0, the event
{22 + .-+ 22 = 0} may occur with positive probability. We notice that, unlike
the generalized model, our model is defined for any probability measure. Indeed
x — 22 is a convex function, therefore

n

n 2 . 2 n
V(z1,...,z,) €R" (sz> =n? (Zf{) §n2x12
i=1 i=1

i=1
Thus for any n > 1,1 < Z, < e"/? < 4o0.

If we choose p = (d_1 + 61)/2, we obtain the classical Ising Curie-Weiss model
at the critical value.

3 Convergence theorems

We state here our main results.

By the classical law of large numbers, if p is centered and has variance o2, then,
under p®", (S, /n,T,/n) converges in probability towards (0,02). The next
theorem shows that, under the law [, ,, given certain conditions, (S, /n,T,/n)
also converges in probability to (0,0?)

Theorem 1. Let p be a symmetric probability measure on R with positive va-
riance o2 and such that the function

A (u,v) — ln/ eutvz’ dp(z)
R

is finite in an open neighbourhood of (0,0). We suppose that one of the following
conditions holds :

(a) p has a density

(b) p is the sum of a finite number of Dirac masses

(¢) There exists ¢ > 0 such that p(]0,¢[) =0

(d) p({0}) < 1/ /e

Then, under [in p, (Sn/n,Ty/n) converges in probability towards (0,c?).



By the classical central limit theorem, under p®", S, /y/n converges in distri-
bution to a normal distribution with mean zero and variance 2. The following
theorem, shows that, given certain conditions, under g, ,, Sp /n?/* converges
towards a specific distribution.

Theorem 2. Let p be a probability measure on R with a density f satisfying :
(a) f is even
(b) There exists vg > 0 such that

/ e”°Z2f(z) dz < +o0
R

(¢) There exists p €]1,2] such that
L 1@ wlel 7 dedy < oo
R2

Let 02 be the variance of p and let jq be the fourth moment of p. We have
1/4 1/4 -1 4
s 2 () T (5) e (o
o2/ v (3 g) el 1) %
The convergence can equivalently be rewritten as

S, o (Aua\VE 1Nt a4
n3/4 e (Q) r <1> exp (7 12085 ) ds

We prove this convergence in section 10.

The following corollary is a version of theorem 2 with an hypothesis which is
weaker but easier to check.

Corollary 3. Let p be a probability measure on R with an even and bounded
density f such that

Jup >0 / e’ dp(z) < +o0
R

Let 02 be the variance of p and let jy be the fourth moment of p. Then
1/4 1/4 -1 4
o 22 (3) T(5) e (-
52,3/ 2 (3 r 1 exp 13 ds

Proof. We check that the hypothesis of the corollary imply the condition (c) of
theorem 2. We have

/ P2 (@ 1) fH2 ()] de dy
R2

3/2 3/2 3/2 3/2
_ PR+ y) 2 () dr dy + @+ y) 2 () dr dy
[—1,1]2 || /2 ([-1,1]2)c |z[+/2

3
1
< <sup f|> / dedy—i—/ 2@+ ) f22(y) da dy
[ 1,12 |z] ([~1,1]2)¢

—2,2]

3
2 2
S\ / 7dw+</ z 3/2dx>
<[—272]f|> SRR @)l




The second inequality is obtained by applying Fubini’s theorem. The first term
is finite and the second too because, by the Cauchy-Schwarz inequality,

/ F@)*2 da < || flloe / F@) Y2 di = | £ / e /2 f(1) 120052 gy
R R R

<l ([ e 1ta) dx)m (fem da:>1/2 < +o0

Thus, with p = 3/2 €]1,2], the function (z,y) — fP(z + y)fP(y)|z|* 7P is
integrable. O

For instance, if p has a bounded support and a density which is even and conti-
nuous on it, then the hypothesis of the theorem are fulfilled.

We end this section by explaining the strategy for proving these results.

We denote by v, the law of (Z, Z?) where Z is a random variable with distribu-
tion p. By proposition 4, a possible approach to obtain a limit law for (S,,,T},),
correctly renormalized, under fi, ,, is to compute the density of ;™ for n large
enough, when p has a specific density. We will use this approach in the section 5
in the case of Gaussian distributions.

A more robust approach to obtain a limit law for (S,,,7},), correctly renormali-
zed, under i, ,, is to use the theory of large deviations. We denote by 7, , the
law of (S, /n,T,/n) under p®" and by 6,, , the law of (S, /n,T,/n) under Ly, ,.
Proposition 4, presented in the next section, states that, if A is a subset of R2,
then

~ Sn Tn
o) =i ((52:57) € 4)

1 nm2> .
— [ exp|— )1 dv, ,(z,
Z A p < 2 {y>0} ’P( y)

nx2 ~
/ exp <2> ]l{y>0} an,p(xa y)
_JA Y

n na? _
A@ exp <2y> Tiy>o0y dVnp(2,y)

By convexity of ¢t — t2, we have STQL < nT, for any n > 1. We define

A={(z,y) eR*:2? <y} and A" = A\{(0,0)}

Hence we have v, , (A°) = 0. Therefore

TLSC2 ~
[ (%) e
an’p(A) — ANA y

na? -
/ exp <2y) an,p(»’C’y)

n

n n n

i=1

For n > 1, under p®7,

where (X, X2),>1 is a sequence of independent and identically distributed
random variables with distribution v,. Cramér’s theorem implies that (Vp, p)n>1



satisfies a weak large deviations principle with speed n, governed by the rate
function
I:(z,y)— sup (zu-+yv—A(u,v))
(u,v)ER2

where for any (u,v) € R?,

A(U,U) =1In /R2 eustut de(S,t) — hl/Reuz—H)ﬂ dp(z)

We note that A(u,v) can be equal to +oo. If we suppose that the function A
is finite in an open neighbourhood of (0,0), then I is a good rate function and
(Un,p)n>1 satisfies a large deviations principle with speed n, governed by I (see
the section 19 of [5] for these results).

Here is a classical heuristic : as n goes to +oo, the distribution 6,, , concentrates
exponentially fast on the minima of the function

G=1-F—inf(I-F)

where F' denotes the map (x,y) — x2/(2y). Thus, if G has a unique minimum
at (zo,yo) € A, then, under [, ,, (Sn/n,T,/n) converges in probability to
(20, o). Moreover, for n large enough, 7, , can roughly be approximated by the
distribution C), exp(—nlI(z,y)) dzdy where C), is a renormalization constant.
Thus, for each bounded continuous function h and o, 8 > 0,

S, — nw N / h((z — zo)n®) exp (—nG(x,y)) dx dy
Eg, (h< nl-a O)) - / exp (—nG(z,y)) dz dy

/ h(zx)exp (—nG (xn*a + xz0,yn" P + yo)) dz dy

/ exp (—nG (am_o‘ + zo,yn P + yo)) dx dy

We use then Laplace method. The key point is the study of the function G in
the neighbourhood of its minimum (z, y9). We have to find four values a € N,
be N, A>0and B > 0 such that, uniformly on a neighbourhood of (zo, yo),

—nG (xn_“ + 2o, yn P + yo) — —Az® — Byf
n—oo

After computing the law of (S, /n,T,,/n) in section 4 and giving some general
results on the Cramér transform in section 6, we study the minima of I — F
in section 7. Next we state a variant of Varadhan’s lemma in section 8, which
helps us to prove theorems 1 and 2 respectively in sections 9 and 10.



4 Computation of the law of (5,/n,T,/n)

In this section we compute the laws of (S,,T,) and (S,/n, T, /n) under i, ,.

Proposition 4. We denote by v, the law of (Z,Z*) where Z is a random
variable with the distribution p. Under [i, ,, the law of (Sp,Ty) is

1 x?
ZeXp< >]1{y>0}dl/ "(x,y)

We denote by Uy, , the law of (Sn/n,T,/n) under p®™. Under [i,,, the law of

(Sn/n, Ty /n) is ,
1 nx ~
Z exp <2y> ]l{y>0} an,p(957 )

Proof. Let f: R?2 — R be a bounded measurable function. We have

Eg, , (f(Sn,Tn)) = flar+- a2+ +2p)

Zn Jan

1(1’1+"‘+$n)2 -
exp (2M Liaz a2 >0 i:Hldp(xi)

We define )
T
h:(z,y) € R? — f(z,y)exp < y) Tiy>o0y

We have then

—
o
3

B, ([0 T)) = 5 [ hr+ ot anad -+ ad) [[dote)
n JR® i=1
= [ h@rad) + -+ @) [Ldola)
Zn - ) 1 »n +t
1

= Zn/ h(z) dv," (2

Hence the announced law of (S,,T,), under [, ,. Moreover, we have for any
(.131,...,37”) € R”,

h251+ -+ zZn dep Zz
i=1

N
%

—

(x1 4 +x,)° (w14 +2,)/n)?
2 22 V2 L2
i+ -+ (i +---+22)/n

Hence
Sh T -
Ez,, (f( . / fz,y eXp< > Tiysoy A p(2,y)
This ends the proof of the proposition. O



5 The Gaussian case

In this section, we prove theorem 2 when p is the Normal law A/(0, o) with mean
0 and variance 2. We use the method of residue to compute the characteristic

function of ;™ and a Fourier inversion formula to get its density. We finish the

proof with Laplace method.

For simplicity, we assume that o2 = 1. We just write v*" for v," and we denote
by ®,, its characteristic function. For (u,v) € R?,

n U wz2\\" iuz+ive? —xz? dz "
B (u.0) = (81 (0,0)" = (B(eFH02))" = ([ gnovinatemstiz 22 )

We need some preliminary results.

The Gamma distribution with shape k& > 0 and scale § > 0, denoted by T'(k, 0),
is the probability distribution with density function

xk—le—x/é)

- 1,
T Ty er 0

with respect to the Lebesgue measure on R, where I" denotes the gamma function
defined by

+oo
Yz >0 I'(z) = / e dr
0
For k > 0 and 6 > 0, the characteristic function of the distribution I'(k, 0) is
ueR— (1—fiu)~*

The complex logarithm function (or the principle value of complex logarithm),
denoted by Log, is defined on 2 = C\] — 00, 0] by

1
Vz=a+1iy € Q Log(z) = 3 In(z? 4 y?) + 2i arctan (m—l—ny—I—yQ>

If a € C and z € §, then the a-exponentiation of z is defined by
2% = exp(alog(z))
We can now prove the following key lemma :

Lemma 5. Let t € R and ¢ € C such that Re(¢) > 0. Then
o 2 2 Jm(¢)) 2
eftr—=C™/2 1. — exp (—) (1 +1 >
A Re(C) 2¢ Re(C)

Proof. Let ¢t € R and ¢ = a + ib € C such that Re(¢) > 0. We define

K0 = [t

We factorize :

1, 1 it\> 2 1 th ta\?



Thus

I K (4 () = / o—Cla—tb/|¢|=ita/IC)*/2 gy
R

The change of variables y = x — tb/|(]| gives us

et“‘/ch(t’O:Aef«wm/mwzdy:7RLHE / G222 g,
o Jy1

where the last integral is the contour integral of the entire function z — e/ 2
along the segment v; in the complex plane with end points R + ita/|¢| and
—R + ita/|(].

Let v be the rectangle in the complex plane joining successively the points
R +ita/|¢|, —R + ita/|(], —R and R. We apply the residue theorem :

/ e #1240, =0
¥

since z — exp(—(22/2) has no pole. We denote 71, 72, 73 and 74 the successive
edges of the rectangle ~.

