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Abstract

This work extends to dimension d ≥ 3 the main result of Dehghan-
pour and Schonmann. We consider the stochastic Ising model on Zd

evolving with the Metropolis dynamics under a fixed small positive
magnetic field h starting from the minus phase. When the inverse
temperature β goes to ∞, the relaxation time of the system, defined
as the time when the plus phase has invaded the origin, behaves like
exp(βκd). The value κd is equal to

κd =
1

d+ 1

(

Γ1 + · · ·+ Γd

)

where Γi is the energy of the i dimensional critical droplet of the
Ising model at zero temperature and magnetic field h.
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1 Introduction.

We consider the kinetic Ising model in Zd under a small positive magnetic
field in the limit of vanishing temperature and we study the relaxation of
the system starting from the metastable state where all the spins are set
to minus. An introduction of the metastability problem is presented in
section 1.1. In section 1.2, we explain the three major problems we had
to solve to extend the two dimensional results to dimension d. The main
results are stated in section 1.3. The strategy of the proof is explained in
section 1.4.

1.1 Background.

This work extends to dimension d ≥ 3 the main result of Dehghanpour and
Schonmann [DS97a]. We consider the stochastic Ising model on Zd evolving
with the Metropolis dynamics under a fixed small positive magnetic field h.
We start the system in the minus phase. Let τd be the typical relaxation
time of the system, defined here as the time where the plus phase has
invaded the origin. We will study the asymptotic behavior of τd when we
scale the temperature to 0. The corresponding problem in finite volume
(that is, in a box Λ whose size is fixed) has been previously studied in
arbitrary dimension by Neves [Nev94, Nev95]. In this situation, Neves
proved that the relaxation time behaves as exp(βΓd) where β = 1/T is the
inverse temperature and Γd is the energy barrier the system has to overcome
to go from the metastable state −1 to the stable state +1. An explicit
formula is available for Γd, however the formula is quite complicated. The
energy barrier Γd is the solution of a minimax problem and it is reached
for configurations which are optimal saddles between −1 and +1 in the
energy landscape of the Ising model. These results have been refined in
dimension 3 in [BAC96]. In dimension 3, the optimal saddles are identified,
they are configurations called critical droplets, they contain exactly one
connected component of pluses of cardinality m3, and their shape is an
appropriate union of a specific quasicube (whose sides depend on h) and
a two dimensional critical droplet. In dimension d ≥ 4, the results of
Neves yield that the configurations consisting of the appropriate union of
a d dimensional quasicube and a d − 1 dimensional critical droplet are
optimal saddles, but it is currently not proved that they are the only ones.
However it is reasonable to expect that the cases of equality in the discrete
isoperimetric inequality on the lattice can be analyzed in dimension d ≥ 4
in the same way they were studied in dimension d = 3 [AC96], so that the
three dimensional results could be extended to higher dimension.

In infinite volume, instead of nucleating locally in a finite box near the
origin, a critical droplet of pluses might be created far from the origin and
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this droplet can grow, become supercritical and invade the origin. It turns
out that this is the most efficient mechanism to relax to equilibrium. This
was shown by Dehghanpour and Schonmann in the two dimensional case
[DS97a] and it required several new ideas and insights compared to the
finite volume analysis. Indeed, one has to understand the typical birth
place of the first critical droplets which are likely to invade the origin, as
well as their growth mechanism. The heuristics given in [DS97a] apply in
d dimensions as well. Suppose that nucleation in a finite box is exponen-
tially distributed with rate exp(−βΓd), independently from other boxes,
and that the speed of growth of a large supercritical droplet is vd. The
droplets which can reach the origin at time t are the droplets which are
born inside the space–time cone whose basis is a d dimensional square with
side length vdt and whose height is t. The critical space–time cone is such
that its volume times the nucleation rate is of order one. Let τd be the
typical relaxation time in dimension d, i.e., the time when the stable plus
phase invades the origin. From the previous heuristics, we conclude that
τd satisfies

1

3
τd (vdτd)

d exp(−βΓd) = 1 .

Solving this identity and neglecting the factor 1/3, we get

τd = exp
( 1

d+ 1

(
βΓd − d ln vd

))
.

Since the large supercritical droplets are approximately parallelepipeds,
the dynamics on one face behaves like a d− 1 dimensional stochastic Ising
model and the time needed to fill a face with pluses is of order τd−1. Thus
vd should behave like the inverse of τd−1 and the previous formula becomes

ln τd =
1

d+ 1

(
βΓd + d ln τd−1

)
.

In this computation, we take only into account the terms on the exponential
scale, of order exp(β constant). Setting τd = exp(βκd), the constant κd

satisfies

κd =
1

d+ 1

(
Γd + dκd−1

)
.

Solving the recursion, and using that κ0 = 0, we get that

κd =
1

d+ 1

(
Γ1 + · · ·+ Γd

)
.

1.2 Three major problems.

Although these heuristics are rather convincing, it is a real challenge to
prove rigorously that the asymptotics of the relaxation time are indeed of
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order exp(βκd). Our strategy is to implement inductively the scheme of
Dehghanpour and Schonmann. To do so, we had to overcome three major
problems.
Speed of growth. A first major difficulty is to control the speed of
growth vd of large supercritical droplets. The upper bound on the speed of
growth in [DS97b] was based on a very detailed analysis of the growth of
an infinite interface. Using a combinatorial argument based on chronolog-
ical paths, first introduced by Kesten and Schonmann in the context of a
simplified growth model [KS95], Dehghanpour and Schonmann were able
to prove that v2 is of order exp(−βΓ1/2). Despite considerable efforts, we
never managed to extend this technique of analysis to higher dimension.
Here we consider only interfaces with a size that is exponential in β. In
order to control the growth of these interfaces, we use inductively coupling
techniques introduced to analyze the finite–size scaling in the bootstrap
percolation model [CC99, CM02]. We apply successively these techniques
in two distinct ways, the first sequential and the second parallel. This
strategy has been elaborated first in a simplified growth model [CM11],
yet its application in the context of the Ising model is more troublesome.
Contrary to the case of the growth model, we did not manage to compare
the dynamics in a strip with a genuine d − 1 dimensional dynamics and
we perform the induction on the boundary conditions rather than on the
dimension. An additional source of trouble is to control the configurations
in the metastable regions. We introduce an adequate hypothesis describing
their law, which is preserved until the arrival of supercritical droplets, in
order to tackle this problem. A key result to control the speed of growth
is theorem 6.4.
Energy landscape. A second major difficulty is that it is very hard to
analyze the energy landscape of the Ising model in high dimension and the
results we are able to obtain are very weak compared to the corresponding
results in finite volume and in dimension two and three (see [NS92, NS91,
BAC96]). For instance we are not able to determine whether a given cluster
of pluses tends to shrink or to grow. Moreover, we do not know some of the
fine details of the energy landscape such as the depth of the small cycles that
could trap the process and increase the relaxation time. In other words, we
do not know how to compute the inner resistance of the metastable cycle
in d dimensions, that is, the energy barrier that a subcritical configuration
has to overcome in order to reach either the plus configuration or the minus
configuration in a finite box. This fact affects both strategies for the upper
as well as for the lower estimate of the relaxation time, since in order to
approximate the distribution of the nucleation time as an exponential law
with rate exp(−βΓd), one has to rule out the possibility that the process
is trapped in a deep well. We are able to get the required bounds by using
the attractivity and the reversibility of the dynamics, see lemma 6.1 and
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proposition 7.4.
Space–time clusters. The third major difficulty to extend the analysis
of Dehghanpour and Schonmann is to control adequately the space–time
clusters. For instance, we cannot proceed as in [DS97a] to rule out the
possibility that a subcritical cluster crosses a long distance. This question
turns out to be much more involved in higher dimension. It is tackled in
theorem 5.7, which is a key of the whole analysis. To control the diameters
of the space–time clusters, we use ideas of recurrence and a decomposition
of the space into sets called “cycle compounds”. A cycle compound is a
connected set of states A such that the communication energy between two
points of A is less than or equal to the communication energy between A
and its complement. A cycle is a cycle compound, yet an appropriate union
of cycles might form a cycle compound without being a cycle.

1.3 Main results.

We describe now briefly the model and we state next our main result.
We study the d dimensional nearest-neighbor stochastic Ising model at
inverse temperature β with a fixed small positive magnetic field h, that is,
the continuous–time Markov process (σt)t≥0 with state space {−1,+1}Z

d

defined as follows. In the configuration σ, the spin at the site x ∈ Zd flips
at rate

c(σ, σx) = exp
(
− β

(
∆xH(σ)

)+)
,

where (a)+ = max(a, 0) and

∆xH(σ) = σ(x)
( ∑

y∈Z
d

|x−y|=1

σ(y) + h
)
.

In other words, the infinitesimal generator of the process (σt)t≥0 acts on a
local observable f as

(Lf)(σ) =
∑

x

c(σ, σx)(f(σx)− f(σ)) ,

where σx is the configuration σ in which the spin at site x has been turned
upside down. Formally, we have

∆xH(σ) = H(σx)−H(σ)

where H is the formal Hamiltonian given by

H(σ) = −
1

2

∑

{x,y}⊂Z
d

|x−y|=1

σ(x)σ(y) −
h

2

∑

x∈Zd

σ(x) .
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More details on the construction of this process are given in sections 3.1
and 3.2. We denote by (σ−1

t )t≥0 the process starting from −1, the config-
uration in which all the spins are equal to −1. A local observable is a real
valued function f defined on the configuration space which depends only
on a finite set of spin variables.

