
ar
X

iv
:1

00
5.

33
90

v1
 [

cs
.N

E
]

 1
9

M
ay

 2
01

0

Critical control of a genetic algorithm

Raphaël Cerf

Université Paris Sud and IUF

May 20, 2010

Abstract

Based on speculations coming from statistical mechanics and the

conjectured existence of critical states, I propose a simple heuristic

in order to control the mutation probability and the population size

of a genetic algorithm.

Genetic algorithms are widely used nowadays, as well as their cousins
evolutionary algorithms. The most cited initial references on genetic al-
gorithms are the beautiful books of Holland [10], who tried to initiate a
theoretical analysis of these processes, and of Goldberg [9], who made a
very attractive exposition of these algorithms. The literature on genetic
algorithms is now so huge that it is beyond my ability to compile a decent
reasonable review. For years, there has been an urgent and growing de-
mand for guidelines to operate a genetic algorithm on a practical problem.
On the theoretical side, progress is quite slow and somehow disappoint-
ing for practitioners. The theoretical works often deal with a simple toy
problem, otherwise the behavior of the genetic algorithm is too complex
to be amenable to rigorous mathematical analysis. Here I propose a sim-
ple heuristic in order to control efficiently the genetic algorithm, based on
speculations coming from statistical mechanics and the conjectured exis-
tence of critical states. Although it is quite simple, I have not been able to
locate this heuristic in the literature, and I hope it will be useful. Apart
from my own belief, it is supported by several empirical studies, the most
notable one being the work of Ochoa [13], and it is in accordance with
several conclusions and ideas appearing in the work of van Nimwegen and
Crutchfield [17].

Error threshold. The fundamental notion on which the heuristic is based
is the notion of error threshold, introduced by Manfred Eigen in 1971 [6].
Eigen analyzed a simple system of replicating molecules and demonstrated

1

http://arxiv.org/abs/1005.3390v1

the existence of a critical mutation rate. Above this mutation rate, the
information carried by the molecules is destroyed by the mutations. This
fundamental result lead to the notion of quasispecies developed by Eigen,
McCaskill and Schuster [8], which plays an important role in evolutionary
biology. The critical mutation rate can be explicitly computed on the
simplest fitness landscape: the space {0, 1}n and the fitness function equal
to 1 everywhere except one point where it is equal to σ > 1. In this
situation, the critical mutation rate per bit is

pm =
lnσ

n
.

This is the sort of result we dream of in the context of genetic algorithms: an
explicit simple expression for the critical mutation probability. Several re-
searchers have already argued that the notion of error threshold plays a role
in the dynamics of a genetic algorithm. This is far from obvious, because
Eigen’s model is formulated for an infinite population model. However
there is evidence that a similar phenomenon occurs in finite populations as
well, and also in genetic algorithms. In her PhD thesis [13], Ochoa demon-
strated the occurrence of error thresholds in genetic algorithms over a wide
range of problems and landscapes. This very interesting work is published
in a series of conference papers.

Optimal population size and mutation rate. The dream of a practi-
tioner is to have a set of optimal parameters to solve his specific problem.
On a few simple examples it is possible to find empirically the optimal rates,
by sampling several runs of the genetic algorithm with different parameters.
This was done by Ochoa in her PhD thesis. She concluded that there exists
a relationship between the optimal mutation rate and the error threshold.
An important contribution of Ochoa’s work is to try to relate quantita-
tively the optimal mutation rate with the error threshold. Cervantes and
Stephens investigated further this idea [4]. One of the most interesting and
inspiring work on the theory of genetic algorithms I have read over the last
years is the series of papers by van Nimwegen, Crutchfield and Mitchell
[18, 19, 15, 16, 17]. In these papers, the authors perform a theoretical
and experimental study of a genetic algorithm on a specific class of fitness
functions. Their analysis rely on techniques from mathematical population
genetics, molecular evolution theory and statistical physics. Among the
fundamental ingredients guiding the analysis are the quasispecies model,
the error threshold and metastability. In the last work of the series [17], van
Nimwegen and Crutchfield describe an entire search effort surface and they
introduce a generalized error threshold in the space of the population size
and mutation probability delimiting a set of parameters where the genetic
algorithm proceeds efficiently.