—R +ita/|C| " R +ita/|C|

V2 V4

—R 0 V3 R
2 R 2 2 +oo 2
/ e ¢ /2dz:/ e "2 dy — e /2dm:2/ e /2 gy
¥3 -R R—+co Jr 0

We make the change of variables y = 22 on |0, +o0] :

+ + +
2/ Oo e C?/2 o — / * e—Cu/2 dy _ [T e iby/2,—ay/2 Ay
0 0 VY 0 NG

~1/2
SAIBIND
a 2 a

since we recognize, up to a normalization factor, the characteristic function of
the Gamma distribution with shape 1/2 and scale 2/a. Moreover we have

1 . 2 .
—¢2*/2 4 / <C <R+@ ) )mtd ‘
/ AL P 2T g™

<M 1exp<—aRﬂ+Ratb$+a(m)2) dx
Kl Jo 2 1q 2\ [¢]

A o (—aR2 | Bt | a <at)2> 0
~ [¢] 2 [q 2 \[¢] R—+o0

N

10



Likewise

/6_422/2dz — 0
y2 R— 400

Letting R go to 400, we conclude that

2 (1 b\ /2

-r (7) (1 + F) +0— e XK ({t,¢)+0=0

a 2 a
Since I'(1/2) = /7, we obtain the identity stated in the lemma. O
Proposition 6. If p = N(0,1) then the characteristic function ®,, of the dis-

tribution v s

2
(u,v) € R? — exp <—Z <1 _qu + Log(1 — 2iv))>

Proof. Let (u,v) € R?. Setting ( =1 — 2iv € {2z € C: Re(z) > 0}, we have

. .2 2 dx "
@, (u, — (P 7 n_ (/ iuz+ive” j—a”/2 7)
(u,v) = (P1(u,v)) Re e W

1 . 2 n
_ iux—_Cx< /2
CHRE ( Ae dm)

2

B (u,0) = W <\/%exp <—M> (1- 2z'v)1/2>n

Lemma 5 implies that

and the proposition is proved. O

Once we know the characteristic function ®,, of the law v*™, a Fourier inversion
formula gives us its density. We first have to check that ®,, is integrable with
respect to the Lebesgue measure on R2.

Let (u,v) € R%. Since (1 — 2iv)~! = (1 + 2iv)/(1 + 4v?), we have
2

2
Re < Y} Log(l - 2w)> = 1 In(/1+402)

1— 2w 1+ 402
It follows that

nu? 2
_ s n/4
/2\@n(u,v)| dudv—/2 exp( > U2)> (14 4v%) du dv

= A{(Hzxv?)—"/“ <A§exp (—2(11“;2)> du> dv

2
= /(1+4v2)_"/4 (1l +4v%) )dv

R n
2m 2\ —(n—2)/4
=4/— [ (1+407) dv
n Jr
where we used Fubini’s theorem in the third integral. The function
v (14402~ (=274

is continuous on R and integrable in the neighbourhood of 400 and —oo if and
only if n > 4.

11



Proposition 7. If p = N(0,1) and n > 5 then v," has the density

, n—1\\ "1 y 22 (n=3)/2
(z,y) € R* — [ V27an T —5— exp (—7) vy 12 cpy

with respect to the Lebesque measure on R2.

Proof. We have seen that, if n > 5, then ®,, is integrable on R?. The Fourier
inversion formula implies that v;™ has the density

1 —iTU—IYV
fn:<x’y)'—>(27)2A§2€ YD, (u,v) dudv

with respect to the Lebesgue measure on R2. Let (z,y) € R2. By Fubini’s
theorem,

i gt (o () )

1 e—iyv n
(2r)2 AQ (1 — 2iv)n/2 ( 1z 2m> v

where K is defined by

Ya>0  VY(tb) € R? K(t,a+ib)=/e“z—@“b)*/? dz
R

Lemma 5 implies that for any v € R,

K (—x L) - Wexp< 332(1_2“’)> (1 + 2i0) /2

"1 —2iv 2n
\/ exp

x 1—2@1}) 1+ 402\ /2
14 24w
)

(1-2
\/exp< v w>(1—2iv)1/2
n
Thus

2 1—-2
fu(@,y) = 5351/ 7T/exp <—zyv—(w)> (1 — 2iv)~ (=12 gy
(2m)2 2
1 T
— _ _ - 1_2 (n 1)/2
\/%exp< 2n> 5 Aexp ( iv <y - >> ( )~ dv

Therefore v/2mn exp(x?/2n) f,,(z,y) is the inverse Fourier transform of the dis-
tribution I'((n — 1)/2,2) taken at the point y — 2 /n. Hence

e () o = (1 (47 2) (o)
:

X exp <—g +

3

(n=3)/2

) ]1y>m2/n

12



Finally

W1 o) 22\ (=92 y
fn(xay> = (V2mnl T 2 Yy—— exXp (_5) ]lac2<ny

n

The proposition is proved. O

This previous result and proposition 4 imply that, for n > 5, under fi, ,, the
law of (S,,T}) on R? is

2 2y (n—3)/2
C-lexp <926y — g) (y — i) 1,2 cpny dxdy

where C), = Z, V2"mnT'((n — 1)/2).

Let , 8 €]0,1], n > 5 and f a bounded measurable function. The change of
variables (z,y) — (n%x,nfy) yields

S, T, noth n2e=Bg2  nby
Eg, (f <n70‘7 nj)) T 0, e f(z,y) exp <2y - 2)

« (ny— n2a-1g2) "0

]ln2(’<12<n5+1y dz dy

Factorizing by n("=3)/2_ we notice that all the terms in the integral are functions

of 22/n?72% and y/n'~#. We obtain the following proposition.

Proposition 8. Let o, €]0,1]. If p = N(0,1) and n > 5 then, under [, ,,
the distribution of (Sn/n®, T, /nP) is

na+6n(n73)/2 72 y 2 y
2
z Y
where X is the indicator function of the set

D ={(z,y) eR*:y>2>0}

and ¥ and @ are the functions defined on D" by

v (z,y) — % (*gﬂ/*ln(y*x))

o (z,y) — (y—x) %2

We give next some properties of the map v in order to determine which values
of @ and (3 to choose.

Lemma 9. The map ¢ has a unique minimum at (0,1) and ¥(0,1) = 1/2. The
map ¢ is C* on Dt and it satisfies :
* In the neighbourhood of (0,1),

1

Yw,y) — 5 = 107+ =17 + oy~ 1P)

13



* There exists § > 0 such that for all (x,y) € DT,

—_

1
ol <0 ly=11<d = dzy) -5 =@+ -1)7)
*inf{¢(x,y):|z| >0 or |y—1]>d}>1/2
The map ¢ is bounded by 1, it converges to 1 when (x,y) goes to (0,1) and

A@ e_w(xz’y)go(xQ,y)]lxz<y drdy < 4+

Proof. The map ¢ is C2 on D' and, for fixed y > 0,

b 1( 1 1)
_ = — | —— >
5‘z<x’y) 2 y+yf:c 20

Equality holds if and only if £ = 0. Thus « —— ¥(z,y) is increasing on |0, y[
and 1(0,y) = (y — In(y))/2. Hence for any (z,y) € Dt,

wmw>§@—mw»>§:wmn

with equality if and only if (z,y) = (0, 1). Therefore (0, 1) is the unique minimum
of 1. In the neighbourhood of (0, 0),

1 1
w@1+m=§pwu—h+dﬁn+1+h—m—x—§m—xf+dm—xﬂ

1 h? 22 9
—§+Z+Z+0(||$,h|| )

Thus in the neighbourhood of (0, 1),

1 1

V(wy) =5 =@+ =1 +ollle,y - 1)

It follows that there exists & > 0 such that for (z,y) € D', if |z| < ¢ and
ly — 1] < 4, then,

Ury) -5 2> @+ (= 1)7)

Moreover, if |y — 1| > § and = € [0, y[, then
1 . 1
P(z,y) > §mm{1—(5—ln(1—(5)7 1+6—In(1+0)} > 3
We suppose that § < 1, otherwise we reduce 6. If z > § and y > x, then
) ) )
2p(z,y) > ——+y—In(y—39) > inf | ——+y—In(y—9) | >1
Y Y>3 Y

since ¢ # 0. Therefore

inf {¢(x,y): || >0 or |[y—1]>d}>1/2
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Finally the map ¢ is bounded by 1, it converges to 1 when (z,y) goes to (0,1)

and
/ =260 (02, )1y da dy < (/ —fd)( +ooe_yd><+
e W op(x?, ) 1oy, drdy < e e x Yy 00
R2 <Y R o VY
where we used the change of variables (z,y) — (x,y — 22). O

Thus, for fixed (z,y), when n goes to 400,

z? Y 1 ot g 4, Y 2
2/}<nQ—2""nl‘5> B +Z(n1—5 _1)

Hence we take a = 3/4 and 8 = 1. We prove now the following theorem :

Theorem 10. For p = N(0,1), under [y,

s —=*/4g T,
o i> e < x and - i> 1
n3/4 no+too fR e—yt/4 dy n n—+oo

Proof. Let n € N and let f : R?> — R be a continuous bounded function. By
proposition 8, we have

Es, (f <n5374%)> = WAZ f(z,y) exp <—n¢ <;;y>>

22
X @ <\/ﬁ,y> 1 mysa2 dzdy

Let § be as in lemma 9. We denote

2 2
A, = , oo (L )) (fv) _dvd
A2<5\/ﬁ/|y1<5f(x y)exp< nw(\/ﬁ v)Je\ Y 1 mysae dedy

The change of variables (z,y) — (z,y/y/n + 1) gives

\/ﬁe"/zAn - A2<6\/ﬁ /y|<5\/ﬁf (% % - 1> P (_m/] (\gj257 % * 1>>

n 22y
exp (5) © <\/ﬁ’ % + 1) Lt mse2 dedy
Lemma 9 and the continuity of f imply that

2 oy n zt 2
- < 1 - —s — Z
”1/’(\/7?\/ﬁ+> 2 0ot 4 4

2
Y T Y
f (I, 7\/5 + 1) "2 <\/’ﬁ7 7\/{5 + 1) ]1y+\/ﬁ>w2]]'w2<6\/ﬁ]1|y|<6\/ﬁ 4)+ f(LE, 1)

n—-+0oo

Moreover the function inside the integral is dominated by
Lo 4 2
(@) = I fllc exp =5 (2" +57)
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which is independent of n and integrable with respect to the Lebesgue measure
on R?. By Lebesgue’s dominated convergence theorem, we have

Vne'? 4, — f(a, 1)6_3:4/46_3}2/4 dzx dy = \/47r/ f(z, 1)6_‘”4/4 dx
R

n—+0o [p2

We define
Bs ={(z,y) € D" :]a| <0, ly —1] <3}

and

Z‘Q 332
Bn=/ f(z,y)exp <—m/) <y>> @(41)11 my>a2 AT dy
(22 /v/y)€B; Vi N

Let ¢ = inf {¢(x,y) : (z,y) € B§},

|B,| <e (n—2) ”f”OOAzZ exp (—21/) (\/ﬁ,y)> % (\/ﬁ,y> 1 mysa2 drdy

The change of variables (z,y) — (zn'/4,y) yields
\/ﬁe"/2|Bn\ < 628Hf||006_n(8_1/2)n3/4 AQ 6_2¢($2’y)<p($2,y)]lz2<y dr dy

Lemma 9 guarantees that £ > 1/2 and that the above integrable is finite. The-
refore \/ne™?B,, goes to 0 as n goes to +o00. Finally

A? f(z,y) exp <—n1/) <\a;,y>> @ (?,y) 1 fmysaz dody = Ay + By
—"/2 r/fx e/ do -+ o(1) + of1)

+m\/>n/2/fxlz/4
If f =1, we have
m ol \/fe_"mée_#/‘ldx
Hence
o (1 (52.5)) o [ sm e
n n n—+oo Jp Jre /4 du

—m4/4d
- [ s ( S ®61<y>>

This ends the proof of the theorem. O

6

A straightforward change of variables implies that, if p = N(0,0?), then, under
fin, p»

_ 4 4
S, r e % /4o dx and & r 02
n3/4 n—-+400 f]R 6_94/4‘74 dy n n—+oo
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We also get
Sn L
n

Since py = 30, we have
Ha 1

1208 ~ 40t

We have thus proved theorems 1 and 2 for a Gaussian distribution N (0, 0?).

In the general case we cannot compute explicitly the distribution v;". In the
following sections, we deal with the more robust method we suggested in the
heuristics of section 3.

6 General results on the Cramér transform

This section, which may be omitted on a first reading, presents some general
results on the Cramér transform of a probability distribution in R?. Let v be a
probability measure on R¢, d > 1. The Log-Laplace L of v is defined in R? by

VA € R? L(A)=1In A&d exp(A, z) dv(z)

where ( , ) denotes the inner product in R?. The Log-Laplace L is convex on R?
and takes its values in | — 0o, +00]. We denote by Dy, the set where L is finite.
In particular, if v has a bounded support, then D = R¢.