Theorem 1.1 Let f be a local observable. If the magnetic field h is positive
and sufficiently small, then there exists a value κd such that, letting τβ =
exp(βκ), we have

lim
β→∞

E(f(σ−1

τβ )) = f(−1) if κ < κd ,

lim
β→∞

E(f(σ−1

τβ )) = f(+1) if κ > κd .

The value κd depends only on the dimension d and the magnetic field h; in
fact, if we denote by Γi the energy of the i dimensional critical droplet of
the Ising model at zero temperature and magnetic field h, then

κd =
1

d+ 1

(
Γ1 + · · ·+ Γd

)
.

Besides the aforementioned technical difficulties, our proof is basically an
inductive implementation of the scheme of [DS97a], combined with the
strategy of [CM02]. Let us give some insight into the scheme of the proof.
The first step of the proof consists in reducing the problem to a process
defined in a finite exponential volume. Let κ > 0 and let τβ = exp(βκ).
Let L > κ and let Λβ = Λ(exp(βL)) be a cubic box of side length exp(βL).
We have that

lim
β→∞

P
(
f(σ−1

τβ ) = f(σ−,−1

Λβ ,τβ
)
)
= 1 ,

where (σ−,−1

Λβ ,t
)t≥0 is the process in the box Λβ with minus boundary con-

ditions starting from −1. This follows from a standard large deviation
estimate based on the fact that the maximum rate in the model is 1, see
lemmas 1, 2 of [Sch94] for the complete proof. We state next the finite
volume results that we will prove.

Theorem 1.2 Let L > 0 and let Λβ = Λ(exp(βL)) be a cubic box of side
length exp(βL). Let κ > 0 and let τβ = exp(βκ). There exists h0 > 0 such
that, for any h ∈]0, h0[, the following holds:
• If κ < max(Γd − dL, κd), then

lim
β→∞

P
(
σ−,−1

Λβ ,τβ
(0) = 1

)
= 0 .

• If κ > max(Γd − dL, κd), then

lim
β→∞

P
(
σ−,−1

Λβ ,τβ
(0) = −1

)
= 0 .
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Recall that Γd and κd depend on the magnetic field h. Explicit formulae are
available for Γd and κd, however they are quite complicated. An important
point is that Γd and κd are continuous functions of the magnetic field h
(this is proved in lemma 4.1), this will allow us to reduce the study to
irrational values of h. An explicit bound on h0 can also be computed. In
dimension d, the proof works if h0 ≤ 1 and lemma 6.8 holds. Let us denote
by md the volume of the critical droplet in dimension d. Lemma 6.8 holds
as soon as

∀n ≤ d (Γn−1)
n ≤ (mn−1)

n−1 .

We shift next our attention to finite volumes and we try to perform simple
computations to understand why the critical constant appearing in theo-
rem 1.2 is equal to max(Γd − dL, κd). We have two possible scenarios for
the relaxation to equilibrium in a finite cube. If the cube is small, then
the system relaxes via the formation of a single critical droplet that grows
until covering the entire volume. If the cube is large, then a more efficient
mechanism consists in creating many critical droplets that grow and even-
tually coalesce. The critical side length of the cubes separating these two
mechanisms scales exponentially with β as exp(βLd), where

Ld =
Γd − κd

d
.

This value is the result of the computations, we do not have a simple
heuristic explanation for it. There are three main factors controlling the
relaxation time, which correspond to the heuristics explained previously:

Nucleation. Within a box of side length exp(βK), the typical time when
the first critical droplet appears is of order exp(β(Γd − dK)).
Initial growth. The typical time to grow from a critical droplet (which
has a diameter of order 2d/h) into a supercritical droplet (which has a di-
ameter of order exp(βLd)) travelling at the asymptotic speed exp(−βκd−1)
is exp(βΓd−1).
Asymptotic growth. In a time exp(β(K+κd−1)), a supercritical droplet
having a diameter larger than exp(βLd) and travelling at the asymptotic
speed exp(−βκd−1) covers a distance exp(βK) in each axis direction and
its diameter increases by 2 exp(βK).

The statement concerning the nucleation time contains no mystery. Let us
try to explain the statements on the growth of the droplets. Once a critical
droplet is born, it starts to grow at speed exp(−βΓd−1). As the droplet
grows, the speed of growth increases, because the number of choices for the
creation of a new d− 1 dimensional critical droplet attached to the face of
the droplet is of order the surface of the droplet. Thus the speed of growth
of a droplet of size exp(βK) is

exp(β(K(d − 1)− Γd−1)) .
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When K reaches the value Ld−1, the speed of growth is limited by the
inverse of the time needed for the d−1 dimensional critical droplet to cover
an entire face of the droplet. This time corresponds to the d−1 dimensional
relaxation time in infinite volume and the droplet reaches its asymptotic
speed, of order exp(−βκd−1). The time needed to grow a critical droplet
into a supercritical droplet travelling at the asymptotic speed is

∑

1≤i≤exp(βLd−1)

expβ
(
Γd−1 −

d− 1

β
ln i
)

and, for d ≥ 2, this is still of order exp(βΓd−1). With the help of the above
facts, we can estimate the relaxation time in a box of side length exp(βL).
Suppose that the origin is covered by a large supercritical droplet at time
exp(βκ). If this droplet is born at distance 1

2 exp(βK), then nucleation
has occurred inside the box Λ(exp(βK)) and the initial critical droplet has
grown into a droplet of diameter 1

2 exp(βK) in order to reach the origin.
This scenario needs a time

(
time for nucleation

in the box Λ(exp(βK))

)
+

(
time to cover

the box Λ(exp(βK))

)

∼ exp(β(Γd − dK)) + exp(βΓd−1) + exp(β(K + κd−1))

which is of order

exp
(
βmax

(
Γd − dK,Γd−1,K + κd−1

))
.

To find the most efficient scenario, we optimize overK < L and we conclude
that the relaxation time in the box Λ(exp(βL)) is of order

exp
(
β inf

K≤L
max

(
Γd − dK,Γd−1,K + κd−1

))
.

It turns out that, for h small, the above quantity is equal to

exp
(
βmax(Γd − dL, κd)

)
.

In particular, the time needed to grow a critical droplet into a supercritical
droplet is not a limiting factor for the relaxation whenever h is small.

1.4 Strategy of the proof.

The upper bound on the relaxation time, i.e., the second case where κ >
max(Γd−dL, κd) is done in section 7. The ingredients involved in the upper
bound are known since the works of Neves, Dehghanpour and Schonmann,
and this part is considerably easier than the lower bound. The hardest
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part of theorem 1.2 is the lower bound on the relaxation time, i.e., the first
case where κ < max(Γd − dL, κd). The lower bound is done in sections 5
and 6. Let us explain the strategy of the proof of the lower bound, without
stating precisely the definitions and the technical results.

Let L > 0 and let Λβ = Λ(exp(βL)) be a cubic box of side length
exp(βL). Let κ > 0 and let τβ = exp(βκ). We want to prove that it is
unlikely that the spin at the origin is equal to +1 at time τβ for the process
(σ−,−1

Λβ ,t
)t≥0. Throughout the proof, we use in a crucial way the notion of

space–time cluster. A space–time cluster of the trajectory (σΛ,t, 0 ≤ t ≤ τβ)
is a maximal connected component of space–time points for the following
relation: two space-time points (x, t) and (y, s) are connected if σΛ,t(x) =
σΛ,s(y) = +1 and either (s = t and |x−y| ≤ 1) or (x = y and σΛ,u(x) = +1
for s ≤ u ≤ t). With the space–time clusters, we record the influence of
the plus spins throughout the evolution. We can then compare the status
of a spin in dynamics associated to different boundary conditions with the
help of the graphical construction (described in section 3.2). The diameter
diam∞ C of a space–time cluster C is the diameter of its spatial projection.
We argue as follows. If σ−,−1

Λβ ,τβ
(0) = +1, then the space–time point (0, τβ)

belongs to a non void space–time cluster, which we denote by C∗. We
discuss then according to the diameter of C∗.
• If diam∞ C∗ < ln lnβ, then C∗ is also a space–time cluster of the process(
σ−,−1

Λ(ln β),t, 0 ≤ t ≤ τβ
)
, and the spin at the origin is also equal to +1 in this

process at time τβ . The finite volume estimates obtained for fixed boxes
can be readily extended to boxes of side length lnβ, and we obtain that
the probability of the above event is exponentially small if κ < Γd, because
the entropic contribution to the free energy is negligible with respect to the
energy.
• If diam∞ C∗ > exp(βLd) (this case can occur only when L > Ld), then
we use the main technical estimate of the paper, theorem 6.4, which states
roughly the following: for κ < κd, the probability that, in the trajectory(
σ−,−1

Λβ ,t
, 0 ≤ t ≤ τβ

)
, there exists a space–time cluster of diameter larger

than exp(βLd) is a super exponentially small function of β (SES in the
following), and it can be neglected.
• If ln lnβ ≤ diam∞ C∗ ≤ exp(βLd), then C∗ is also a space–time cluster
of the process restricted to the box Λ(3 exp(βLd)) ∩ Λβ . A space–time
cluster is said to be large if its diameter is larger than or equal to ln lnβ.
A box is said to be small if its sides have a length larger than ln lnβ and
smaller than d lnβ. The diameters of the space–time clusters increase with
time when they coalesce because of a spin flip. This implies that, if a large
space–time cluster is created in the box Λβ, then it has to be created also
locally in a small box. The number of small boxes included in Λβ is of
order ∣∣Λ(3 exp(βLd)) ∩ Λβ

∣∣ = exp
(
βdmin(Ld, L)

)
.
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For the dynamics restricted to a small box, we have

P

(
a large STC is

created before τβ

)
≤

P

(
a large STC is created

before nucleation

)
+ P

(
nucleation occurs

before τβ

)
.