2

Phase transitions. A basic goal of statistical mechanics is to understand
the collective behavior of particles governed by simple microscopic rules.
Typically, the particles are driven by two antagonistic effects: entropy and
energy. Interesting models present a phenomenon of phase transition: there
exists a critical point or a critical curve in the parameter space separat-
ing a region where energy effects dominate from a region where entropy
effects dominate. The system is most interesting at criticality, where both
forces compete equally. Perhaps the most studied model is the Ising model.
There has been remarkable progress recently in the rigorous understanding
of the critical Ising and percolation models in two dimensions [20]. The
error threshold is in fact a particular type of phase transition [7]. The an-
tagonistic forces in presence are mutation and selection and this threshold
separates a regime where selection dominates from a regime where mutation
dominates. In a genetic algorithm, the crossover operator complicates the
dynamics and either it shifts the critical points or it creates new ones. This
phenomenon has been observed independently by Rogers, Prügel–Bennett
and Jennings [14] and by Nilsson Jacobi and Nordahl [11].

Efficient search. An efficient search procedure should realize a delicate
balance between an exploration mechanism and a selection mechanism.
This general idea is present in numerous works dealing with random opti-
mization. I have believed for several years that a search procedure works
best if it is close to a critical point, which realizes an optimal balance
between the exploration and the selection mechanisms. This view is sup-
ported by the general knowledge coming from statistical mechanics, and
it is also expressed in several previous works [13, 17, 14]. Unfortunately,
phase transitions and critical points are sharply defined only for infinite
systems. Moreover the computation of the critical points is very hard and
complex, it can be achieved only for specific models, like Eigen’s model or
the two dimensional Ising model, and it requires great mathematical skills.
For the three dimensional Ising model, the critical point can only be esti-
mated numerically. Hence the task of computing the optimal parameters
of a genetic algorithm on a specific problem is a formidable one, clearly
much harder than solving the problem itself.

Self–organized criticality. My next hope is to try to adapt the pa-
rameters of the genetic algorithm during the search in order to reach a
critical regime. Systems which are driven naturally towards a critical state
have attracted a lot of interest since the seminal work of Bak, Tang and
Wiesenfeld [1]. These systems are said to exhibit self–organized criticality.
Several researchers have tried to incorporate such mechanisms to design
optimization procedures. An interesting example is the extremal optimiza-
tion [2]. In his PhD thesis [21], Whitacre investigates the occurrence of
self–organized criticality in evolutionary algorithms. Krink, Thomsen and

3

Rickers used successfully mechanisms inspired by self–organized criticality
to control evolutionary algorithms [12]. My aim here is to propose a very
simple heuristic to achieve a critical control of a genetic algorithm.

Critical control of the mutation. When running a genetic algorithm,
we are not looking for the optimal mutation probability, rather we look
for a control of the mutation probability which allows to explore efficiently
the space. Several researchers have already worked on this idea and pro-
posed different possible schemes to adapt the parameters of the genetic
algorithm. A review is presented in [5]. Here I propose an adaptive pro-
cedure which receives a simple feedback from the search. The conjectural
picture I have in mind is the following. The genetic algorithm running on
a fitness landscape is a finite population model, approximating an infinite
population model. This infinite model presents several phase transitions,
depending on the geometry of the fitness landscape. In a way, there is a
phase transition associated to each local maximum. The parameters of a
genetic algorithm should be adjusted in order to be close to the phase tran-
sition corresponding to its current position. When the algorithm escapes
from a local maximum and finds a better point, the parameters should be
completely readjusted from scratch. In practice, we need a simple criterion
to decide whether the mutation parameter is above or beneath the local
critical value. Considering Eigen’s model of quasispecies and keeping in
mind that we are dealing with a finite population, I propose the following
simple criterion. If the best fitness observed in the population decreases,
then the mutation probability is above the critical value. If the best fitness
observed in the population is constant, then the mutation probability is be-
low the critical value. These speculations lead to the algorithm presented
on page 7. As for the procedure to control the mutation, there are plenty of
choices. A very simple possibility is to use a dichotomy procedure. We use
two extremal values α and β which bound the abstract critical mutation
probability and we do as follows. To initialize the mutation control, we set
α = 0 and β to a reasonable upper bound on the critical mutation prob-
ability. In the case of a genetic algorithm working with binary words of
length n, the initial value of β should be of order (ln c)/n, where c is larger
than the ratio between the maximum and the minimum of the fitness func-
tion. One should not take β too large, otherwise the mutations will destroy
all the relevant information in the population, without hope of recovering
the interesting points during the subsequent steps. The initial probability
mutation is then set to pm = (α + β)/2. To increase the mutation prob-
ability, we set successively α = pm and pm = (α + β)/2. To decrease the
mutation probability, we set successively β = pm and pm = (α + β)/2.
When the algorithm decreases the mutation, it is because the best fitness
has decreased, and the hope is to recover the best points of the previous