The set Dy, is convex and contains 0 since L(0) =0. If Z%L # @& then L is C*®
on Dy, and

2 9% exp(L) R
VYA€ Dp, o € N¢ W(A):szll...zddexp<)\,z>d1/(z)
We refer to [7] and [9] for the proofs of these results.

We define the Cramér transform of v by

J:xzeRY— sup ((\,z) —L(\))
A€Rd

It is the Fenchel-Legendre transform of L. We write
Dy={zeR%: J(x) < 400}

Proposition 11. (a) J is a non-negative convex and lower semi-continuous
function.

(b) If L is finite in a neighbourhood of the origin then the level sets of J,
{zeR?: J(z)<a}, a €R, are compact.

(c) If t € Dy, and u = VL(t) then J(u) = (t,u) — L(t).
(d) If v has a finite first moment then J(m) = 0 where
m = x dv(x)
R4

o
Moreover, if 0 € Dy, then J has a unique minimum at m.
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Proof. We refer to [7] for the proof of the points (a), (b) and (¢). We prove the
point (d) (see for instance chapter V. of [15]). Let A € R?. Jensen’s inequality
implies that

/ e duy(z) > exp/ A, z) dv(z) = eM™
R4 RY

Therefore L(A\) > (A, m) and thus J(m) < 0. Since J is a non-negative function,
it follows that J(m) = 0 hence m is a minimum of J. We show that it is the
only one : suppose that zg is a minimum of J. Then J(z¢) = 0 and thus

VAERYT (N z)—L(\) <0
Hence for all t > 0 and A € R,

L(tN) = L(0) _ L(L\) _ (A 20)

t t t

= </\’ x0>
Since L is differentiable at 0 € ﬁL, letting ¢ go to 0, we get
YAeRY  (VL(0),\) > (xg,\)

It follows that g = VL(0) = m. O

We notice that Cramér’s theorem (see [5]) links J and the large deviations of
(X1 + -+ X,)/n where (X,,)nen is a sequence of real-valued independent
and identically distributed random variables in R?. This is why J is called the
Cramér transform.

A probability measure v on R is said to be degenerate if it is a Dirac point mass.
We will generalize this definition for measures on R?. We refer to [4] and [11].

Definition 12. A probability measure v on R%, d > 2, is said to be degenerate
if its support is included in a hyperplane of R?, i.e., there exists a hyperplane H
of R? such that v(H) = 1.

The following lemma illustrates the interest of this concept.

Lemma 13. (a) Ifv is degenerate then its Cramér transform J vanishes outside
of a hyperplane containing its support.

(b) If Z is a random variable whose distribution is v, which is non-degenerate,

then its covariance matriz Gy is invertible.

Proof. (a) We assume that H is the hyperplane given by (ag, z) = ¢, with t € R
and ag € R¥\{0}. We set to = agt/||ao||. We notice that z € H if and only if
z — to belongs to the orthogonal of ag. Thus for any = ¢ H,

J(z) = sup (()\,:E —to) — lnﬁ_‘eo"zft"> du(z))

AERC

> sup (</\,JJ —tg) — ln/ ¥ du(z))
AERag H

= sup (k{ag, z — to)) = +o0
keR

18



(b) We have 'y = E(Y ) with Y = Z — E(Z). The matrix I'z is symmetric
and thus it is diagonalizable. To conclude that I'z is invertible, it remains to
prove that 0 is not an eigenvalue . Suppose that it is the case : there exists a
vector = # 0 such that T'zz = (0,...,0). Then

E([|'Yz|?) = E(zY V) = aB(Y YV)x =t aT gz = 0

Therefore ||%Y'z||? = 0 almost surely and thus

d
inYi =0 a.s
i=1

That is, with probability 1
Ze{zeR: (x,2) =E((z,Z))}

This is absurd since v is non-degenerate. Hence I'z is invertible. O

From now onwards, we assume that v is a non-degenerate probability measure
in R?. We are interested in the points A realizing the supremum defining J(z),
for x € Dj. We denote by C the closed convex hull of the support of v.

Lemma 14. Let v be a Jon- degenerate probability measure in Rd The interior
of C is not empty and ¢ c Dy C C. Moreover for any © € C the supremum
defining J(x) is realized for some value \(x) € Dy.

Proof. The non-degeneracy of v means that its support is not included in a
hyperplane of R¢. Therefore the support of v contains d linearly independent
vectors and the interior of the convex hull of these vectors is non-empty. Thus
C is non-empty.

We prove next the second assertion. We first show that Dy C C (see corollary
12.8 of [5]). Suppose that C # R? (otherwise the result is immediate). Let = ¢ C.
By the Hahn-Banach theorem, there exists A € R and a € R such that

Yy eC Ny <a<(\z)

Since v(C) = 1, for any ¢ > 0,

J(x)

v

() =In [ expl(eA.) dv(o)
R4
——In / exp(t(\,y) — t\, 7)) du(y) = H({\z) — a)
C

Sending ¢ to 400, we conclude that J(x) = +o0o. Thus D; C C. Let z € ¢ and
let (A\n)nen be a sequence in R< such that

n—-+o0o

J(x) = lim <<)\n,x> —lnéd exp(</\n,z>)d1/(z)>

= —In lim exp((An, 2z — x)) dv(2)

n—-+4oo Rd

We suppose that |A,| = +oo and we show that it leads to a contradiction. For
all n € N, we set 4, = Ap|\n| 1. Then (u,)nen is a bounded sequence. Thus, up
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to the extraction of a subsequence, we might assume that it converges to some
vector u € R? whose norm is 1. Let v belong to the support of v and let U be
an open subset of R? containing v. We have then v(U) > 0. Suppose that for
any z € U, (u,z —x) > 0. Then, by Fatou’s lemma,

+oo = /hmmf exp(| An | (Un, 2 — x)) dv(2)

n—+4oo

< liminf / exp(|An|{tn, z — x)) dv(z)
U

n—-+oo
Hence
exp(=J(z)) = lim [ exp(|An[{un,z —z))dv(z) = +oo
n—-+oo R4
Thus J(xz) = —oo, which is absurd since J is a non-negative function. We

conclude that for all v in the support of v and for any open subset U of R?
containing v, there exists z € U such that (u,z — ) < 0. It follows that, for
any v in the support of v, (u,v) < (u,z). This inequality is stable by convex
combinations, thus

Yy € C (u,y) < (u,x)

CASE WHERE v IS DISCRETE AND CHARGES FIVE POINTS OF R?

Since = € CO7 there exists a ball B, centered at x and contained in C. Thus there
exists yg € B, such that (u,yo) > (u, z), which is absurd. Therefore (A, )nen is a
bounded sequence. Hence there exists a subsequence (Ay(n))nen and A(z) € R
such that A,(,) — A(z). By Fatou’s lemma,

J(x) = (A (z),z) —In lim exp({An, 2)) dv(2)

n—+00 [pd

< (Mx),z) — In liminf A@d exp((An, 2)) dv(z)

n—-+oo

< {(Az),z) — IHA liminf exp({A\n, 2)) dv(z)

d n—+00
— (A\(®),2) —In A exp((A(z), 2)) dv(2)
< J(x)
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Thus J(z) = (AMx),z) — L(A(z)). Since L(A(z)) # —oo, this formula implies
that J(z) < 400 and thus that C C Dj;. Moreover if L(A(z)) = +oo then
J(x) = —oo, which is absurd. Therefore L(A(z)) < oo. This shows that the
supremum defining J(z) is realized at a point A(x) such that A(A(z)) < +o00. O

If D; is an open subset of R¢ then for Oall (z,y) € 5] = Co, the supremum
defining J(x) is realized at some A(z) € Dr. This is the case when the support
of v is bounded, and also for the distribution v, when p is the Gaussian A (0, a?),
where we have then Dy, = R x | — 00, 1/(202)].

Now we study the smoothness of J.

Notation. If f is a differentiable function on an open subset U of R%, we denote
by D, f the differential of f at x € U. If f is real-valued, we denote :

x D2 f its second differential at x € U (considered as a matriz of size d x d)

x Vf the function U — R such that

VeeU VyeR?  (Vf(z),y) =D.f(y)

We define the admissible domain of J :

Definition 15. Let v be a non-degenerate probability measure on R such that

the ingerior of Dy, is non-empty. The admissible domain of J is the set Ay =
VL (Dy).

The following proposition states that A, the admissible domain of J, is an open
subset of R%, and that .J is C* on Aj.

Proposition 16. Let v be a non-degenerate probability measure on R* such
that the interior of Dy, is non-empty. Let A; be the admissible domain of J.

(a) The function VL is a C*®-diffeomorphism from ﬁL to Ay. Moreover
AjcDy={zeR%: J(z) < o0}

(b) Denote by X\ the inverse C*°-diffeomorphism of VL. Then the map J is C*
on Ay and for any x € Ay,

J (@) = (2, Az)) — L(A(2))

VJ(x) = (VD) (2) = Ma)  and  D2J = (D3,L)

(c) If Dy, is an open subset of R then Ay = ﬁ] — ¢ where C denotes the
convex hull of the support of v.

The points (a) and (b) are proved in [1] and [4]. For the sake of completeness,
we reproduce the proof below.

Proof. (a) We know that the function L is C* on ﬁL and that for any A € 5L
and i,7 € {1,...,d},

oL 1
- = o{A2)
O\ *) exp L(\) /Rd “ie dv ()
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PL (o Jarzzge?? dn(e) (oo e () (Jro 25e0 o)
oA exp L()\) (exp L(\))?
= E(Z)\JZ)\}J‘) - ]E(Z)\,i)E(Z/\,j)

where Z) = YZx1,...,Zx4) is a random vector in R? with distribution g,
whose density is
2 exp( (A 2) — LV )

with respect to v. Thus D3 L is the covariance matrix of y,,. Moreover y,, has the
same support as v and thus it is non- degenerate Therefore lemma 13 implies
that D2L is invertible. Hence, for all A € DL, D L is a symmetric positive
deﬁnlte matrix. It follows that, for any = € R?, the equatlon

VLA ==z

has at most one solution A\(z) € Dy. Indeed, if there exist two different vectors
A1 and s in DL such that VL(\) = VL()\Q), then the function

1,[) e <VL(t>\1 + (1 — t)Ag),)\l — A2>

is C' and real-valued on [0, 1] and verifies 1/(0) = (1) = 0. Rolle’s theorem
implies that there exists to €0, 1[ such that ¢’(tg) = 0, i.e.,
d
<7 (VL(tA + (1 —t)A2)) A1 f)\2> =0
dt t=to

Setting A\g = toA1 + (1 —tg) A2 € I%L and v = A\; — Ay € R¥\{0}, we have
<D)\0L(’U), U> =0

This contradlcts the fact that D2L is positive definite. Hence VL is a bijection
from DL to Ay with inverse functlon

Arx € Ay — Ax)

Moreover L is C* on l%L and for any A € 5L, D, (VL) = D3L is an isomorphism.
T hus the inverse function theorem implies that VL is a C*°-diffeomorphism from
DL to AJ.

(b) For x € A, we define
fo: AERY — (x,\) — L()\)
The map f, is differentiable on ﬁL and
VAeDp,  Vf(\) =z—VLQ)

We have shown in (a) that, for all x € Ay, Vf.(A\) = 0 if and only if A = A(z).
Since f, is concave, its supremum is realized at A(x), that is

J(2) = fo(A()) = (2, A(2)) — L(A(2))

It follows that Ay C Dj and that J is C*° on Aj;. Finally for any z € Aj,
u € R,

<VJ($L‘),U> = <’U,7 )\(.%'» + <Dm>‘(u)= CU> - <VL()‘(:'C))7D30)‘(U)> = <u7 )\(CL'»
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since VL(A(x)) = x. Hence
Vo e Ay VJ(z) = \Nz) = (VL) ()
Differentiating VL(A(z)) = z, we get

D3, LoD2J =D3, LoD, A=1d

whence the expression of D2.J since Di(m)L is an isomorphism.