The main result of section 5.5, theorem 5.7, yields that the first term of the
righthand side is SES. The finite volume estimates in fixed boxes obtained
in the previous studies of metastability can be readily extended to small
boxes. By lemma 6.1, we have that, up to corrective factors,

P

(
nucleation occurs

before τβ

)
≤ τβ exp(−βΓd) .

Finally, we have

P
(
diam∞ C∗ ≥ ln lnβ

)
≤ exp

(
βdmin(Ld, L)

)(
τβ exp(−βΓd) + SES

)

≤ exp
(
β
(
dmin(Ld, L) + κ− Γd

))
+ SES

= exp
(
β
(
κ−max(Γd − dLd,Γd − dL)

))
+ SES

and the desired result follows easily.
From this quick sketch of proof, we see that the most difficult intermedi-

ate results are theorems 5.7 and 6.4. The remainder of the paper is mainly
devoted to the proof of these results. In section 2, we consider a general
Metropolis dynamics on a finite state space, we recall the formulas for the
law of exit in continuous time and we introduce the notions of cycle and
cycle compounds in this context. Section 3 is devoted to the study of some
specific features of the cycle compounds of the Ising model. In section 4, we
state several discrete isoperimetric results from [Nev94, Nev95, AC96] and
the fundamental estimate for the nucleation time in a finite box. Apart from
the notion of cycle compounds, the definitions and the results presented in
sections 2, 3 and 4 come from the previous literature on metastability, with
some rewriting and adaptation to fit the continuous–time framework and
our specific n± boundary conditions. The main technical contributions of
this work are presented in sections 5 and 6. In section 5, we prove the key
estimate on the diameters of the space–time clusters (theorem 5.7). Sec-
tion 6 is devoted to the proof of theorem 6.4. The proof of the lower bound
on the relaxation time is completed in section 6.5. The final section 7
contains the proof of the upper bound on the relaxation time.
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2 The Metropolis dynamics.

A very efficient tool to describe the metastable behavior of a process in
the low temperature regime is a hierarchical decomposition of the state
space known as the cycle decomposition. In the context of a Markov chain
with finite state space evolving under a Metropolis dynamics, the cycles
can be defined geometrically with the help of the energy landscape. Our
context of infinite volume is much more complicated, but since the system
is attractive, we will end up with some local problems that we handle with
the finite volume techniques. We start by reviewing these techniques. Here
we recall some basic facts about the cycle decomposition. For a complete
review we refer to [Sco93, OS95, OS96, CC95, OS98, OV05]. Since we
are working here with a continuous–time process defined with the help of
transition rates, as opposed to a discrete–time Markov chain defined with
transition probabilities, we feel that it is worthwhile to present the exact
formulas giving the law of exit of an arbitrary subset in this slightly different
framework. This is the purpose of section 2.1. In section 2.2, we define the
Metropolis dynamics and we show how to apply the formulas of section 2.1
in this context. In section 2.3, we recall the definitions of a cycle, the
communication energy, the height of a set, its bottom, its depth and its
boundary. We introduce also an additional concept, called cycle compound,
which turns out to be useful when analyzing the energy landscape of the
Ising model. Apart from the notion of cycle compounds, the definitions
and the results presented in this section come from the previous literature
on metastability and simulated annealing, they are simply adapted to the
continuous–time framework.

2.1 Law of exit.

We will not derive in detail all the results used in this paper concerning
the behavior of a Markov process with exponentially vanishing transition
rates, because the proofs are essentially the same as in the discrete–time
setting. These proofs can be found in the book of Freidlin and Wentzell
([FW98], chapter 6, section 3), or in the lecture notes of Catoni ([Cat97],
section 3). However, for the sake of clarity, we present the two basic for-
mulas in continuous time giving the law of the exit from an arbitrary set.
Let X be a finite state space. Let c : X ×X → R be a matrix of transition
rates on X , that is,

∀x, y ∈ X , x 6= y , c(x, y) ≥ 0 ,

∀x ∈ X
∑

y∈X

c(x, y) = 0 .

12



We consider the continuous–time homogeneous Markov process (Xt)t≥0

on X whose infinitesimal generator is

∀f : X → R (Lf)(x) =
∑

y∈X

c(x, y)(f(y)− f(x)) .

For C an arbitrary subset of X , we define the time τ(C) of exit from C

τ(C) = inf{ t ≥ 0 : Xt 6∈ C } .

The next lemmas provide useful formulas for the laws of the exit time
and exit point for an arbitrary subset of X . These formulas are rational
fractions of products of the coefficients of the matrix of the transition rates
whose numerators and denominators are most conveniently written as sums
over particular types of graphs.

Definition 2.1 (the graphs G(W ))
Let W be an arbitrary non–empty subset of X .
An oriented graph on X is called a W -graph if and only if

• there is no arrow starting from a point of W ;
• each point of W c is the initial point of exactly one arrow;
• for each point x in W c, there exists a path in the graph leading

from x to W .
The set of all W–graphs is denoted by G(W ).

If the first two conditions are fulfilled, then the third condition above is
equivalent to

• there is no cycle in the graph.

Definition 2.2 (the graphs Gx,y(W ))
Let W be an arbitrary non–empty subset of X , let x belong to X and y
to W . If x belongs to W c, then the set Gx,y(W ) is the set of all oriented
graphs on X such that

• there is no arrow starting from a point of W ;
• each point of W c is the initial point of exactly one arrow;
• for each point z in W c, there exists a path in the graph leading from z

to W ;
• there exists a path in the graph leading from x to y.

More concisely, they are the graphs of G(W ) which contain a path leading
from x to y.
If x belongs to W , then the set Gx,y(W ) is empty if x 6= y and is equal
to G(W ) if x = y.

The graphs in Gx,y(W ) have no cycles. For any x in X and y in W , the
set Gx,y(W ) is included in G(W ).

13



Definition 2.3 (the graphs G(x 6→ W ))
Let W be an arbitrary non–empty subset of X and let x be a point of X .
If x belongs to W then the set G(x 6→ W ) is empty.
If x belongs to W c then the set G(x 6→ W ) is the set of all oriented graphs
on X such that

• there is no arrow starting from a point of W ;
• each point of W c except one, say y, is the initial point of exactly

one arrow;
• there is no cycle in the graph;
• there is no path in the graph leading from x to W .

The third condition (no cycle) is equivalent to
• for each z in W c \ {y}, there is a path in the graph leading from z

to W ∪ {y}.

Lemma 2.4 Let W be an arbitrary non–empty subset of X and let x be
a point of X . The set G(x 6→ W ) is the union of all the sets Gx,y(W ∪
{y}), y ∈ W c.

In the case x ∈ W c, y ∈ W , the definitions of Gx,y(W ) and G(x 6→ W ) are
those given by Wentzell and Freidlin (1984). We have extended these defi-
nitions to cover all possible values of x. With our choice for the definition
of the time of exit τ(W c) (the first time greater than or equal to zero when
the chain is outside W c), the formulas for the law of Xτ(W c) and for the
expectation of τ(W c) will remain valid in all cases.

Let g be a graph on X , we define

c(g) =
∏

(x→y)∈g

c(x, y).

Lemma 2.5 (exit point)
For any non–empty subset W of X , any y in W and x in X ,

P (Xτ(W c) = y/X0 = x) =

∑

g∈Gx,y(W )

c(g)

∑

g∈G(W )

c(g)
.

Lemma 2.6 (exit time)
For any subset W of X and x in X ,

E(τ(W c)/X0 = x) =

∑

y∈W c

∑

g∈Gx,y(W∪{y})

c(g)

∑

g∈G(W )

c(g)
=

∑

g∈G(x 6→W )

c(g)

∑

g∈G(W )

c(g)
.
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For instance, if we apply lemma 2.6 to the case where W = X \ {x} and
the process starts from x ∈ X , then we get

E(τ({ x })/X0 = x) =
1∑

y 6=x c(x, y)
= −

1

c(x, x)
.

To prove these formulas in continuous time, we study the involved quanti-
ties as functions of the starting point and derive a system of linear equations
with the help of the Markov property. For instance, let

m(x, y) = P (Xτ(W c) = y/X0 = x) .

Let T = τ({ x }). We have then

m(x, y) =
∑

z∈W c

P (Xτ(W c) = y, XT = z/X0 = x) + P (XT = y/X0 = x)

=
∑

z∈W c

P (Xτ(W c) = y/X0 = z)P (XT = z/X0 = x)+P (XT = y/X0 = x) .

Let

p(x, z) = P (XT = z/X0 = x) =
c(x, z)∑

u6=x c(x, u)
= −

c(x, z)

c(x, x)
.

Then p(·, ·) is a matrix of transition probabilities, and

m(x, y) =
∑

z∈W c

p(x, z)m(z, y) + p(x, y) .

This is exactly the same equation as in the case of a discrete–time Markov
chain with transition matrix p(·, ·). This way the continuous–time formula
can be deduced from its discrete–time counterpart.