4

generations with reversed mutations. This is likely to happen only if the
mutation rate is not too high, hence it seems important to be able to ad-
just adequately the initial upper bound β. Another possibility is to use
elitism, which leads to the variant of the previous algorithm presented on
page 8. The idea is natural: whenever the best fitness has decreased, we
reintroduce by force the lost best solution, and we decrease the mutation
probability. I think that this algorithm is more interesting than a standard
search procedure incorporating elitism, because it is likely to escape from
a local maximum much quicker. When exploring the landscape around a
local maximum, it is reasonable to explore incrementally the neighborhood,
starting with the points which are close in a mutational sense to the cur-
rent best solution and proceeding then with further and further points. The
progressive increase of the mutation rate implements this strategy to some
extent. Another good reason to increase the mutation rate is to avoid pre-
mature convergence of the population, a problem that has been observed
since the early days of genetic algorithms. The algorithm I propose tries to
run with the largest reasonable mutation probability, which maintains the
widest diversity in the population without losing the best fit individual.

Critical control of the population size. A very interesting conclusion of
[17] is the existence of a critical population size below which it is practically
impossible to reach the global optimum. A similar conclusion was obtained
in the simpler framework of generalized simulated annealing [3]: within a
specific asymptotic regime of low mutations and high selection pressure,
the convergence to the global maximum could be guaranteed only above a
critical population size. These works support the idea of the existence of
a critical population size. From now on, let us suppose that this idea is
correct. If we adhere to the belief that a search procedure is more efficient
when it is running close to a critical state, we should also try to adjust the
population size close to the critical one, in the same way as we did with
the mutation. It is of course clear that we want a population size larger
than the critical one, because an algorithm with too small a population
will not reach the global maximum. One may however wonder why it
would be a problem to use a population size much larger than the critical
one. I imagine that it would lead to a waste of computational resources.
Indeed it does not make sense to use a genetic algorithm with a large
population size to find the maximum of a concave function, because a
population of a few individuals will certainly suffice and do the job much
faster. Another reason is that it seems best to have only a very small
fraction of the population sitting on the best current points, in order to
use most of the computational resources to explore the vicinity of these
points. This is also a very interesting conclusion of [17]. With this in
mind, I propose the more elaborate algorithm presented page 9.

5

What to do next. I hope that the critical mutation control of the ge-
netic algorithm will lead to real practical improvement. The benefit of
controlling the population size is more conjectural, but I believe it is a very
interesting direction to try: if the genetic algorithm is still stuck at a local
maximum after convergence of the mutation probability, then one should
increase the population size in order to escape and find a better solution. A
further possibility is to perform a simultaneous critical control of the mu-
tation probability and the population size during the run of the algorithm.
To do that will require slightly more complicated methods, because two
parameters have to be optimized simultaneously, but this seems really to
be a promising direction to explore. From an algorithmic point of view, it
seems easier to vary first the mutation probability and then the population
size. Another issue is the use of elitism. Elitism is a straightforward mech-
anism guaranteeing the asymptotic convergence. Instead of using an elitist
algorithm, one can try to exert an adequate control on the parameters of
the algorithm in order to enforce elitism.