(c) If Dy, is an open subset of R? then lemma 14 implies that for = € (2 = ﬁJ7
the supremum defining J(z) is realized at some point A(x) € Dy = Dy. The
function L is differentiable at A(z) and the point (b) yields that

x=VL\(z)) € A(Dp) = Ay

Thus ﬁ; C Aj. Finally, since Ay C Dy and A is open, we have A; = ﬁ; =¢.
This proves (c). O

Let v be a probability distribution on R? having a density with respect to the
Lebesgue measure and let (X,),,>1 be a sequence of independent and identically
distributed random variables with distribution v. The following theorem states
that, under some hypothesis allowing the Fourier inversion, the density of the
distribution of (X7 + - -+ X,,)/n is asymptotically a function of

J:z e R — sup <(t,a?> - ln/ elt?) du(z))
Rd

teRd

We propose a proof, extracted from the article of C. Andriani and P. Baldi [1].
It relies on proposition 16.

Theorem 17. Let v be a non-degenerate probability measure on Rd,o We denote
by L its Log-Laplace and by J its Cramér transform. Suppose that Dy, # & and
that there exists ng > 1 such that

v e LL(RY)

We denote by Aj the admissible domain of J. For any x € Ay, we set u, the
probability measure on R such that

_exp(y +z,A\(z))

dug(y) = exp L)) dv(y+ )

(where X is the inverse function of VL). For n large enough, the Fourier trans-
form of pa belongs to L"(RY). Let (X,)n>1 be a sequence of independent and
identically distributed random variables with distribution v. For any n > ng, the
random variable X,, = (X1 + -+ + X,,)/n has a density g, with respect to the
Lebesque measure on R? satisfying :

(a) For x € Ay and for n large enough,

gn(7) = (%)de*“(“) A{d (Tia (£))" dt
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(b) If K is a compact subset of Ay then, uniformly over x € K ;, when n goes
to +o0,
d/2 1/2
gn(x) ~ (23) (det DiJ) / e (@)

™

The proof requires some preliminary results, which are presented next.

Lemma 18 (Uniform dominated convergence theorem). Let X be a separable
space and let (2, F,u) be a measurable space. Let f and f,, n > 1, be real or
complez-valued measurable functions defined on X x Q. Suppose that, for any
w € Q, the functions x — f(z,w) and  — f,(x,w), n € N, are continuous
on X and that

sup | fn(z,w) — f(z,w)] — 0

TEX n—oo

Suppose also that there exists a mon-negative and integrable function g on )
such that
VneN VzeX VYwe( | fr(z,w)| < g(w)

Then for any x € X, the function w — f(x,w) is integrable and

/fnxwdu /fxwd,u

Proof. We adapt the proof of the classical dominated convergence theorem
in [16]. Sending n to 4+oco in the domination inequality, we get

Vrw) € X xQ  [fla,w)] < gw)

This shows that w — f(z,w) is integrable. For any n € N, we set

— 0

n— oo

sup
reX

hn ‘W sup \fn(z,w) - f(wi”
rzeX

For all n € N and w € Q, the function x € X — |fu(z,w) — f(z,w)| is
continuous and, since X is separable, its supremum is equal to its supremum
on a countable dense subset of X’. Therefore h,, is a measurable function. We
have that (29 — hy,)nen is a sequence of non-negative functions whose limit is
the function 2¢g. Fatou’s lemma implies that

/ 2gdu = / liminf (2g — hy,) dp < liminf | (29 — hy,) du

n—-+oo

:/ng,u—limsup/hnd,u
Q n—-+oo JQ

Since g is integrable, we get that

limsup / hydp <0
Q

n—-+oo

Hence [q, hy dp — 0 since for any n € N, h,, is a non-negative function. Finally

[ @) du) = [ @) due ‘<sup/|fnw F(a,w)] da(w)

sup
TEX TEX
/h du — 0
n—oo
and the lemma is proved. O
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Lemma 19. Let v be a probability measure on R?. We denote by L its Log-
Laplace. Let K be a compact subset of Dy,. Then the function

(5,1) — M(s +it) = / el HIL) gy ()
Rd

is uniformly continuous on K x R<.

Proof. For n > 1, we denote by B,, the open ball of radius n centered at the
origin and we set
foniyr— eV dy(x)
B,
The sequence (fn)n>1 is a non-increasing sequence of continuous functions on
K C Dy, which converges to the null function. By Dini’s theorem, the sequence
(fn)n>1 converges uniformly to the null function on K. Let ¢ > 0. There exists
ng > 1 such that

Yy e K / V) du(x) <

no

I

We define next
Vst € R g(x,s,t) = exp((s +it, z))

The function ¢ is uniformly continuous on B,, x K x R? (its differential is
bounded on this set, hence ¢ is lipschitz). Thus there exists § > 0 such that for
s,u € K and t,v € R,

I(s,t) — (u,0)]| <6 = VzeB,, lg(z, s,t) — g(x,u,v)| <

| ™

Therefore
|M(s+it) — M(u+ iv)

s/ M%M%ﬂ@%ﬂw@+%w/ W) du(z)
B c

ng yeK

SA %du(m)—i—ggs
no

no

This proves the uniform continuity of (s,t) — M (s +it) on K x R%. O

We will use the Riesz-Thorin theorem to prove our last lemma. Recall that the
norm of a continuous linear operator 7' from LP(RY) to L(R?), with (p,q) €
[1,4+00]?, is defined by

nﬂhq=wp{'””“:feLﬂf#o}
i,

Theorem 20 (Riesz-Thorin). Let pg, p1, go and g1 in [1,+00] such that py # p1
and qo # q1. For any t € [0,1], we put
11—t ¢ 11—t ¢

+ — and —
Dt Do b1 qt q0 q1
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Let T be a continuous linear operator from LPo(R?) to L% (R?) with operator
norm My. Suppose that T is also continuous from LP*(R?) to L% (R%) with
operator norm My. Then, for any t € [0,1], T is a continuous linear operator
from LPt(R9) to L% (RY) and

VieLrRY)  |T(H)llg < Mo~ M| fllp,

We refer to chapter 1 of [3] for the proof of this theorem. We apply next the
Riesz-Thorin theorem to the Fourier transform :

The map which associates each integrable function to its Fourier transform is
a continuous linear operator from L!(RY) to L>°(R?) with operator norm 1.
Moreover Plancherel theorem guarantees that

Vie L2 ®RY  [Ifllz = @0)Y2| [l

For any t € [0, 1], we put p, = 2/(2 —t) and ¢ = 2/t. We easily check that p;
and ¢; are conjugate and that

1 1—1t t 1 1—1t t
= + — and — = +
Dt Pbo b1 qt qo q1

with po = 1, p1 = 2, qo = 400 and g; = 2. The Riesz-Thorin theorem implies
that .
VEELPRY)  (Ifllg < 1TH@M)Y2 fllp, = (2m)¥ ]| £y,

Since p; € [1,2], we get the following inequality :
Lemma 21 (Hausdorfl-Young inequality). Let d > 1 and p €]1,2]. We denote
q=p/(p—1) € [2,+00[. Then

VEeLP®Y)  |flly < @O f],

Proof of theorem 17. We denote by ¢ the Fourier transform of v. We have
Yn>1 vV =p" ="
By hypothesis, ¢ € L*(R¢) and
Vnzng [ = fel el < fl™
Thus " € L!(R%) and the Fourier inversion formula implies that v*" has a
density f,, given by
Ve eR fu(z) = @ Ad e HBD on () di

We also get that f, € L®°(R%). Let s € Dy and n > 1. The function z —»
el f,(x) is non-negative and its integral over R? is M(s)" < +oc. Let us

denote by s, its Fourier transform. Let p €]1,2] be such that ps € Dy. We
have

J.

p
o g @) o < [P @) g o = M) 2
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which is finite. The Hausdorff-Young inequality implies that ¢g,, € LI(R?)
where ¢ = p/(p — 1) € [2,+o0[. However

VERT  pon(t) = / M) 00) £ (2) d = M(s + it)"
Rd
Thus for any n > gny,
/ |05, (0)] dt :/ [M (s +at)["09| M (s 4 it)[" "% dit
Rd Rd

< MG [ (MG inp) di
R4

= M(S)"_"Oq/ |9s,m0 |7 dt < +00
Rd

Thus ¢, € L}(R?) and the Fourier inversion theorem yields that for all z € R,

1 . 1 ;
(s,2) _ —i(t,z) £ dt — —ilt®) pp it)" dt
e fn(l’) (271_)(1 /Rd (& <10.5,71( ) (27T)d Rd € (S +1 )

Moreover for € A; and t € R?,

s M(A(@) + i)

7, (1) = ei(t,y>+<y+:1:,/\(m))7L()\(:1:)) dv(y + 1) = 67i<t,z
i) = [ (v+2) O

where we made the change of variables z = y + z. It follows that fi, € L"(R%)
for n > ngq. Notice that
Ve eR! g, (z) = n?fo(na)
Therefore
2
If x € A then proposition 16 implies
J (@) = (Ax), z) — L(A(x))

= ()" [ (e

thus, applying the above inequality to s = A(z), we get

gn(z) = (%)déd (e*<)\($)+it@)+L(/\(ac)+it))" dt

_ (ﬁ)de—nJ(z) (eJ(w)—<A(x)+it,z>+L(A(z)+it))” dt
27T R4

_ (ﬁ)de—m(x)/ (e—i(t,x)—L()\(x))+L(/\(ac)+it))n &t
2 R4

= (&) e RO

This equality is valid when n > ngq. This proves the point (a).

Now let us prove the point (b). Let K ; be a compact subset of A ;. We notice that
q depends on & € Ay, but, by compactness of K ;, we can choose g uniformly
over z € K. For any © € K, the mean of u, is

elzt+y,A(z)) J B elz:A (@) J YL _0
L vessioay @+ 0 = [ =05y ) = VL) - o =
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and its covariance matrix is ', = Di(m)L since for 1 <14,j < dand s € Dy,

Jra viyse Q@YD) gy (y + z) f]Rd — x;)(2j — 2;)e®2) du(z)

(T2)iy = M(\z)) M(\(x))
renze®O0 ) o
= JR AO@) —Tx; = m A(x))

When ¢t — 0, uniformly over xz € K,

) = 1= 5t + of1]?)

Indeed .
—ittay MA(@) +1it)

M(A(x))

is C*° on A; x R? (by proposition 16), thus the Taylor-Lagrange formula gua-
rantees that the remainder term is uniformly controlled over z € K ;. Therefore,
for any ¢t € R?, uniformly over z € K},

() ool Aen)

The functions z — i, and z — exp (—(T',t,t)/2), t € R, are continuous on
K ;. In order to apply the dominated convergence theorem (the uniform variant),
we need to get a uniform domination of the sequence of functions. For x € Ay,
T', is a positive definite symmetric matrix thus e,, its smallest eigenvalue, is
positive. The largest eigenvalue of the inverse of T', is ;'. Therefore, for any
x € A,],

(2, 1) — [ia(t) = €

. [ty Tty \ ~ 2
€p = (max {a: a eigenvalue of T'; ! }) = <sup <zy’zy>>
vA0  (0Y)

The term on the right is the inverse of the operator norm of the linear application
associated to the matrix ', *. Moreover 2 +— I',, = Di(m L is continuous on A
thus the function x —— e, is continuous. Let us denote by &g its minimum
on K ;. The compactness of K; ensures that eg > 0. The previous expansion
implies that there exists § > 0 such that

V(t,z) € B0,8) x Ky |m(t)] <1— % <(rx - %Old) t,t>

The spectral theorem for real symmetric matrices yields that, for any x € K},
the matrix I', — eply is positive symmetric. Thus

vt € RY <(r - %Old) t,t> - %OIItHQ = ((Ty — eola)t, t) >0
It follows that
—~ &€
Y(tw) € BO,0) x Ky ()] < 1- 2P

Since 1 —y < e ¥ for all y > 0, we get

Vn>1 VY(tz) € B(0,6vn) x K,
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The right term is integrable and does not depend on € K ; and n. The uniform
dominated convergence theorem (lemma 18) implies that, uniformly in K,

__( t\" 1
I <—) dt — exp (—f It t ) dt
/|t|<5\/71 Vn n—co [ga 2! )

Moreover this second integral is equal to (27)%? (det Fw)_l/ % and proposition 16
guarantees that for x € Ay, Di(z)L is the inverse matrix of D2.J. Hence, when
n — oo, uniformly over z € K,