2.2 The Metropolis dynamics.

We suppose from now onwards that we deal with a family of continuous–
time homogeneous Markov processes (Xt)t≥0 indexed by a positive param-
eter β (the inverse temperature). Thus the state space and the transition
rates change with β. We suppose that these processes evolve under a
Metropolis dynamics. More precisely, let α : X × X → [0, 1] be a symmet-
ric irreducible transition kernel on X , that is α(x, y) = α(y, x) for x, y ∈ X
and

∀y, z ∈ X × X ∃x0, x1, . . . , xr x0 = y, xr = z,

α(x0, x1)× · · · × α(xr−1, xr) > 0.
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Let H : X → R be an energy defined on X . We suppose that the transition
rates c(x, y) are given by

∀x, y ∈ X c(x, y) = α(x, y) exp
(
−βmax

(
0, H(y)−H(x)

))
.

The irreducibility hypothesis ensures the existence of a unique invariant
probability measure ν for the Markov process (Xt)t≥0. We have then, for
any x, y ∈ X and t ≥ 0,

ν(x)P (Xt = y/X0 = x) ≤
∑

z∈X

ν(z)P (Xt = y/X0 = z) = ν(y) .

In the case where α(x, y) ∈ { 0, 1 } for x, y ∈ X , the invariant measure ν is
the Gibbs distribution associated to the Hamiltonian H at inverse temper-
ature β, and we have

∀x, y ∈ X ∀t ≥ 0 P (Xt = y/X0 = x) ≤ exp
(
− β(H(y)−H(x))

)
.

We will send β to ∞ and we seek asymptotic estimates on the law of exit
from a subset of X . The exact formulas given in the previous section can
be exploited when the cardinality of the space X and the degree of the
communication graph are not too large, so that the number of terms in the
sums is negligible on the exponential scale. More precisely, let deg(α) be
the degree of the communication kernel α, i.e.,

deg(α) = max
x∈X

∣∣ { y ∈ X : α(x, y) > 0 }
∣∣ .

We suppose that α(x, y) ∈ { 0, 1 } for x, y ∈ X and that

lim
β→∞

1

β
|X | ln deg(α) = 0 .

Under this hypothesis, for any subset W of X , the number of graphs in
G(W ) is bounded by

∣∣G(W )
∣∣ ≤ deg(α)

|X |
= exp o(β) .

From lemma 2.5, we have then for a subset W of X , y in W and x in X ,

deg(α)−|X | c(g
∗
x,y)

c(g∗W )
≤ P (Xτ(W c) = y/X0 = x) ≤ deg(α)|X | c(g

∗
x,y)

c(g∗W )
,

where the graphs g∗x,y and g∗W are chosen so that

c(g∗x,y) = max
{
c(g) : g ∈ Gx,y(W )

}
,

c(g∗W ) = max
{
c(g) : g ∈ G(W )

}
.
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For g a graph over X we set

V (g) =
∑

(x→y)∈g

max
(
0, H(y)−H(x)

)

so that c(g) = exp(−βV (g)). The previous inequalities yield then

lim
β→∞

1

β
lnP (Xτ(W c) = y/X0 = x) =

min
{
V (g) : g ∈ Gx,y(W )

}
− min

{
V (g) : g ∈ G(W )

}
.

Similarly, from lemma 2.6, we obtain that

lim
β→∞

1

β
lnE(τ(W c)/X0 = x) =

min
{
V (g) : g ∈ G(x 6→ W )

}
− min

{
V (g) : g ∈ G(W )

}
.

2.3 Cycles and cycle compounds.

We say that two states x, y communicate if either x = y or α(x, y) > 0. A
path ω is a sequence ω = (ω1, . . . , ωn) of states such that each state of the
sequence communicates with its successor. A set A is said to be connected
if any states in A can be joined by a path in A, i.e.,

∀x, y ∈ A ∃ω1, . . . , ωn ∈ A ω1 = x, ωn = y,

α(ω1, ω2) · · ·α(ωn−1, ωn) > 0 .

We define the communication energy between two states x, y by

E(x, y) = min
{
max
z∈ω

H(z) : ω path from x to y
}
.

The communication energy between two sets of states A,B is

E(A,B) = min
{
E(x, y) : x ∈ A, y ∈ B

}
.

The height of a set of states A is

height(A) = max
{
E(x, y) : x, y ∈ A, x 6= y

}
.

Definition 2.7 A cycle is a connected set of states A such that

height(A) < E(A,X \ A) .

A cycle compound is a connected set of states A such that

height(A) ≤ E(A,X \ A) .
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Let us rewrite these definitions directly in terms of the energy H . For any
set A, we have

E(A,X \ A) = min
{
max(H(x), H(y)) : x ∈ A, y 6∈ A, α(x, y) > 0

}
.

Notice that the height of a singleton is −∞. Moreover, if A is a connected
set having at least two elements, then

height(A) = max
{
H(x) : x ∈ A

}
.

Thus a cycle is either a singleton or a connected set of states A such that

∀x, y ∈ A ∀z 6∈ A α(y, z) > 0 =⇒ H(x) < max(H(y), H(z)) .

A cycle compound is either a singleton or a connected set of states A such
that

∀x, y ∈ A ∀z 6∈ A α(y, z) > 0 =⇒ H(x) ≤ max(H(y), H(z)) .

Although a cycle and a cycle compound have almost the same definitions,
the structure of these sets is quite different. Indeed, the communication
under a fixed height λ is an equivalence relation and the cycles are equiva-
lence classes under this relation. In particular, two cycles are either disjoint
or included one into the other. With our definition, any singleton is also a
cycle of height −∞.

Proposition 2.8 Let n ≥ 2 and let A1, . . . ,An be n cycles such that

E(A1,X \ A1) = · · · = E(An,X \ An) .

If their union

A =

n⋃

i=1

Ai

is connected, then it is a cycle compound.

Proof. If A is a singleton, then there is nothing to prove. Let us suppose
that A has at least two elements. Since A is connected, then

height(A) = max
{
H(x) : x ∈ A

}
.

Moreover,

E(A,X \ A) ≥ min
1≤i≤n

E(Ai,X \ Ai) = max
1≤i≤n

E(Ai,X \ Ai) .

For i ∈ { 1, . . . , n }, since Ai is a cycle, we have

E(Ai,X \ Ai) ≥ max
{
H(x) : x ∈ Ai

}
,
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whence

E(A,X \ A) ≥ max
1≤i≤n

max
{
H(x) : x ∈ Ai

}
= height(A) ,

so that A is a cycle compound. �

Thus two distinct cycle compounds might have a nonempty intersection.
Let us introduce a few more definitions. The bottom of a set G of states is

bottom(G) =
{
x ∈ G : H(x) = min

y∈G
H(y)

}
.

It is the set of the minimizers of the energy in G. We denote the energy of
the states in bottom(G) by H(bottom(G)). The depth of a set G is

depth(G) = E(G,X \ G)−H(bottom(G)) .

The exterior boundary of a subset G of X is the set

∂G =
{
x 6∈ G : ∃y ∈ G α(y, x) > 0

}
.

Let us set, for g a graph over X ,

V (g) =
∑

(x→y)∈g

max
(
0, H(y)−H(x)

)
.

The following results are far from obvious, they are consequences of the
formulas of section 2.1 and the analysis of the cycle decomposition [Sco93,
OS95, OS96, CC95, OS98].

Theorem 2.9 Let A be a cycle compound, let x ∈ A and let y ∈ ∂A. We
have the identity

min
{
V (g) : g ∈ Gx,y(X \ A)

}
− min

{
V (g) : g ∈ G(X \ A)

}

= max
(
0, H(y)− E(A,X \ A)

)
,

min
{
V (g) : g ∈ G(x 6→ X \ A)

}
− min

{
V (g) : g ∈ G(X \ A)

}

= E(A,X \ A)−H(bottom(A)) .

Substituting the above identities into the formulas of lemmas 2.5 and 2.6,
we obtain the following estimates.

Corollary 2.10 Let A be a cycle compound, let x ∈ A and let y ∈ ∂A.
We have

deg(α)
−|X |

≤
P
(
Xτ(A) = y/X0 = x

)

exp
(
− βmax

(
0, H(y)− E(A,X \ A)

)) ≤ deg(α)
|X |

,

deg(α)
−|X |

≤
E(τ(W c)/X0 = x)

exp
(
β depth(A)

) ≤ deg(α)
|X |

.
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Let Y be a subset of X . A cycle A (respectively a cycle compound A)
included in Y is said to be maximal if there is no cycle A′ (respectively no
cycle compound A

′
) included in Y such that A ( A′ (respectively A ( A

′
).

Lemma 2.11 Two maximal cycle compounds in Y are either equal or dis-
joint.

Proof. Let A1,A2 be two maximal cycle compounds in Y which are not
disjoint. Suppose that

E(A1,X \ A1) = E(A2,X \ A2) .

Then A1 ∪ A2 is still a cycle compound included in Y. By maximality, we
must have A1 = A2. Suppose that

E(A1,X \ A1) < E(A2,X \ A2) .

Let x be a point of A1 ∩ A2. If A1 \ A2 6= ∅, then

E(x,X \ A2) ≤ height(A1) ≤ E(A1,X \ A1) ,

which is absurd. Thus A1 ⊂ A2, and by maximality, A1 = A2. �

We denote by M(Y) the partition of Y into maximal cycles, i.e.,

M(Y) =
{
A : A is a maximal cycle included in Y

}
,

and by M(Y) the partition of Y into maximal cycle compounds, i.e.,

M(Y) =
{
A : A is a maximal cycle compound included in Y

}
.