Summary of the heuristic. The heuristic I propose is quite simple.
The parameters of a genetic algorithm should be set close to a conjectured
critical line describing the phase transition associated with its current lo-
calization in the fitness landscape. In order to adjust the parameters, we
observe the behavior of the best fit individual from one generation to an-
other and we proceed as follows:
• If the best fitness decreases strictly, then the genetic algorithm is oper-
ating in the regime where mutation dominates. Thus the mutation proba-
bility should be decreased or the population size should be increased.
• If the best fitness is constant, then the genetic algorithm is operating
in the regime where selection dominates. Thus the mutation probability
should be increased or the population size should be decreased.
• If the best fitness increases strictly, then the genetic algorithm has suc-
cessfully escaped from a local maxima, the mutation control should be
reinitialized and the population size should be reset to two.
The idea of adapting the parameters of the genetic algorithm is not a new
one and it has already been seriously investigated by many researchers [5].
However the philosophy behind the control described above is quite dif-
ferent from what I have seen in the literature. For example, a common
approach is to reward operators which lead to good solutions, with the
hope that they will create even better solutions. My suggestion comes
from a different principle, which is in fact quite opposite. The crucial idea
is that a delicate interaction between exploration and selection is the key
to an efficient search. In order to create the critical equilibrium, I suggest
to favor the mechanism which currently does not produce good results!

6

Critical mutation control

Initialization

• Initialize the population

• Find the best fit individual ŷ

• Initialize the mutation control

Main loop

• Set x̂ = ŷ

• Apply selection

• Apply mutation

• Apply crossover

• Find the best fit individual ŷ

If fitness(x̂) = fitness(ŷ) then

Increase mutation probability

Goto Main loop

If fitness(x̂) > fitness(ŷ) then

Decrease mutation probability

Goto Main loop

If fitness(x̂) < fitness(ŷ) then

Reinitialize the mutation control

Goto Main loop

Dichotomy procedure to change mutation

Initialization: α = 0, β = (ln c)/n, pm = (α+ β)/2

Mutation increase: α = pm, pm = (α+ β)/2

Mutation decrease: β = pm, pm = (α+ β)/2

7

Critical mutation control with elitism

Initialization

• Initialize the population

• Find the best fit individual ŷ

• Initialize the mutation control

Main loop

• Set x̂ = ŷ

• Apply selection

• Apply mutation

• Apply crossover

• Find the best fit individual ŷ

If fitness(x̂) = fitness(ŷ) then

Increase mutation probability

Goto Main loop

If fitness(x̂) > fitness(ŷ) then

Decrease mutation probability

Reintroduce x̂ in the population

Set ŷ = x̂

Goto Main loop

If fitness(x̂) < fitness(ŷ) then

Reinitialize the mutation control

Goto Main loop

8

Critical mutation and size control with elitism

Initialization

• Set the population size to two

• Initialize the population

• Find the best fit individual ŷ

• Initialize the mutation control

Main loop

• Set x̂ = ŷ

• Apply selection

• Apply mutation

• Apply crossover

• Find the best fit individual ŷ

If fitness(x̂) < fitness(ŷ) then

Reinitialize the mutation control

Set the population size to two

Initialize the population with two copies of ŷ

Goto Main loop

If the mutation probability has converged then

Increase the population size

Reinitialize the mutation control

Goto Main loop

If fitness(x̂) = fitness(ŷ) then

Increase mutation probability

Goto Main loop

If fitness(x̂) > fitness(ŷ) then

Decrease mutation probability

Reintroduce x̂ in the population

Set ŷ = x̂

Goto Main loop

9

Acknowledgements: This work was completed during a visit to the
mathematics department of the University of Padova. I warmly thank
Carlo Mariconda and Paolo Dai Pra for their hospitality.

References

[1] Per Bak, Chao Tang, and Kurt Wiesenfeld. Self-organized criticality:
An explanation of 1/f noise. Phys. Rev. Lett., 59:381–384, 1987.