— [ t\" 27\ 42 1/2
()" dt = n_d/2/ ™ (—) dt ~ (7) det D27
/|t|<6 € lti<ovm NV n ( )

Let us focus on the remainder of the integral. We set

h:ze Ky— sup |ug(t)]
it =6

The function A is continuous thus A(K ) is compact and lemma 19 states that
the function (s,t) — M (s + it) is uniformly continuous on A\(K ;) x R%. The-
refore the function

x+— sup |M(M(z) + it)]

1222
is continuous on K ;. However
1
Vo € Ky h(z) = sup |pz(t)] = —— sup |M(A(z) +it)]
1¢1>6 MA(@)) je)>5

Hence h is continuous on K ;. By compactness of K ;, there exists o € K ; such
that

sup sup |fz(t)| = sup h(x) = h(zo) = sup |fiz, (t)|

z€Ky [t]|>0 z€K it >4
Finally, just like v, the law ;7 has a density and the Riemann-Lebesgue lemma
implies that

—

o) —s

Moreover lemma 4 of chapter XV.1 of [11] guarantees that for any t # 0,

—

lppio(t)| < 1. Therefore there exists x €10, 1] such that

sup
lltlI=0

P ()] < 5

We get

sup sup |pz(t)] <k <1
€K ||t]| >0

It follows that for any « € K; and n > ngq, uniformly over z € K,

[ [ moras e [ o= o)

lItl=6
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since k < 1 and fi,, € L"0(R?). Finally

o) = (52) e </t|>5 "+ /“t|<5ﬁ;(t)” dt)

d/2 1/2
_ ( o~ () ( (detD27) " (1 +o(1))>

(%)d/ =@ (det DiJ) Y24 o(1)

The expansion is uniform over x € Ky, by the previous results and the boun-

dedness of x — (det D2J ) Y2 on K 7, since it is continuous. This ends the proof
of theorem 17. O

Pr0p081t10n 22. Let v be a non-degenerate probability measure on RY such
that DL # @. If there exists m € N and p €]1,2] such that v*™ has a density
fm € LP(R?) then the hypothesis of theorem 17 are verified.

Proof. It follows from the Hausdorff-Young mequahty that fm € L"(R%), with

r =p/(p—1). Moreover fm is bounded thus fm € L4(R%), where q is a positive
integer larger than r. Therefore

v = () = (Fa)" e LARY)

Hence the hypothesis of the theorem are verified with ng = mgq. O

7 Minima of I-F

Let p be a probability measure on R. We define

A (u,v) € R? ln/ euatva dp(z)
R

We denote by I the Fenchel-Legendre transform of A.

In this section, we consider the minima of the function I —F when p is symmetric.

a) Admissible domain of /

We begin by giving some properties of I, which are consequences of the results
stated in the previous section. Let v, be the distribution of (Z, Z?) when Z is
a random variable with law p. We suppose that the support of p contains at
least three points so that v, is a non-degenerate measure on R?. The function A
is the Log-Laplace of v, and its domain of definition Dy contains Rx]| — oo, 0],
thus its interior is non- empty. The function I is the Cramér transform of v, and
we denote by Ay = VA(DA) the admissible domain of I. Proposition 16 implies
that :

(a) The function VA is a C*°-diffeomorphism from 5/\ to Ar. Moreover

ArcDr={zeR: I(z) < o0}
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(b) The function I is C* on Ay. If (x,y) — (u(z,y),v(x,y)) is the inverse
function of VA then, for any (z,y) € Ay,

I(z,y) = wu(z,y) +yo(z,y) — Au(z, y),v(z,y))
Vl(x,y) = (VA)_l(J:,y) = (u(x,y),v(ﬂc,y))

-1
2 _ 2
D! = (Dluteoean?)

(c) If Dy is an open subset of R? then A; = 151 — ¢ where C is the convex hull
of the set { (z,22) : x is in the support of p}.

b) Minimum of [ — F on A*

Let p be a symmetric and non-degenerate probability measure on R. Jensen’s
inequality gives us

Y(u,v) € R lnAe“ZJr”Q dp(z) > /R(uz +v22) dp(z) = vo?

thus 1(0,0?) < 0. Since I is non-negative, then 1(0,0%) = 0 and
. 1
1£1*f (I-F)e [—5,0]
The function I is even in the first variable. Indeed, if (z,y) € R?, then

I(—x,y) = sup (—xu +yv — ln/ euatve’ dp(z)>
(u,v)ER? R

= sup (acu +yv — 1n/ emuztve’ dp(z)) = I(z,y)
(u,v)ER? R

Assume that I — F has a unique minimum (zg, yo) on A*. Then (—xzg, yo) is also
a minimum of I — F' since

I(—x0,y0) — F'(~x0,y0) = I(z0,%0) — F(z0,%0)
The uniqueness of the minimum implies that zo = 0 so that
lg*f(I_F) :I(anO) _F(OvyO) :I(anO) > 0

Since 1(0,0?) = 0 we have yy = o2.

In this section, we will show that, if p is symmetric, then I — F' has a unique
minimum on A*, which is at (0,0?).

Consider first the case of a Bernoulli distribution. Let ¢ > 0. Suppose that
p = (6_c+06.)/2. The law p is centered and its variance is ¢?. For all (u,v) € R?,

Au,v) = ln/ euatve? dp(z) = vc? + In cosh(uc)
R
For any (z,y) € R?, by studying the function (u,v) — xu + yv — A(u,v), we
can determinate its supremum. We get that I is finite on D; = [—¢, ] x {c?},

I(—c,c?) = I(¢c,c®) =In2 and for any z €] — ¢, c|,

I(z,c?) = 2%: ((c+2)In(c+ )+ (c—z)In(c— z)) —Inc
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The function g : x — I(z,c?) — 22/(2¢?) is C? on ] — ¢, [ and

Vo e]—e ¢ g (z) = % (arctanh (%) — %)

1 1
"= —— = >0
g ( ) CQ _ xQ CQ jt
Thus ¢’ is non-decreasing on [—c¢, ¢] and, since ¢’(0) = 0, it follows that g has
a unique minimum at 0. Therefore I — F' has a unique minimum in A* at

(0,¢?) = (0,0?).
The previous results yield the following lemma :

Lemma 23. Let ¢ > 0. We define

e : ¢ € R+ sup (uzr — Incosh(uc) )
u€R

The function

2

x € [—¢, ] — pe(z) — ]

has a unique minimum at 0 and p.(0) = 0.

Notice that the Bernoulli case is special since, if X is a random variable with
distribution p = (6_. + 6.)/2, then X? = ¢? almost surely. Thus

1 p(l(a:1+-~-+xn)2>

ex
Zn

2 22+ + a2 ]l{x§+~~~+x%>0} H dp(z;)

i=1
1 (1 + -+ 2,)%\
= exp [ LT T TT dp(as
e ( — [t

This is exactly the classical Curie-Weiss model.

In the following, we suppose that the support of v contains at least three distinct
points. We first show that, if D, is an open subset of R?, then I — F' has a unique
minimum at (0,02).

In the subsection a), we saw that, if the support of v contains at least three
distinct points and D, is an open subset of R?, then I is differentiable on the

interior of its domain of definition D; and, if (x,y) — (u(z,y),v(x,y)) is the
inverse function of VA, then

o ol
V(.’E,y) € DI %(%l}) = ’U/(ZC7y)

If we show that u(z,y) > x/y for x > 0 and y > 0, then, by integrating this
inequality and using the fact that I is even in its first variable, we get that

o ;r,2

To obtain that I — F has a unique minimum at (0, 02), it is enough to extend
this inequality to the boundary points of Dy (if they exist) and to show that
1(0,.) has a unique minimum at o2.

The following lemma, is the key result to establish the uniqueness of the minimum
of I — F, when p is symmetric.
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Lemma 24. Let p be a symmetric probability measure whose support contains
at least three points. We have u(x,y) =0 if z = 0 and

u(z,y) > if >0

u(z,y) < if <0

QIR <8

Proof. The vector (u,v) = (u(z,y),v(x,y)) verifies

f]R Zeuz-‘rvz dp J‘ Py euz-‘rvz dp( )>
z,y) = VA(u,v) = 5 3
( ) ( ) < f euervz d,D fR euz+vz dp( )

The distribution p is symmetric, thus

+o0
/ ezt dp(z) = / QZsinh(uz)e“Z2 dp(z)
R 0

This formula shows that u and = have the same sign. Moreover for any z > 0,
tanh(z) < z thus, if £ > 0 then sinh(uz) < uzcosh(uz). Therefore, using the
symmetry of p,

foree 222cosh(uz)e’ dp(z) k 22ev= v dp(2)

Tz <y =u =uy
f]R euztvz? dp(z) fR euztvz? dp(z>
Since > 0, u > 0 and y > 0, we conclude that u > z/y. Similarly, we show
that if z < 0 then u < z/y. O

We can now prove the following inequality :

Proposition 25. If p is a symmetric probability measure on R with variance
02 > 0 and such that Dy is an open subset of R? then

V(z,y) ERxR\[0}  I(z,y) - @ > 1(0,y)

Notice that this result encompasses the case of a symmetric measure with boun-
ded support, because in this case Dy = R2. In proposition 31, we shall extend
the inequality to any symmetric distribution on R.

Proof. We already treated the Bernoulli case (see lemma 23). We assume next
that the support of p contains at least three points. We denote by A; the ad-
missible domain of I and by C the convex hull of the set

{(x,2?) : z is in the support of p}

In the Subsectlon a), we saw that, 1f D, is an open subset of R?, then A; =
= ¢ c A*. Moreover I is C* on D; and if (z,y) — (u(z,y),v (x,y)) is the
inverse function of VA then

0 ol
V(I’,y) EDI %(xay):u(z7y)
Let us examine the structure of the set D;. We put

Yy >0 Dry=DrN(R x {y})
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---x---7/Dr,

CASE WHERE p IS SYMMETRIC DISCRETE AND CHARGES 5 POINTS

Let y > 0 be such that (z,y) € 1031 for some x € R. Tlge set Dy, is a convex
subset of R. Moreover « — I(x,y) is even, therefore Dy, is an open interval

| —a(y), a(y)[ with a(y) € [0, /y]. We have
Va € 10)14/ I(z,y) — I(0,y) = AI u(t,y) dt

Lemma 24 implies that for any ¢ > 0, u(t,y) > t/y. By integrating and using
the fact that I is even, we get that

) ;172

V.IGD]W I(J‘Uy)*[(oay)z@

and there is no problem of definition at y = 0 since ﬁ[ C A* does not contain
R x {0} and Dy = @. Moreover

I(x’y) _I(Ovy)

T —

is non-decreasing on Dy ,\{0} since I is convex. Therefore, if —a(y) and a(y)
belong to Dy, then the previous inequality extends to z = —a(y) and = = a(y).
We have shown that

2
V(z,y)€ Dy Yy>0  I(z,y)—1(0,y) > ;Ly

except for the points (x,y) of the superior and inferior borders of Dy, if they
exist. More precisely, we set

K? = inf {2?: z is in the support of p} >0

and
L? = sup {2? : x is in the support of p} < 400

If K =0 and L = 400 then the inequality is already proved on D \{(0,0)}.
Suppose that K2 > 0. Let y = K2 and € R. We define

[ (u,v) € R? v uz + vK? — Au,v)
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Denoting cx = p({K}), we have for all (u,v) € R?,
f(u,v) = ux —In(2cxcosh(uk)) — ln/ euatv(z*—K?) dp(z)
R\[-K,K]

For any z € R\] — K, K[, the function v — exp(v(z? — K?)) is non-decreasing.
Therefore

sup f(u,v) = ux — In(2cxcosh(uK)) — In ( lim / euatv(z*—K%) dp(z))
veER V== JR\[-K,K]

= uz — In(2ck cosh(uK))
by the dominated convergence theorem. Indeed

euz+1)(z2—K2) < euz—(zz—Kz)

Vz e R\[-K,K] VYv< -1

and the map z € R\[-K, K] — eur—(z* =K% jg integrable with respect to p
since it is bounded (it is continuous and goes to 0 when |z| goes to +00). Hence

I(x, K?) = sup f(u,v) =sup {uz — In(2cxcosh(ukK))}
u€eR

u,vER

In fact, we come back to the Bernoulli case. The reason is that, if we condition
on T, = K% in our model, then for any i, X! = —K or K.