Lemma 2.12 Let A be a maximal cycle compound included in a subset D
of X and let x belong to ∂A∩D. Then H(x) is not equal to E(A,X \ A).
If H(x) < E(A,X \ A), then we have E(x,X \ D) < E(A,X \ A).

Proof. If there was a state x ∈ ∂A ∩ D such that H(x) = E(A,X \ A),
then the set A ∪ { x } would be a cycle compound included in D, which
would be strictly larger than A, and this would contradict the maximality
of A. Similarly, for the second assertion, suppose that H(x) < E(A,X \A)
and let

A′ =
{
y ∈ X : E(x, y) < E(A,X \ A)

}
.

The set A′ is a cycle of height strictly less than E(A,X \A) and such that
E(A′,X \ A′) ≥ E(A,X \ A). Moreover

height(A ∪A′) ≤ E(A,X \ A) ≤ E(A ∪A′,X \ (A ∪A′)) .

Thus A ∪ A′ is still a cycle compound. Because of the maximality of A,
this cycle compound is not included in D. Therefore A′ intersects X \ D
and E(x,X \ D) < E(A,X \ A). �
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3 The stochastic Ising model

The material presented in this section is standard and classical. In sec-
tion 3.1, we define the Hamiltonian of the Ising model with various bound-
ary conditions and we show the benefit of working with an irrational mag-
netic field. In section 3.2, we define the stochastic Ising model and we recall
the graphical construction, which provides a coupling between the various
dynamics associated to different boundary conditions and parameters.

3.1 The Hamiltonian of the Ising model

With each configuration σ ∈ {−1,+1}Z
d

, we associate a formal Hamilto-
nian H defined by

H(σ) = −
1

2

∑

{x,y}⊂Z
d

|x−y|=1

σ(x)σ(y) −
h

2

∑

x∈Zd

σ(x).

The value σ(x) is the spin at site x ∈ Zd in the configuration σ. Notice
that the first sum runs over the unordered pairs x, y of nearest neighbors
sites of Zd. We denote by σx the configuration obtained from σ by flipping
the spin at site x. The variation of energy caused by flipping the spin at
site x is

H(σx)−H(σ) = σ(x)
( ∑

y∈Z
d

|x−y|=1

σ(y) + h
)
.

Given a box Λ included in Zd and a boundary condition ζ ∈ {−1,+1 }Z
d\Λ,

we define a function Hζ
Λ : {−1,+1 }Λ −→ R by

Hζ
Λ(σ) = −

1

2

∑

{x,y}⊂Λ
|x−y|=1

σ(x)σ(y) −
h

2

∑

x∈Λ

σ(x) −
1

2

∑

x∈Λ,y 6∈Λ
|x−y|=1

σ(x)ζ(y) + cζΛ

where cζΛ is a constant depending on Λ and ζ. Since h is positive, for
sufficiently large boxes, the configuration with all pluses, denoted by +1,
is the absolute minimum of the energy for any boundary condition and it
has the maximal Gibbs probability. The configuration with all minuses,
denoted by −1, will play the role of the deepest local minimum in our
system, representing the metastable state. We choose the constant cζΛ so
that

Hζ
Λ(−1) = 0 .

Sometimes we remove Λ and ζ from the notation to alleviate the text, writ-
ing simply H instead of Hζ

Λ. The communication kernel α on {−1,+1 }Λ
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is defined by

∀σ ∈ {−1,+1 }Λ ∀x ∈ Λ α(σ, σx) = 1

and α(σ, η) = 0 if σ and η have different spins in two sites or more. The
space {−1,+1 }Λ is now endowed with a communication kernel α and an
energy Hζ

Λ, we define an associated Metropolis dynamics on it as in sec-
tion 2.2.

We shall identify a configuration of spins with the support of the pluses
in it; this way, we think of a configuration as a set, and we can perform the
usual set operations on configurations. For instance, we denote by η∪ξ the
configuration in which the set of pluses is the union of the sets of pluses in
η and in ξ. We call volume of a configuration η the number of pluses in η
and we denote it by |η|. We call perimeter of a configuration η the number
of the interfaces between the pluses and the minuses in η and we denote it
by p(η):

p(η) =
∣∣{ {x, y} : η(x) = +1, η(y) = −1, |x− y| = 1

}∣∣ .

The Hamiltonian of the Ising model can then be rewritten conveniently as

H(η) = p(η)− h|η| .

Our analysis of the energy landscape will be based on the assumption that
h is an irrational number. This hypothesis simplifies in a radical way our
study, because of the following lemma.

Lemma 3.1 Let h be an irrational number. Suppose σ, η are two configu-
rations such that σ ⊂ η and H(σ) = H(η). Then σ = η.

Proof. Since h is irrational, the knowledge of the energy of a configuration
determines in a unique way its perimeter and its volume. Since σ is included
in η and they have the same volume, then they are equal. �

In the next section, we build a monotone coupling of the dynamics associ-
ated to different magnetic fields h. With the help of this coupling, we will
show in section 3.3 that it is sufficient to prove theorem 1.2 for irrational
values of the magnetic field. The main point is that the critical constant κd

depends continuously on h (this is proved in lemma 4.1).
We believe that the main features of the cycle structure should persist

for rational values of h. The assumption that h is irrational (or at least
that it does not belong to some countable set) is present in most papers
to simplify the structure of the energy landscape, with the only exception
of [MNOS04]. In dimension 2, for 2/h integer, there exists a very com-
plicated cycle compound, consisting of cycles with the same depth that
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communicate at the same energy level (see [MNOS04]). This compound is
not contained in the metastable cycle and is compatible with our results.

Our analysis is based on the following attractive inequality.

Lemma 3.2 For any configurations η, ξ, we have

H(η ∩ ξ) +H(η ∪ ξ) ≤ H(η) +H(ξ) .

Proof. This inequality can be proved with a direct computation (see
theorem 5.1 of [BAC96]). �

3.2 Graphical construction

The time evolution of the model is given by the Metropolis dynamics: when
the system is in the configuration η, the spin at a site x ∈ Λ ⊂ Zd flips at
rate

cζΛ,β(x, η) = exp
(
−βmax

(
0, Hζ

Λ(η
x)−Hζ

Λ(η)
))

,

where the parameter β is the inverse temperature. A standard construction
yields a continuous-time Markov process whose generator is defined by

∀f : {−1,+1}Λ → R (Lf)(η) =
∑

x∈Λ

cζΛ,β(x, η)(f(η
x)− f(η)) .

The process in a d dimensional box Λ, under magnetic field h, with initial
condition α and boundary condition ζ is denoted by

(σα,ζ
Λ,t , t ≥ 0) .

To define the process in infinite volume, we consider the weak limit of
the previous process as Λ grows to Zd. This weak limit does not depend
on the sequence of the boundary conditions (see [Sch94] for the details).
Sometimes we omit Λ, α or ζ from the notation if Λ = Zd, α = −1, or
ζ = −1, respectively.

In order to compare different processes, we use a standard construction,
known as the graphical construction, that allows to define on the same
probability space all the processes at a given inverse temperature β, in Zd

and in any of its finite subsets, with any initial and boundary conditions
and any magnetic field h. We refer to [Sch94] for details. We consider two
families of i.i.d. Poisson processes with rate one, associated with the sites
in Zd. Let x ∈ Zd, we denote by (τ−x,n)n≥1 and by (τ+x,n)n≥1 the arrival
times of the two Poisson processes associated to x. Notice that, almost
surely, these random times are all distinct. With each of these arrival
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times, we associate uniform random variables (u−
x,n)n≥1, (u+

x,n)n≥1, and
we assume that these variables are independent of each other and of the
Poisson processes. We introduce next an updating procedure in order to
define simultaneously all the processes on this probability space. Let Λ be
a finite subset of Zd and let x ∈ Λ. Let ε = −1 or ε = +1, let α be an
initial configuration and let ζ be a boundary condition. Let σ denote the
configuration just before time τεx,n. The updating rule at time τεx,n is the
following:

• The spins not at x do not change;

• If σ(x) = −ε and uε
x,n < cζΛ,β(x, σ), then the spin at x is reversed.

If the set Λ is finite, then the above rules define a Markov process (σα,ζ
Λ,t )t≥0.

Whenever Λ is infinite, one has to be more careful, because there is an infi-
nite number of arrival times in any finite time interval and it is not possible
to order them in an increasing sequence. However, because the rates are
bounded, changes in the system propagate at a finite speed, and a Markov
process can still be defined by taking the limit of finite volume processes
(see [Sch94, Lig05] for more details). In any case our proofs will involve
mainly boxes whose side length is finite, although they might grow with
β. From now on, we denote by P and E the probability and expecta-
tion with respect to the family of the Poisson processes and the uniform
random variables. The graphical construction allows to take advantage of
the monotonicity properties of the rates cζΛ,β(x, σ). For any box Λ, any
configurations α ≤ α′, ζ ≤ ζ′, we have

∀t ≥ 0 σα,ζ
Λ,t ≤ σα′,ζ′

Λ,t .

The process is also non decreasing as a function of the magnetic field h.