[2] Stefan Boettcher and Allon G. Percus. Extremal optimization: Meth-
ods derived from co-evolution. In Proceedings of the Genetic and Evo-

lutionary Computation Conference, volume 1, pages 825–832, Orlando,
Florida, USA, 13-17 July 1999.

[3] Raphaël Cerf. Asymptotic convergence of genetic algorithms. Adv. in
Appl. Probab., 30(2):521–550, 1998.

[4] Jorge Cervantes and Christopher Rhodes Stephens. ”Optimal” mu-
tation rates for genetic search. In GECCO 2006: Proceedings of the

8th annual conference on Genetic and evolutionary computation, vol-
ume 2, pages 1313–1320, Seattle, Washington, USA, 8-12 July 2006.

[5] Agoston Endre Eiben, Robert Hinterding, and Zbigniew Michalewicz.
Parameter control in evolutionary algorithms. IEEE Transactions on

Evolutionary Computation, 3(2):124–141, July 1999.

[6] Manfred Eigen. Self-organization of matter and the evolution of bio-
logical macromolecules. Naturwissenschaften, 58(10):465–523, 1971.

[7] Manfred Eigen. Natural selection: a phase transition? Biophysical

Chemistry, 85(2–3):101–123, 2000.

[8] Manfred Eigen, John McCaskill, and Peter Schuster. The molecular
quasi-species. Advances in Chemical Physics, 75:149–263, 1989.

[9] David Goldberg. Genetic algorithms in search, optimization and ma-

chine learning. Addison–Wesley, 1989.

[10] John H. Holland. Adaptation in natural and artificial systems. Uni-
versity of Michigan Press, Ann Arbor, Mich., 1975.

[11] Martin Nilsson Jacobi and Mats Nordahl. Quasispecies and recombi-
nation. Theoretical Population Biology, 70(4):479–485, 2006.

10

[12] Thiemo Krink, Peter Rickers, and René Thomsen. Applying self-
organised criticality to evolutionary algorithms. In Parallel Problem

Solving from Nature – PPSN VI, volume 1, pages 375–384. Springer,
2000.

[13] Gabriela Ochoa. Error Thresholds and Optimal Mutation Rates in

Genetic Algorithms. PhD thesis, The University of Sussex, Brighton,
2001.

[14] Alex Rogers, Adam Prügel-Bennett, and Nicholas R. Jennings.
Phase transitions and symmetry breaking in genetic algorithms with
crossover. Theoret. Comput. Sci., 358(1):121–141, 2006.

[15] Erik van Nimwegen and James P. Crutchfield. Metastable evolution-
ary dynamics: Crossing fitness barriers or escaping via neutral paths?
Bulletin of Mathematical Biology, 62(5):799–848, 2000.

[16] Erik van Nimwegen and James P. Crutchfield. Optimizing epochal
evolutionary search: Population-size independent theory. Computer

Methods in Applied Mechanics and Engineering, 186(2–4):799–848,
2000.

[17] Erik van Nimwegen and James P. Crutchfield. Optimizing epochal evo-
lutionary search: Population-size dependent theory. Machine Learning

Journal, 45:77–114, 2001.

[18] Erik van Nimwegen, James P. Crutchfield, and Melanie Mitchell. Fi-
nite populations induce metastability in evolutionary search. Phys.

Lett. A, 229(3):144–150, 1997.

[19] Erik van Nimwegen, James P. Crutchfield, and Melanie Mitchell. Sta-
tistical dynamics of the royal road genetic algorithm. Theoret. Comput.

Sci., 229(1-2):41–102, 1999.

[20] Wendelin Werner. Percolation et modèle d’Ising, volume 16 of Cours
Spécialisés. Société Mathématique de France, Paris, 2009.

[21] James M. Whitacre. Adaptation and Self-Organization in Evolutionary

Algorithms. PhD thesis, School of Chemical Sciences and Engineering,
The University of New South Wales, 2007.

Raphaël Cerf
Université Paris Sud
Mathématique, Bâtiment 425
91405 Orsay Cedex–France
rcerf@math.u-psud.fr

11