If ¢ > 0, then lemma 23 implies that for all z € [-K, K],
5 &
— 2K?
If cx = 0 then for any x # 0, I(z, K?) = +00 so that the inequality is verified
for y = K2.
If L < 400 then we show similarly that for all € [-L, L],
2

I(Z7K2) 7‘[(07K2) :QDK(x)

x
I(x,L*) - 1(0,L%) > 573
Therefore for any (z,y) € Dr\{(0,0)},
22

Notice that for any y € R, by the convexity and the symmetry of x — I(x,y),
if I(0,y) = —+oo then for all  # 0, I(z,y) = +oo. Therefore the inequality
extends to each subset of R? which does not contain R x {0}. O

In the previous proof, if we take x = y = 0, then for any v € R, the function
v — A(u,v) is non-decreasing on R. Therefore

inf A(u,v) = lim A(u,v) = lim (Ilnp({0})+In guztvz® dp(z)
R vV——00 R\{O}

ve vV——00

— Inp({0})

by the dominated convergence theorem. Hence

inf  A(u,v) = inf (Inp({0})) = In p({0})

u,vER

This is valid for any probability measure p in R. This yields the following lemma :
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Lemma 26. If p is a probability measure on R then 1(0,0) = —In p({0}).

If Dy is an open subset of R? then (0,0) € Dp = ﬁA. It follows from the point
(d) of proposition 11 that I(0,.) has a unique minimum at o2. Therefore, the
inequality of proposition 25 implies the following corollary :

Corollary 27. If p is a symmetric probability measure on R with variance
02 > 0 and such that Dy is an open subset of R? then the function

(2,y) € X v I(2,y) —2°/(2y)
has a unique minimum at (0,0?).

Now we gvill extend this result to any symmetric probability measure such that
(0,0) € Dy. For this we need Mosco’s theorem, which we restate next.

Definition 28. Let f and f,, n € N, be convex functions from R to [—o0, +-00].
The sequence (fn)nen is said to Mosco converge to f if for any v € R?,
x for each sequence (T, )nen in RY converging to x,

liminf f,, (2,) > ()

n—-+oo

x there exists a sequence (T )nen in R? converging to x and such that

limsup fr,(z,) < f(x)

n—+oo

We write then “
fn — f
n—oo
If f is a convex function from R? to [—o0, +-0c], we define its Fenchel-Legendre
transform f* by

Ve eRY  f*(x) = sup ((t,z) — f(1))

Theorem 29 (Mosco). Let f and f,, n € N, be convex functions from R? to
[—00, +-00] which are convex and lower semi-continuous. We have the equivalence

fn S = g M
n—00 n—00

We refer to [13] for a proof.

Proposition 30. Let v be a probability measure on R?. We denote by L its
Log-Laplace. Let (Kp)nen be a non-decreasing sequence of compact sets whose
union is R, For all n € N, we set v,, = v(.|K,,) the probability v conditioned by
K, and we denote by L,, its Log-Laplace. Then

L, M L

n—oo
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Proof. For n large enough, the compact set K,, meets the support of v, and we

have for any borel set A,
_V(ANK,)
vp(A) = 7V(Kn)

Thus, for n large enough and A € R?, we have

L,(\) = ln/ e duge (2) = ln/ e du(z) —Inv(K,)
R K,

By the monotone convergence theorem,

lim Ln(/\):ln/ lim (1, (2)e™?) dv(z) = lim Inv(K,) = L(\)
R

n—-+o0o d n——+oo n—-+oo

Hence the second condition of Mosco convergence (with the limsup) is satisfied
with the sequence (A, )nen constant equal to A.

Let A € R? and (\,,)nen be any sequence converging to A. Fatou’s lemma implies
that

exp L(\) = / liminf 15, (2)e*# dv(z) < liminf / 1, (2)e??) du(z)
R4

R4 n——+oo n—-+oo
Therefore

L(N\) < liminf (L, (Ay) + Inv(K,)) = liminf L, (A,)

n—+4oo n—-+4o0o
Thus the first condition of Mosco convergence (with the liminf) is verified. O

Proposition 31. Let p be a symmetric probability measure on R with variance
0% > 0. We have

2
. x

Moreover, if A is finite in a neighbourhood of (0,0), then the function
22

Jy) € A — I(x,y) — —

(z,y) (z,y) o

has a unique minimum at (0,0?) where it is equal to 0.

Proof. For any n € N, we put K,, = [-n,n]?. For n large enough so that K,
meets the support of v,, we define v,, = v,(.|K,,), A, its Log-Laplace and I,, its
Fenchel-Legendre transform. For all (u,v) € R?,

Ap(u,v) = ln/ ST dy,(s,t) —Inwv,(K,) < Alu,v) — Inv,(K,)
Kn

Applying the Fenchel-Legendre transformation, we get

vy e R 1(0,y) < In(0,y) — Inv,(Kn)
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Moreover the measure v, has a bounded support thus proposition 25 and the
previous inequality imply that

2
VzeR Yy >0 I(O,y)—l—g—y§In(x,y)—ln1/p(Kn)

It follows from proposition 30 that (A, )nen Mosco converges to A. Hence, by
Mosco’s theorem, (I,,),eny Mosco converges to I. In particular, for (z,y) € R?
such that y > 0, there exists a sequence (z,,,y,) € R? converging to (z,y) and
such that

limsup L, (%, yn) < I(zx,y)

n——+o0o

Since y > 0, there exists ng > 1 such that y,, > 0 for all n > ngy. Therefore

2

Vn>ng  1(0,y) + 2‘%” < L (2 yn) — Inwy(Ko)

Moreover v,(K,) — 1 when n — oco. Hence

2
limsup 1(0, y,) + 5 < I(a,y)
Y

n——+00

Finally I is lower semi-continuous, thus

liminf 1(0,y,) > I(0,y)

n—-+o0o

It follows that for (z,y) € R? such that y # 0,

.7,’2

100,y) <1 - —

(0.9) < I(z,y) = o

Suppose in addition that A is finite in a neighbourhood of (0,0). Point (d) of
proposition 11 implies then that 7(0,.) has a unique minimum at o2. Therefore
(v,y) € A" — I(z,y) — 2%/(2y) has a unique minimum at (0,0?) where its
value is 0. O

c) Expansion of I — F' around its minimum

If p is a symmetric probablhty measure whose support contains at least three
points and if (0,0) € Dy, then (0,02) = VA(0,0) € VA(DA) Ay, the admis-
sible domain of I. We saw in subsection a) that I is C* in the neighbourhood
of (0,02) and that

VI(0,0%) = (u(0,0?),v(0,0?)) = (VA)~1(0,5%) = (0,0)

-1
9 -1 (o? 0 ) _ (l/o'2 0 )
Dioon! = (Dfood) = ( 0 m—-0ot) VL0 1/(u—o

since D%O 0) A is the covariance matrix of v, (see the proof of proposmon 16).

Up to the second order, the expansion of I in the neighbourhood of (0, 0?) is
2 (y — 02)?

v N V) 222
202 2(pa — o) Follley =)

I(x,y) =
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The expansion of F' up to the second order in the neighbourhood of (0, c?) is

2 2 1 2
F e
(2,9) 2y 2021+ (y—o02?)/02

_ T 2)12
=552 +o(llz,y — o))
Therefore, in the neighbourhood of (0, 0?),

(y — 0?)?

2(pa — o)

We need to push further the expansion of I — F'.

I(z,y) = Fz,y) = +o(llz,y —o®|)

Consider the case of the centered Gaussian distribution with variance o2. We
can compute explicitly I :

1 —z?
V(z,y) € A" I(w,y)2<3211n<y02 >>

If 4 is the function defined in proposition 8, then

Ty 1
1 ) - F ) = (77 7) Y
(@,y) = Fley) =¢ (=, 5) = 3
Lemma 9 implies then that, in the neighbourhood of (0, 02),
1 (a* y 2  (y—o0°)?
I(z,y) — Fz,y) ~ - [ & (7 - 1) =X W9
(xay) (:r,y) 4 (0_4 + 2 > 4ot + 402

In fact, we have a similar expansion in a more general case :

Proposition 32. If p is a symmetric probability measure on R whose support
contains at least three points and such that (0,0) € Dy then I is C* in the
neighbourhood of (0,02). If g denotes the fourth moment of p then, when (z,y)

goes to (0,02),
I(fE y)_ﬁ'\’ (y_O' IU/4*T4
’ 2y 2(ug —o*) 1208

2)2

Whenever p = N(0,02), we have
2y — 0*) = 2(30* — 0?) = 40*

and
pa/(120%) = 301 /(120%) = (40*) 7!

This is what we obtained before the proposition in the Gaussian case.

Proof. If (0,0) € Dy then
(0,0%) = VA(0,0) € VA(Dy) = A;

The function I is C*> on A; and, if (z,y) — (u(x,y),v(z,y)) is the inverse
function of VA then, for all (z,y) € Ay,

I(z,y) = zu(z,y) + yv(z,y) — Alu(z, y),v(z,y))
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Vi(z,y) = (VA) " (z,y) = (u(z,y),v(z,y))

—1
2 _ 2
D! = (Dfuteoteand)

Moreover the hypothesis (0,0) € Di implies that p has finite moments of all

order. The expansion of F' to the fourth order in the neighbourhood of (0, 02) is
2? Py—o°) | 2P(y—o?)

202 204 206

Therefore, in the neighbourhood of (0,0),

2

F(z,y) = +o(||z,y — o?||*)

h2
2(pa — o)
+ ag 01 + az123h + ag 22 h* + ay 3xh® + ag4h* + o(||z, h||?)

I(x,h+0%) — F(z,h+0?) = + a3,0x3 + a271x2h + a1,2$h2 + a0,3h3

with, for any (4,j) € N such that i 4+ j € {3,4},

1 9T 9
@i,j = Tj!m(oﬁ )
except for
1 03I 1 1 0% 1
= (2 (0,0%) + = d == 2 (0,0%) — —
42179 (83@261/( o)+ 04> an 922 4833281/2( o) 206

If we prove that aso > 0 then the terms zh?, h3, 23h, 2?h?, xh3 and h?* are
negligible compared to a4 0z* + ag2h® when (x,h) goes to (0,0). Next, the
symmetry of I — F' in the first variable implies that a3 ¢ = 0. If we show that
az,1 = 0 then we get
212
y—o

— a 1'4 o
sy Sy +osoxt) (1ol

when (z,y) — (0,02), so we have the desired expansion.

To conclude it is enough to show that as; = 0 and a4 = p4/(120%), that is

031 ) 1 AT, 2
atey 7= o Ga0e) ="
For any j € N, we introduce the function f; defined on Z%A by
o [
V(u, v) € Dy R

f'(uav) =
/ /euervmz dp(x)
R

These functions are C*° on ﬁ,\ and they verify the following properties :

* fo is the identity function on R?