3.3 Reduction to irrational fields

We show here how the monotonicity of the process as a function of the
magnetic field, together with the continuity of Γd and κd, allow us to re-
duce the study to irrational values of the magnetic field. Suppose that
theorem 1.2 has been proved for irrational values of the magnetic field. Let
h < h0 be a positive rational number and let κ < max(Γd− dL, κd). As we
will see in lemma 4.1, the constants Γd and κd depend continuously on h,
therefore there exists an irrational number h′ such that h < h′ < h0 and

κ < max(Γ′
d − dL, κ′

d) ,

where Γ′
d and κ′

d are the constants associated to the field h′. Theorem 1.2
applied to the process (σ−,−1,h′

Λβ ,t
)t≥0 associated to the field h′ yields

lim
β→∞

P
(
σ−,−1,h′

Λβ ,τβ
(0) = 1

)
= 0 .
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From the graphical construction, we have

σ−,−1,h
Λβ ,τβ

(0) ≤ σ−,−1,h′

Λβ ,τβ
(0)

whence
lim
β→∞

P
(
σ−,−1,h
Λβ ,τβ

(0) = 1
)
= 0 .

as desired. The second part of theorem 1.2 for rational values of h is proved
similarly. Therefore, it is sufficient to prove theorem 1.1 for h irrational.
For the remainder of the paper, we will assume that it is the case. This
will allow us to use the result of lemma 3.1 which implies the other results
on the energy landscape proven in section 3, in particular lemma 5.4.

4 Isoperimetric results.

In this section we report some specific results on the energy landscape
of the d dimensional Ising model. In the two dimensional case, a very
detailed description can be found in [NS91, NS92]. In three dimensions,
the cycle structure is known only near the typical transition paths (see
[Nev94, Nev95, AC96, BAC96]). In higher dimension, we can compute the
communication energy between −1 and +1 by using the results of Neves
[Nev95], but finer details are still unknown. In section 4.1, we state a dis-
crete isoperimetric inequality which will be used in the proof of lemma 6.8.
In section 4.2, we define the so–called reference path. Thanks to the isoperi-
metric results of Neves, we can compute the critical energy Γd with the help
of the reference path. This is done in section 4.3. As a by–product, we
prove that the energy Γd depends continuously on h. In the inductive proof
of theorem 6.4, we work with mixed boundary conditions, called n± bound-
ary conditions. In section 4.4, we define the n± boundary conditions and
we prove the required isoperimetric results in boxes with these boundary
conditions.

4.1 An isoperimetric inequality.

A d dimensional polyomino is a set which is the finite union of unit d di-
mensional cubes. There is a natural correspondence between configurations
and polyominoes. To a configuration we associate the polyomino which is
the union of the unit cubes centered at the sites having a positive spin.
The main difference between configurations and polyominoes is that the
polyominoes are defined up to translations. Neves [Nev95] has obtained
a discrete isoperimetric inequality in dimension d, which yields the exact
value of

min
{
perimeter(c) : c is a d dimensional polyomino of volume v

}
,
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where v ∈ N. This value is a quite complicated function of the volume v,
which is larger than

2d
⌊
v1/d

⌋d−1
.

We derive from this the following simplified isoperimetric inequality.
Simplified isoperimetric inequality. For a d dimensional polyomino c,

perimeter(c) ≥ 2d
(
volume(c)

)(d−1)/d
.

Proof. We rely on the inequality stated above and we perform a simple
scaling with an integer factor N :

min
{
perimeter(c) : c d dimensional polyomino of volume v

}

≥ min
{
perimeter

(
N−1/dc

)
: c polyomino of volume Nv

}

= N
1−d
d min

{
perimeter(c) : c polyomino of volume Nv

}

≥ N
1−d
d 2d

⌊
(Nv)1/d

⌋d−1
.

Sending N to ∞, we obtain the desired inequality. �

If we had applied the classical isoperimetric inequality in Rd, then we would
have obtained an inequality with a different constant, namely the perimeter
of the unit ball instead of 2d. The constant 2d is sharp, indeed there is
equality when c is a d dimensional cube whose side length is an integer. We
believe that, for polyominoes of volume equal to ld where l is an integer,
it is the only shape realizing the equality, yet we were unable to locate a
proof of this statement in the literature (apart for the three dimensional
case [BAC96]). We will need the simplified isoperimetric inequality with
the correct constant in the main inductive proof.

4.2 The reference path.

Let R be a parallelepiped in Zd whose vertices belong to Zd+(1/2, . . . , 1/2)
and whose sides are parallel to the axis. A face of R consists of the set
of the sites of Zd which are at distance 1/2 from the parallelepiped and
which are contained in a given single hyperplane. With a slight abuse of
terminology, we say that a configuration η is obtained by attaching a d− 1
dimensional configuration ξ to a face of a d dimensional parallelepiped ζ if
η = ζ ∪ ξ and ξ is contained in a face of ζ. It is immediate to see that in
this case

HZd(ζ ∪ ξ) = HZd(ζ) + HZd−1(ξ) .

We call quasicube a parallelepiped in Zd such that the shortest and the
longest side lengths differ at most by one length unit. Notice that the faces
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of a quasicube are d− 1 dimensional quasicubes. From the results of Neves
[Nev95] we see that there exists an optimal path from −1 to +1 made of
configurations which are as close as possible to a cube. We call reference
path in a box Λ a path ρ = (ρ0, . . . , ρ|Λ|) going from −1 to +1 built with
the following algorithm. In one dimension, ρi has exactly i pluses which
form an interval of length i. In higher dimension, we proceed as follows:

1. Put a plus somewhere in the box.

2. Fill one of the largest faces of the parallelepiped of pluses (among
that contained in the box), following a d − 1 dimensional reference
path.

3. Go to step 2 until the entire box is full of pluses.

With a reference path ρ = (ρ0, . . . , ρ|Λ|), we associate a reference cycle path
consisting in the sequence of cycles (π0, . . . , π|Λ|), where for i = 0, . . . , |Λ|,
the cycle πi is the maximal cycle of {−1,+1 }Λ \ {−1,+1 } containing ρi.
A reference path enjoys the following remarkable property:

∀i < j E(ρi, ρj) = max
{
H(ρk) : i ≤ k ≤ j

}
,

i.e., it realizes the solution of the minimax problem associated to the com-
munication energy between any two of its configurations.

4.3 The metastable cycle.

Let Λ be a box whose sides are larger than 2d/h. We endow Λ with minus
boundary conditions. The metastable cycle Cd in the box Λ is the maximal
cycle of

{−1,+1 }Λ \ {+1 }

containing −1 in the energy landscape associated to H−
Λ , the Hamiltonian

in Λ with minus boundary conditions. We define

Γd = depth(Cd) = E(−1,+1) .

Recall that, by convention, H(−1) = 0. Obviously, a path ω = (ω0, . . . , ωl)
going from −1 to +1 satisfies

max
0≤i≤l

H(ωl) ≥ max
0≤k≤|Λ|

min
{
H(σ) : σ ∈ {−1,+1 }Λ, |σ| = k

}

= max
0≤k≤|Λ|

(
min

{
p(σ) : σ ∈ {−1,+1 }Λ, |σ| = k

}
− hk

)

and the reference path ρ realizes the equality in this inequality. We conclude
therefore that

Γd = max
0≤k≤|Λ|

H(ρk) .
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When h is irrational, there exists a unique value md such that

Γd = H(ρmd
) ,

i.e., the value Γd is reached for the configuration of a reference path having
volume md. We call such a configuration a critical droplet.

From the results of Neves [Nev94, Nev95] and a direct computation, we
derive the following facts. Let

lc(d) =
⌊2(d− 1)

h

⌋
.

The configuration of volume md is a quasicube with sides of length lc(d)
or lc(d) + 1, with a d − 1 dimensional critical droplet attached on one of
its largest sides. The precise shape of the critical droplet depends on the
value of h (see for instance [BAC96] for d = 3); by the precise shape, we
mean the number of sides of the quasicube which are equal to lc(d) and
lc(d) + 1. It is possible to derive exact formulas for md and Γd, but they
are complicated and it is necessary to consider various cases according to
the value of h. However, we have m1 = 1, Γ1 = 2 − h and the following
inequalities:

(
lc(d)

)d
≤ md ≤

(
lc(d) + 1

)d
,

2d
(
lc(d)

)d−1
− h
(
lc(d) + 1

)d
≤ Γd ≤ 2d

(
lc(d) + 1

)d−1
− h
(
lc(d)

)d
.

This yields the following expansions as h goes to 0:

md ∼

(
2(d− 1)

h

)d

, Γd ∼ 2

(
2(d− 1)

h

)d−1

.
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Lemma 4.1 The energy Γd of the critical droplet in dimension d is a con-
tinuous function of the magnetic field h.

Proof. Let h0 > 0. Let Λ be a box of side length larger than 4d/h0.
From the previous results, for any h ≥ h0, we have the equality

Γd = max
0≤k≤|Λ|

min
{
H(σ) : σ ∈ {−1,+1 }Λ, |σ| = k

}
.

Given a configuration σ of spins in Λ, the HamiltonianH(σ) is a continuous
function of the magnetic field h. For k ≤ |Λ|, the number of configurations
σ such that |σ| = k is finite, thus the minimum

min
{
H(σ) : σ ∈ {−1,+1 }Λ, |σ| = k

}

is also a continuous function of h. Thus Γd is also a continuous function of
h on [h0,+∞[. This holds for any h0 > 0, thus Γd is a continuous function
of h on ]0,+∞[. �

Our next goal is to prove that the maximal depth of the cycles in a reference
cycle path is smaller than Γd−1. Let ρ = (ρ0, . . . , ρ|Λ|) be a reference path
and let (π0, . . . , π|Λ|) be the corresponding reference cycle path. We set

∆d = max
0≤i<md

depth(πi) = max
0≤i<md

(
E(πi,−1)− E(bottom(πi))

)
.

Proposition 4.2 The maximal depth ∆d of the cycles in a reference cycle
path is strictly less than Γd−1.

Proof. For i < md the configuration ρi belongs to Cd and we have

E(πi,−1) = max
0≤j≤i

H(ρj) .

Let us define, for 0 ≤ i ≤ r,

vi = min
{
|σ| : σ ∈ πi

}
,

vi = max
{
|σ| : σ ∈ πi

}
.

Whenever i < md, the value vi is the unique integer v such that

H(ρv−1) = E(πi,−1) .

Thanks to the minimax property of the reference path, we have also that
ρk ∈ πi for vi ≤ k ≤ vi whence

E(bottom(πi)) = min
{
H(ρk) : vi ≤ k ≤ vi

}
.
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From the previous identities, we infer that

∆d = max
0≤i<md

max
{
H(ρvi−1)−H(ρk) : vi ≤ k ≤ vi

}

≤ max
0≤j≤i<md

(
H(ρj)−H(ρi)

)
.

The maximum of the energy along a d − 1 dimensional reference path is
reached at the value md−1, while the minimum of the energy is reached
at one of the two ends of the path. Therefore the indices i∗, j∗ realizing
the maximum of the righthand side correspond respectively to a quasicube
ρi∗ and the union ρj∗ of a quasicube c∗ and a d − 1 dimensional critical
droplet. Since j∗ ≤ i∗, we have c∗ ⊂ ρj∗ ⊂ ρi∗ . The quasicubes c∗ and ρi∗

being subcritical, we have H(c∗) < H(ρi∗) and therefore

∆d ≤ H(ρj∗)−H(ρi∗) < H(ρj∗)−H(c∗) ≤ Γd−1 .

The last inequality holds also when c∗ is too small so that a d−1 dimensional
critical droplet cannot be attached to one of its faces. �

4.4 Boxes with n± boundary conditions.

Unlike in the simplified model studied in [CM11], we cannot use here a di-
rect induction on the dimension d. Instead, we introduce special boundary
conditions that make a d–dimensional system behave like a n–dimensional
system. For E a subset of Zd, we define its outer vertex boundary ∂ outE
as

∂ outE =
{
x ∈ Zd \ E : ∃ y ∈ E |y − x| = 1

}
.

Let n ∈ { 0, . . . , d }. We define next mixed boundary conditions for paral-
lelepipeds with minus on 2n faces and plus on 2d− 2n faces.
Boundary condition n±. Let R be a parallelepiped. We write R as
the product R = Λ1 × Λ2, where Λ1,Λ2 are parallelepipeds of dimensions
n, d − n respectively. We consider the boundary conditions on R defined
as

• minus on
(
∂ outΛ1

)
× Λ2,

• plus on Λ1 × ∂ outΛ2.

We denote by n± this boundary condition, and by Hn± the corresponding
Hamiltonian in R. The n± boundary condition on R is obtained by putting
minuses on the exterior faces of R orthogonal to the first n axis and pluses
on the remaining faces.
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We will now transfer the isoperimetric results in Zd to parallelepipeds with
n± boundary condition.

Lemma 4.3 Let n ∈ { 1, . . . , d }. Let R be a d dimensional parallelepiped
and let l be the length of its smallest side. For any configuration σ in R
such that |σ| < l, there exists an n dimensional configuration ρ such that

|ρ| = |σ| , HZn(ρ) ≤ Hn±
R (σ) .

Proof. The constraint on the cardinality of σ ensures that there is no
cluster of + connecting two opposite faces of R. We endow Nd with n±
boundary conditions by putting minuses on

(
{−1 } × Nd−1

)
∪ · · · ∪

(
Nn−1 × {−1 } × Nd−n

)

and pluses on
(
Nn × {−1 } × Nd−n−1

)
∪ · · · ∪

(
Nd−1 × {−1 }

)
.

We shall prove the following assertion, which implies the claim of the
lemma. Suppose n < d. For any finite configuration σ in Nd, there ex-
ists a configuration ρ in Nd−1 such that

|ρ| = |σ| , Hn±
Nd−1(ρ) ≤ Hn±

Nd (σ) .

If we start with a configuration σ in R such that |σ| < l, then we apply
iteratively this result to the connected components of σ (since no connected
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component of σ intersects two opposite faces of R, up to a rotation, their en-
ergies can be computed as if they were in Nd with n± boundary conditions).
We end up with a configuration η in Nn with n± boundary conditions which
satisfies the conclusion of the lemma. We prove next the assertion. Let σ
be a finite configuration in Nd and let c be the polyomino associated to σ.
We let c fall by gravity along the (n+ 1)th axis on Nn × {−1 }×Nd−n−1.

Falling along

the third axis

x y

z

The resulting polyomino c̃ has the same volume than c and moreover

perimeter(c̃) ≤ perimeter(c) ,

because the number of contacts between the unit cubes or with the bound-
ary condition cannot increase through the “falling” operation. We can
think of c̃ as a stack of d− 1 dimensional polyominoes c0, . . . , ck, which are
obtained by intersecting c̃ with the layers

Li =
{
x = (x1, . . . , xd) ∈ Nd : i−

1

2
≤ xn+1 < i+

1

2

}
, i ∈ N .

Since we have let c fall by gravity to obtain c̃, this stack is non–increasing in
the following sense: for i in N, the d−1 dimensional polyomino ci associated
to the layer Li contains the d − 1 dimensional polyomino ci+1 associated
to the layer Li+1. As a consequence,

Hn±
Nd (c̃) ≥

∑

i≥0

Hn±
Nd−1(ci) + area(projn+1(c̃))

where projn+1(c̃) is the orthogonal projection of c̃ on Nn×{−1 }×Nd−n−1.
Let ĉ be a d − 1 dimensional polyomino obtained as the union of disjoint
translates of c0, . . . , ck. The polyomino ĉ answers the problem. �
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Let Λ be a box whose sides are larger than mn. We construct next a
reference path (ρn±i , 0 ≤ i ≤ |Λ|) in the box Λ endowed with n± boundary
conditions with the following algorithm.

1. Compute the maximum number m of plus neighbours for a minus
site in the box (taking into account the boundary conditions).

2. If there is only one site realizing this maximum, put a plus at this
site and go to step 1.

3. Otherwise, compute the maximal length of a segment of minus sites
having all m plus neighbors.

4. Put a plus at a site of a segment realizing the previous maximum and
go to step 1.

As before, the reference path (ρn±i , 0 ≤ i ≤ |Λ|) realizes the solution of the
minimax problem associated to the communication energy between any
two of its configurations. The metastable cycle Cn±

d in the box Λ with n±
boundary conditions is the maximal cycle of

{−1,+1 }Λ \ {−1,+1 }

containing −1 in the energy landscape associated to the Hamiltonian Hn±
Λ .

Corollary 4.4 The depth of the metastable cycle Cn±
d is equal to Γn.

Proof. With the help of lemma 4.3, we can compare the energy along a
path in Λ with n± boundary conditions with the energy along a path in
Zn, in such a way that at each index the configurations in each path have
the same cardinality. This construction implies immediately that

depth(Cn±
d ) ≥ Γn .

To get the converse inequality we simply consider the reference path in Λ
with n± boundary conditions. �

Corollary 4.5 The maximal depth ∆n±
d of the cycles in a reference cycle

path with n± boundary conditions is strictly less than Γn−1.

Proof. We check that, until the index mn, the energy along the reference
path (ρn±i , i ≥ 0) is equal to the energy along the reference path in Zn

computed with HZn . The result follows then from proposition 4.2. �
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5 The space-time clusters.

The goal of this section is to prove theorem 5.7, which provides a control on
the diameter of the space-time clusters. Theorem 5.7 is used in an essential
way in the proof of the lower bound on relaxation time, under the following
weaker form: for the dynamics restricted to a small box, the probability
of creating a large STC before nucleation is SES. We first recall the basic
definitions and properties of the space-time clusters in section 5.1. We next
proceed to show that it is very unlikely that large space–time clusters are
formed before nucleation. The main theorem of this section, theorem 5.7,
is the analog of Lemma 4 in [DS97a]. The proof in [DS97a] relies on the
fact that in two dimensions the energy needed to grow, i.e., the energy of
a protuberance, is larger than the energy needed to shrink a subcritical
droplet. In higher dimension, we are not able to prove a corresponding
result. Let us give a quick sketch of the proof of theorem 5.7. We consider
a set D satisfying a technical hypothesis and we want to control the proba-
bility of creating a large space–time cluster before exiting D. Typically, the
set D is a cycle or a cycle compound included in the metastable cycle. We
use several ideas coming from the theory of simulated annealing [CC95].
We decompose D into its maximal cycle compounds and we show that,
before exiting D, the process is unlikely to make a large number of jumps
between these maximal cycle compounds. Thus, if a large space–time clus-
ter is created, then it must be created during a visit to a maximal cycle
compound. The problem is therefore reduced to control the size of the
space–time cluster created inside a cycle compound A included in D. The
key estimate is proved by induction over the depth of the cycle compound.
Suppose we want to prove the estimate for a cycle compound A. A first
key fact, proved in lemma 5.4 with the help of the ferromagnetic inequal-
ity, is that in the Ising model under irrational magnetic field the bottom
of every cycle compound is a singleton. Let η be the bottom of the cycle
compound A. We consider now the trajectory of the process starting from
a point of A until it exits from A. In section 5.4, in order to control the size
of the space-time clusters, we define a quantity diam∞ STC(s, t) depending
on a time interval [s, t]. This quantity is larger than the increase of the
maximum of the diameters of the space–time clusters created between the
times s and t. Moreover this quantity is subadditive with respect to the
time (see lemma 5.6). Our strategy is to look at the successive visits to η
and the excursions outside of η. Suppose that η has only one connected
component. The creation of a large space–time cluster in a fixed direction
has to be achieved during an excursion outside of η. Indeed, each time
the process comes back to η, the growth of the space–time clusters restarts
almost from scratch.
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Evolution of a STC in dimension 1