* For all j € N, f;(0,0) = p; is the j-th moment of p. It is null if j is odd, since
p is symmetric. Moreover

OA oA

flza and fzia
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* For any j € N,

OF: of;
8712 =fimi—fifi  and C’T{j = fj+2 — [if2

Therefore, for all (z,y) € Ay,
-1

1 _ 2 _
D?ﬂv,y)l = (D?u(m,y),v(m,y))A> = (f;fQ_ f{}Q fjt‘4 _f}g?) (u(x,y),v(x,y))

Denoting by g = (fo— f2)(fa— f2)—(f3— f1f2)?, the determinant of the positive
definite symmetric matrix D?A, we get that for any (z,y) € Ay,

2 _
Diey! =

1 fa— 13 fif2—fs
gu(z,y),v(z,y)) <f1f2 —303 f2— 1 >(u(x,y),v(z,y))

Moreover (u(0,02),v(0,02)) = (0,0) thus

ou 2 _821 2 _f4—f22 - /J4—O'4 B 1

%(O,U )_ ﬁ(ova )_ (an) - 0,2(“4_0_4) - ;
v, o O o fo— [ et 1
oy "7 = o) = T O = G o T

du o 5 Qv 5 PI oy Jifa—f3 _

Differentiating with respect to y, we get

BT ou 0 (fi—f2 v 8 (fi—[3
sy =3y % () e g (B

The first term of the addition, taken at (0,0?), is null. For the second term, we
need to compute the partial derivative of (fs — f3)/g with respect to v :

d (fa— 13 10 fa—1f3 0
(2) =i ) - BB

v g D)
 fe—3fafs+2f3 fi—f3  Og

p— —_— x P

g g2 Ov

Developing the expression of g, we get

g=fofs—fifa— 13— f3+2f1fafs
Let us differentiate with respect to v :

% = folfo—fafo)+ fa(fa—13)— L (fo— fafo)—2fsfi(fs— fif2)—3f5 (fa—f3)

—2f3(fs — fafa) + 2f1fo(f5 — fafa) + 2faf3(fs — fif2) + 2f1fs(fs — f3)

Taken at (0,0), each term with even subscript vanishes and we have

0
52(0,0) = 0%(g — 140®) + pa(jus — 0*) = 30 (s — o)

= 0% — 3psc® +20° + (g — o*)?
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Finally

Ja— f2 (0,0) = fi6 — 302 iy + 20° 02,u6 — 3p40* 4+ 208 4 (g — 0*)?
c% g 0% (pa — o) o4 (ps — o)
_ ot — M4
=—
Therefore
L 0 =01 20,02 2 (L) o= L oo L
OyOx? Ox v g Ty — ot ot ot

This is what we wanted to prove. Let us compute now the fourth partial deri-
vative of I with respect to . We have to obtain first an expression of the third
partial derivative of I with respect to x :

1  du _ 0 (fi—f3 v fi—f3
3 s () ot g (B9 e

The only term we do not know is the partial derivative with respect to u of

(fs — £2)/g. We have

O (fa—f3\ _1_ 0 fa—f3 Oy

5 (B7) =g - - R
_fs—fh —2ffs ¥ 2f5fi f4—f2 99
B g 92 8u

with
g

u = fo(fs — faf1) + fa(fs — fof1) — f2(fs — faf1) — 2fafi(fo — f1)

= 3f5(fs — fo 1) = 2f3(fa — f3f1) + 2f1f2(f1 — f3f1)
+2f2f3(f2 = [7) + 2f1f5(f3 — f2f1)

Notice that this quantity vanishes at (0,0). Therefore the partial derivative of
(fa — f2)/g with respect to u, taken at (0,0), is null as well and we get back

o3I
ox 9.3

Differentiating once more, we obtain
ﬂ_%x au f4_f2 ( )_i_@ 28 f4_f22 ( )
ort  Ox oz 8u2 g Ox = Ovdu g o
u fa—f3 &v fa— 13
+8x2><8u< 7 )(u,v)+a X8v< 7 )(u,v)

o [(Ou 0% [fi— f2 P (fi—f3
+ o X (Bmxauav< J )(u,v)—kaxxw< 7 )(U,U)>

Let us compute it at (0,0?) :

L 0,07 = 12<1 cal <f4_f22>(0,0)+0>+0+ 1 2y 4

8904( 7 o2 \ o2 0u? g ot 9x2

(0,0%) =0
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with

Po, 0 (O o PL o1
@(0»0 )= e <8xay> (0,0%) = M(Oaa ) = e
and
0?2 f4—f22 _152 9 1 0g 0 f4—fQ2 1 99 62 9
Tz < g > = Eﬁ(ﬂrfzwrgj% 0 ( 7 >928u @(h*fz)
1= [ 0% 2<39)2 e
92 u2 gg ou (f4 f2)
Hence
82 f _f2 1 82 82g
02 ( 2 . 2) (0,0) = FEY P (UQauz(le - f3)(0,0) — 8u2(0’0)>

The two remaining terms are the derivatives of quantities which we have already
computed. We evaluate them directly at (0,0), which is straightforward since
£3(0,0) = 0 when j is odd :

2
%(ﬁ; — f3)(0,0) = %(fs — fafi — 2f2f3 + 2£5 £1)(0,0) = p — 302y + 20°

and

> g d (9g 2 2 4 4
£000,0) = 50 (£2) (0,0) = 0216 — 1a0®) + palpus = ) = 0 2pso
— 30t (g — o) = 202 + 20"y 4 201 g + 0

This is equal to o%ug — pu2 + 30® — 3uso* after simplification. Thus we have

ko <f4 — f22> 0,0) = 0’ pe — 30* s +20° — o?pg + pi — 30° + 340

u? g o4 (pa — o)
_ pi—0%) _ m+to!
ot (g — ot ot
Finally
021 4 4_ 2
7(0,0’2):'u4+0 _g T 2
ozt o8 o8 o8
We obtain the announced term and the proof is completed. O

8 Around Varadhan’s lemma

We denote by 7,,, the distribution of (S,/n, T, /n) under p®" and by 6, ,
the distribution of (S, /n,T,/n) under [, ,. We saw in section 3 that, if A is
finite in the neighbourhood of (0,0), then the sequence (¥, ,),>1 satisfies a
large deviation principle with speed n, governed by the good rate function I.
Moreover, for any A C R?,

 Janae o (%) di (@, y)
S €xp (%) Aoy, p(,y)

Yet we cannot apply Varadhan’s lemma directly since A* is not a closed set and
F : (x,y) — 22/(2y) is not continuous on A. However we have the following
proposition :

On,p(A)
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Proposition 33. Suppose th%t p is a non-degenerate symmetric probability mea-
sure on R such that (0,0) € Dy. Then

1 2
liminf — ln/ exp <n2x> d;n,p(x7 y) >0
* Y

n—+4oco N

We assume that there exists r > 0 such that M, +1np({0}) < 0 with

M, — sup { T mBr\{<o,o>}}

where B, is the open ball of radius r centered at (0,0) and C is the closed convex
hull of { (z,2?%) : x is in the support of p}. If A is a closed subset of R? which
does not contain (0,0?) then

1 2
limsup fln/ exp (n:c) dv, p(z,y) <0
ANA 2y

n—+oo T

Let us give first some sufficient conditions to fulfill the hypothesis of the propo-
sition.

To ensure that there exists r > 0 such that M, +1n p({0}) < 0, it is enough that
one of the following conditions is satisfied :

(a) p has a density

(b) p({0}) < 1/Ve

(c) There exists ¢ > 0 such that p(]0,¢[) =0

(d) p is the sum of a finite number of Dirac masses

Indeed, the function F' is bounded by 1/2 on C\{(0,0)} C A*, thus for any r > 0,
M, < 1/2. Therefore, if p has a density, or more generally if p({0}) < e~ /2,
then for all » > 0, M, + In p({0}) < 0.

On the other hand, if there exists ¢ > 0 such that 0, ¢[ does not intersect the
support of p (especially if p is the sum of a finite number of Dirac masses) then

CC{(z,y) eR*:cz| <y}

Therefore

2?2 clx? x| v
= <22
2y 2cy T 2¢ T 2c

V(z,y) € CNBA{(0,0)}

Hence for any r > 0, M, < r/2c. Since p is non-degenerate, p({0}) < 1, thus
there exists » > 0 such that In p({0}) + r/2¢ < 0. Therefore the conditions (c)
and (d) imply that M, 4+ In p({0}) < 0.

Before we prove proposition 33, we need two preliminary lemmas, the following
one being very useful for handling superior limits.

Lemma 34. If (u1(n))n>1,-- -, (uk(n))n>1 are k sequences of non-negative real
numbers then

n—+oo 1 1<i<k p—s4o00 N

k
1 1
limsup — In ( E u; (n)) = max limsup — Inwu;(n)
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We refer to [7] for a proof. The second lemma we need is a variant of the upper
bound of Varadhan’s lemma. Recall that a topological space X is Hausdorft if,
for any (z,y) € X2 such that z # y, there exist two disjoint neighbourhoods of
x and y. The Hausdorff space X is regular if, for any closed subset F' of X and
any x ¢ F, there exist two disjoint open subsets O; and Oz such that F C O,
and z € Os.

Lemma 35. Let X be a regular topological Hausdorff space endowed with its
Borel o-field B. Let (vn)nen be a sequence of probability measures defined on
(X, B) which satisfies a large deviation principle with speed n, governed by the
good rate function J. For any bounded continuous function f : X — R, we
have for any closed subset A of X,

limsup 1 ln/ e @) du, (z) < sup (f(x) — J(x))
A

n—+oco N TEA
Proof. Let \,a > 0. We define
JH0,N)={zecXx:Jx) <A}

The set J ([0, \]) N A is compact since J is good and A is closed. Since f is
continuous, J is lower semi-continuous and X" is regular, for any = € A, there
exists an open neighbourhood V,, of x such that

swp f(y) < f@)+a  and it J(y) > J(z)—a
yeV: YyeEV

The collection V,, x € J~1([0,\]) N 4, is an open cover of the compact set
J7H[0,A]) N A. Let (V,,,1 < i < k) be a finite subcover extracted from this
covering. Setting U = |JI_, V,.,, we have

k
/ enf ) dvn(y) < Z/ ent () dv,(y) _|_/ enf (W) dv, (y)
A =1 Ve, A

\U
k
<y erdmtnay, (V) + el e, (A\D)
=1

Moreover
inf{J(z): 2z € AU} >inf{I(x):2¢ J0,\)} >

Therefore, using the large deviation upper bound and lemma 34,

limsup 1 ln/ ™) du,, (y) < max ( max (f(x;) — J(z;) + 20), || flloo — )\>
A

n—+oo T 1<i<k

stquuwdu»+mmmw—Q

z€A
We conclude by letting successively « go to 0 and A go to +oo. O

Proof of proposition 33. If V is an open neighbourhood of (0,0?) which is
included in A* then

TL$2 ~ ~ ~
/ exp g dl/n,p(x7y) > /v d’/n,p(xay) =Vn,p (V)
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The large deviation principle satisfied by vy, , implies that

n—+oo N

e nz?\ . 9
liminf — ln/ exp | o~ Avp p(z,y) > —uéfl > —-I1(0,0°) =0
* Y

We prove now the second inequality. Let a > 0. The function I is lower semi-
continuous on R?, thus there exists an open neighbourhood U of (0,0) such
that

V(z,y)eU  I(z,y) >1(0,0) —a=—~Inp({0}) -«

The above equality follows from lemma 26. By hypothesis, there exists » > 0
such that M, + Inp({0}) < 0 thus, by choosing « sufficiently small, we can
assume that

M, +Inp({0}) +a <0

Since M, decreases with r, we can take r small enough so that B, C Y. Notice
next that
(Sn Ty

)
n n

1 n
) :EZ(X’“’X@EC a.s
k=1

therefore, setting C* = C\{(0,0)},

nx2> _ nx?\
exp | — | dvp (2, y :/ exp () Avp,,(,y
/A*nA ( 2y o(®9) crnA 2y o(@9)

Let us decompose
C'NAC(C"NB,)U(CNB:NA)

We have
nx?\ ~
/ exp <> dvn p(x,y) < exp(nM,) Uy, , (U)
C*NB,. 2y

The large deviation principle satisfied by 7, , implies that
. 1 na? - .
limsup — In exp | — | dvp p(z,y) < M, —infI < M, +1Inp({0}) + «
n—+oo T C*NB, 2y u

Next, the set CNB2N A is closed and does not contain (0,0) thus the function F'
is continuous on this set. Moreover F' is bounded on C*. Hence, by the previous
lemma,

1 \ -
limsup fln/ exp <nx> Avp p(z,y) < sup (F —1)
n—too M JenBena 2y cnBenA

Lemma 34 implies that

1 2\
limsup — ln/ exp (mc) dvy, (2, y)
notoo N Jerna 2y

< max (M,. +Inp({0}) +a, sup (F-— I))
cnBenA

Since p is symmetric and (0,0) € ﬁA, proposition 31 implies that G = I — F
has a unique minimum at (0,0%) on A*. Suppose that

inf  G=0
CNBeNA
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Then there exists a sequence (xg, Yk )ken in C NBSE N A C A* such that
lim G(zk,yx) = inf G=0

ko0 cnBénA
For k large enough, G(xg,yr) < 1/2 thus I(zg, yx) < 1, i.e., (2, yx) belongs to
the compact set { (u,v) € R? : I(u,v) < 1}. Up to the extraction of a subse-
quence, we suppose that (zy,yx)ren converges to some (zo,yo), which belongs
to the closed subset C N BS N A. Moreover G is lower semi-continuous, hence
0 = liminf G(zk, yx) > G(x0,%0) > 0
k——+o0

Therefore G(xg,y0) = 0 and thus (zg, yo) = (0,0%) € CNBSN A, which is absurd
since A does not contain (0,02). Thus

inf - G>0
CcNBeNA
and
max <MT +Inp({0}) + @, sup (F-— I)> <0
CNBeNA
This proves the second inequality. O

9 Proof of theorem 1

The proof of theorem 1 relies on the variant of Varadhan’s lemma exposed in
the previous section. Suppose that p is a symmetric probability measure on R
with positive variance o2 and such that (0,0) € Dy. We assume that one of the
four conditions given in the paragraph below proposition 33 is satisfied.

We denote by 6, , the distribution of (S, /n,T,/n) under fi, ,. We saw in sec-
tion 3 that for any A C R?,

_ Jana- exp (%) dn,p(,Y)
S a- €xP (’;—f) Aoy p(,y)

Let U be an open neighbourhood of (0,0?) in R2. Proposition 33 implies that

On.p(A)

n—+oo N n—+oo N

1 1 2
limsup —In#6,, ,(U¢) = limsup — ln/ exp (m) dv, »(z,y)
A NUe 2y

1 2
— liminf = ln/ exp <n2sr> dvp p(z,y) <0
* Y

n—+oco n
Hence there exist € > 0 and ng € N such that for any n > ng,

0, ,(U) <e ™ — 0

n—oo

Thus, for each open neighbourhood U of (0,0?),

S, T,
lim i, ((22,22) eve) =
naufoou”p<<n’n>€U> 0

This means that, under fi,, ,, (Sn/n, T}, /n) converges in probability to (0,0?).
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10 Proof of theorem 2

In this section, we first give conditions on p in order to apply theorem 17 to
the distribution v,. Recall that this theorem states that, for n large enough,
Up,, has a density g, with respect to the Lebesgue measure on R? such that,
for any compact subset Kj of Ay, the admissible domain of I, when n — 400,
uniformly in (x,y) € K,

n 2 1/2 —nl(z,y)
gn(xay) ~ % (detD(z,y)I) € Y

We use then the Laplace method, as we announced in the heuristics of sec-
tion 3, to obtain the fluctuations theorem 2. The proof relies on the variant of
Varadhan’s lemma and the expansion of I — F in (0, 0?) given in proposition 32.

We first notice that 51\ # @ since it contains Rx] — 0o, 0[. Next, we have the
following lemma :

Lemma 36. If p has a probability density f with respect to the Lebesque measure
on R, then u;2 has the density

f2 : (Z‘,y) ER2 —

1 T+ /2y — 2? x — /2y — 2?
f f ]lm2<2y
/2y — 22 2 2

with respect to the Lebesque measure on R2.

Proof. Let h be a bounded continuous function from R? to R. We have
[re ey = [ () + 00) o) doft)
R2 R2
= | h((z,2%) + (t,1*) f(2) f(t) dz dt
R2
= / h(z+t,22 +12)f(2)f(t) dzdt +/ h(z+t,22 +12)f(2)f(t) dz dt
D+

=1 +1

with DT = {(2,t) e R?: 2 >t} and D~ = {(2,t) € R? : 2 < t}. Indeed, the
Lebesgue measure of the set { (z,¢) € R? : z =t } is null.

We define ¢ : (2,t) € R? — (u,v) = (2 + t,2% + t2). If (2,t) € DT, then

u? _<z+t>2<z2—|—t2 v
N 2 2

4 2
thus

o(DV) C Ay ={(u,v) €R*:u? < 20}

Similarly ¢(D~) C A,. Conversely, if (u,v) € Ag and u = z +t, v = 22 + ¢
then t = u — z and 222 — 2uz + (u? — v) = 0. This last quadratic equation in
2 has for discriminant 4(2v — u?) > 0, thus there are two distinct real-valued
roots. Therefore

1
(2,t) = §(u+\/2v—u2,u—\/2v—u2) e Dt
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or

1
(2,t) = i(u—\/Zv—UQ,u—f—\/Qv—u?) e D™

This proves that ¢ is a one to one map from D7 (resp. from D~) onto As.
Moreover ¢ is C! on DT U D~ with Jacobian in (z,t)

det <212 2115)‘ =2z —t|=2y/2v—u? #0

The change of variables given by ¢ yields

1 V2 — 2 —V2u — 2
I,=1_={ h(uv) utvev - u f 4 YT ) dudo
Ay 2v/20 — u? 2 2
By adding theses two terms, we get the lemma. O

Notice that, if p = A/(0,1), then for any (z,y) € R?,

1 Yy
fg(.’I?, y) = €xXp (_7) IL:v2<2y
2my/2y — x2 2

9 _1\\ ! 22 (2-3)/2
= (\/227r2I‘ <T>) exp (—%) (y — 2) 1,200y

This is precisely the formula of proposition 7 for n = 2.

By theorem 17, the expansion of g, holds as soon as there exists ¢ € [1,+o0]
such that f2 € Lq(Rd) However the computation of f2 is not feasible in general.
Proposition 22 says that the previous condition is satisfied if there exists p €]1, 2]
such that f € LP(R?) so that the expansion is true. Let us take a look at this :

/1@ | f2(u, )| dudv
:/ fP ((u—|—\/2v—u2)/2) fP ((u— \/2v—u2)/2)
RZ

(2v — u?)r/2

1,29, dudv
Let us make the change of variables given by
1
(u,v) — (z,y) = §(u+ 20 —u?,u+ /20 — u?)

which is a C!-diffeomorphism from A, to Dt (see the proof of the previous
lemma) with Jacobian in (u,v), 2v2v —u? =2(y —x) >0 :

P (@) fP(y)
re (y—ax)P

[ et dudo = 2y — 21, du dy
R2
By symmetry in x and y, we get

/ [, 0)|P dudo = / 7)1 (y)y — 2P da dy
RQ R?

The next proposition follows from theorem 17, proposition 22 and the previous
equality :
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Proposition 37. Suppose that p has a density f with respect to the Lebesque
measure on R such that, for some p €]1,2],

(2,y) — [Pz +y) fP ()| P

is integrable. Then, for n large enough, Uy, , has a density g, with respect to
the Lebesgue measure on R? such that, for any compact subset K; of Ay, when
n — +oo, uniformly over (z,y) € K.

n 1/2 _7
gn(xay) ~ % (det D%a:,y)[) e I (z,y)

Let us prove now theorem 2. Suppose that p is a probability measure on R with
an even density f such that there exist vg > 0 and p €]1, 2] such that

/ e”ozzf(z) dz < 400 and / Pz +y) fP(y)|z|' P dedy < +oo
R R2
The first inequality implies that

Yo <wvy YueR e~V gurtva® _ guz—(vo-v)z*
|z| =400
Therefore Rx] — 0o, v9[ C Dy and thus (0,0) € IO)A. Moreover p is symmetric
(since f is even) and its support contains at least three points (since p has a
density). Proposition 32 implies that I is C* in a neighbourhood of (0, 02) and,
when (z,y) — (0,0?),
a?  (y—o®)? | paz?

I _
@) = 3y~ o) T 1208

where 4 is the fourth moment of p. Denote by By the open ball of radius
§ centered at (0,0?). It follows from the previous expansion that there exists
§ > 0 such that for any (z,y) € Bs ,

x2 2)2

(y—o paz?

We can reduce 9, in (prder to have Bs C K; where K is a compact subset of
Aj. Moreover A; C Dy C A* thus Bs N A* = By.

Let n € N and let f: R — R be a bounded continuous function. We have
Sn 1 1/4 na? ~ A, + B,
2 (1 (55)) = 77 [, st e (355 ) nston = 22
with

2
A, = (zn'/*) exp <n;‘> dvn,p(7,y)
Bs Y

Tl:l?2

B, = / f(zn'/*) exp <2> dUn, p(,Y)
A*NBg y

Proposition 37 implies that, for n large enough, 77, , has a density g,, with respect
to the Lebesgue measure on R? which verifies, when n — +o00, uniformly over
(.T, y) € KI>

n 1/2 —nl(x
gn(,y) ~ o (det DE, 1) e )
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Let us put e"/(*:%) in the expression of A, :
An= | (zn/)e ) =a*/20) nl @) g () da dy
)

=n [ flan'/Me "V H, (2,y) dvdy
Bs

where we set H,, = e”l(rvy)gn(x, y)/n. We define
Bsn = {(z,y) eR*: 2?/\/n+y?/n <6}

Let us make the change of variables given by (z,y) — (zn= 4, yn=1/2 + o?),
with Jacobian n=3/% :

— pl/4 _ r Y 2)> <L Y 2>
A, =n . (x)exp( nG(n1/4’\/ﬁ+U H, n1/4’\/ﬁ+0 dz dy
We check now that we can apply the dominated convergence theorem to this
integral. The uniform expansion of g, means that for any a > 0, there exists
ng € N such that

—1/2

(x,y) e K1 and n>ny = |Hy(z,y)2n (det D?x,y)l)

—l‘ga

If (2,9) € Bsn, then (z,,yn) = (xn~ 4 yn=1/2 + 62) € Bs C K7, thus for all
n > ng and (z,y) € Bs.p,

r oy 2 2 —1/2

Moreover (z,,,y,) — (0,02) thus, by continuity,

9 —1/2 5 -1/2 12
(D(mmyn)‘[) HI)OO (D(Oﬁgz)I) = (D(O,O)A) = 02(M4 _ 0-4)
Therefore
r Y 2 2 2 ay) /2
I, (z,y)Hy <W’ % +o > njm (47‘(’ o (pa—o ))

The expansion of G in the neighbourhood of (0,0?) implies that

3 Ty s S Tt
eXP( nG(n1/47\/ﬁ+0— >> njooexp< 2(/14—0’4) 1208

Let us check that the integrand is dominated by an integrable function, which
is independent of n. The function

(z,y) — (D2 )I)il/2

(z,y

is bounded on Bs by some Ms > 0. The uniform expansion of g,, implies that for
all (z,y) € Bs, Hp(z,y) < Cs for some constant Cs > 0. Finally, the inequality
(x) above yields that

g, e @)exp (06 (7. 2o+ ) ) Ha (i 2+ 0?)

2)\2 4
y—o e
< fllnCrexp (- L=~ )

o1



and the right term is an integrable function on R2. It follows from the dominated
convergence theorem that

2)2 4
An ~ n1/4 (y_g) _lu‘4‘r )dl‘dy

1
f(a) ex (-
+o0 R2 V2102 [2m (g — o) 2(pg —ot) 1208
By Fubini’s theorem, we get
nl/4 (4
n Wores /Rf(ac)exp ( o0 ) dx

Let us focus now on B,,. The distribution p is symmetric, it has a density and
(0,0) belongs to the interior of Dy, thus proposition 33 implies that

1 2\ .
limsup — ln/ exp <m> dvy, p(2,y) <0
n——+oo N A*ﬁBg 2y

Hence there exist € > 0 and ng > 1 such that for any n > ny,

2
/ exp (Zx > Avp p(z,y) < e "¢
A*NBS Y

and thus B,, < | f|lece™ " so that B,, = o(n'/*). Therefore

/
A, + B, n/t /f exp( >d

27w o2

Applying this to f =1, we get

2 1/4 +o0o 4 1/4 1/12 / 1
Zn oxp (a0 ) o = (22) r(3)
oo 2702 Jo 120 V2oro2 2\ pa 4

where we made the change of variables y = p42*/(120%). Finally

Sh 4#4 1/4 ’1  paz?
By <f<n3/4)> T (&? /f z)exp | o, ) 4o

An ultimate change of variables s = ui/ Yz /o? gives us

1/4 1/4 —1
py' Sn 4
By, (f <aén3/4>> . (g /f eXp( ) dx

This ends the proof of theorem 2.
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