Thus if a large space–time cluster is created before the exit of A, then
it has to be created during an excursion outside of η. The situation is more
complicated when the bottom η has several connected components. In-
deed the space–time clusters associated to one connected component might
change between two consecutive visits to η. We prove in section 5.3 that
this does not happen: at each visit to η, a given connected component of
η always belong to the same space–time cluster. This is a consequence of
lemma 5.5. The figure shows an example of the space–time clusters as-
sociated to a configuration η having two connected components. On the
evolution depicted in the figure, the space–time clusters containing the
lower component of η at the times of the first two returns are distinct. We
will prove that this cannot occur as long as the process stays in the cycle
compound A (this is the purpose of lemma 5.5).
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We rely then on a technique going back to the theory of simulated
annealing, which consists in removing the bottom η from A, decomposing
A \ { η } into its maximal cycle compounds and studying the jumps of
the process between these maximal cycle compounds until the exit of A \
{ η }. As before, we show that, before exiting A \ { η }, the process is
unlikely to make a large number of jumps between these maximal cycle
compounds. This step is very similar to the initial step, when we considered
a general set D. For the clarity of the exposition, we prefer to repeat the
argument rather than to introduce additional notations and make a general
statement. Using the subadditivity of diam∞ STC(s, t), we conclude that a
large space–time cluster has to be created during a visit to a maximal cycle
compound of A\{ η }. Now each cycle compound included in A\{ η } has a
depth strictly smaller than the depth of A. Using the induction hypothesis,
we have a control on the space–time clusters created during each visit to
these cycle compounds. Combining the estimate provided by the induction
hypothesis and the estimate on the number of cycle compounds of A \
{ η } visited by the process, we obtain a control on the size of the space–
time clusters created during an excursion in A \ { η }. Using the estimates
presented in section 2.3, we can also control the number of visits to η
before the exit of A. The induction step is completed by combininig all the
previous estimates.

5.1 Basic definitions and properties.

Let Λ be a subset of Zd and let (σΛ,t)t≥0 be a continuous–time trajectory
in {−1,+1 }Λ. We endow the set of the space–time points Λ×R+ with the
following connectivity relation: the two space-time points (x, t) and (y, s)
are connected if σΛ,t(x) = σΛ,s(y) = +1 and
• either s = t and |x− y| ≤ 1;
• or x = y and σΛ,u(x) = +1 for u ∈ [min(s, t),max(s, t)].
A space–time cluster of the trajectory (σΛ,t)t≥0 is a maximal connected
component of space–time points. For u ≤ s ∈ R+, we denote by STC(u, s)
the space–time clusters of the trajectory restricted to the time interval
[u, s]. Sometimes we deal with a specific initial condition α and boundary
conditions ζ. We denote by STC(σα,ζ

Λ,t , s ≤ t ≤ u) the space–time clusters of
the trajectory of the process (σα,ζ

Λ,t )t≥0 restricted to the time interval [u, s].
The graphical construction updates the configuration in two different

places independently until a space–time cluster connects the two places. We
state next a refinement of Lemma 2 of [DS97a], which allows to compare
processes defined in different volumes or with different boundary conditions
via the graphical construction described in section 3.2.
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Lemma 5.1 Let Λ be a subset of Zd and let ζ be a boundary condition on
Λ. Let x be a site of the exterior boundary of Λ such that ζ(x) = +1. If
C is a STC for the dynamics in Λ with ζ as boundary conditions and C is
such that x is not the neighbour of a point of C, then C is also a STC for
the dynamics in Λ with ζx as boundary conditions.

Proof. We denote by α the initial configuration. From the coupling, we
have

∀t ≥ 0 ∀y ∈ Λ σα,ζx

Λ,t (y) ≤ σα,ζ
Λ,t (y) .

Let C be a STC in STC(σα,ζ
Λ,t , s ≤ t ≤ u) and suppose that C does not belong

to STC(σα,ζx

Λ,t , s ≤ t ≤ u). Necessarily, there exists a space–time point (y, t)
such that

(y, t) ∈ C , σα,ζx

Λ,t (y) = −1 , σα,ζ
Λ,t (y) = +1 .

We consider the set of the space–time points satisfying the above condition
and we denote by (y∗, t∗) the space–time point such that t∗ is minimum.
This is possible since the number of spin flips in a finite box is finite in
a finite time interval, and moreover the trajectories are right continuous.
At time t∗, the spin at site y becomes +1 in the process (σα,ζ

Λ,t )t≥0, and it
remains equal to −1 in (σα,ζx

Λ,t )t≥0. We examine next the neighbors of y∗.
Let z be a neighbor of y∗ in Λ. If σα,ζ

Λ,t∗(z) = −1, then σα,ζx

Λ,t∗ (z) = −1 as
well. Suppose that σα,ζ

Λ,t∗(z) = +1. The spin at z does not change at time
t∗, thus for s < t∗ close enough to t∗, we have also σα,ζ

Λ,s(z) = +1. This
implies that { z } × [s, t∗] is included in C. From the definition of (y∗, t∗),
we have that

∀u ∈ [s, t∗] σα,ζx

Λ,u (z) = +1 .

We conclude that the neighbors of y in Λ have the same spins in σα,ζx

Λ,t∗ and
in σα,ζ

Λ,t∗ . Therefore y must have a neighbor in Zd \Λ whose spin is different
in σα,ζx

Λ,t∗ and in σα,ζ
Λ,t∗ . The only possible candidate is x. �

The next corollary is very close to Lemma 2 of [DS97a].

Corollary 5.2 Let Λ1 ⊂ Λ2 be two subsets of Zd, let α be an initial con-
figuration in Λ2 and let ζ be a boundary condition on Λ2. If no STC of the
process (σα,ζ

Λ2,t
, s ≤ t ≤ u) intersects both Λ1 and the inner boundary of Λ2,

then
∀t ∈ [s, u] σα,ζ

Λ2,t
|Λ1

= σα,−
Λ2,t

|Λ1
.

We define the diameter diam∞ C of a space–time cluster C by

diam∞ C = sup
{
|x− y|∞ : (x, s), (y, t) ∈ C

}

where | |∞ is the supremum norm given by

∀x = (x1, . . . , xd) ∈ Zd |x|∞ = max
1≤i≤d

|xi| .
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Thus diam∞ C is the diameter of the spatial projection of C.

5.2 The bottom of a cycle compound.

We prove here that, when h is irrational, the bottom of a cycle compound of
the Ising model contains a unique configuration. Throughout the section,
we consider a finite box Q endowed with a boundary condition ξ. To
alleviate the formulas, we write simply H instead of Hξ

Q.

Lemma 5.3 Suppose that h is irrational. Let η be a minimizer of the
energy in a cycle compound A. Then, for any ζ ∈ A, ζ ∪ η ∈ A and
ζ ∩ η ∈ A.

Proof. Let η belong to the bottom of A. We assume that A is not a
singleton, otherwise there is nothing to prove. Let ω = (ω1, . . . , ωn) be a
path in A that goes from η to ζ. We associate with ω a slim path

ω ∩ η = (ω1 ∩ η, . . . , ωn ∩ η)

and a fat path
ω ∪ η = (ω1 ∪ η, . . . , ωn ∪ η) .

Suppose that the thesis is false, and let us set

κ∗ = min
{
k ≥ 1 : ωk ∩ η 6∈ A or ωk ∪ η 6∈ A

}
.

Notice that κ∗ is larger than or equal to 2. We will use the attractive
inequality

H(ωk ∩ η) +H(ωk ∪ η) ≤ H(ωk) +H(η)

and the fact that η is a minimizer of the energy in A. Let us set

λ = E
(
A, {−1,+1}Λ \ A

)
.

First, for any k < κ∗, the above inequality yields that

max (H(ωk ∩ η), H(ωk ∪ η)) ≤ H(ωk) ≤ λ .

The configurations ωκ∗ and ωκ∗−1 differ for the spin in a single site. We
say that the κ∗-th spin flip is inside (respectively outside) η if this site has
a plus spin (respectively a minus spin) in η, that is, if ωκ∗ △ ωκ∗−1 ⊂ η
(respectively ωκ∗ △ ωκ∗−1 6⊂ η). We distinguish two cases, according to
the position of the κ∗-th spin flip with respect to η:

i) if the κ∗-th spin flip is inside η, then ωκ∗ ∪ η = ωκ∗−1 ∪ η, so that only
the slim path moves and exits A at index κ∗. Thus

ωκ∗−1 ∩ η ∈ A , ωκ∗ ∩ η 6∈ A
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and these two configurations communicates, therefore

max(H(ωκ∗−1 ∩ η), H(ωκ∗ ∩ η)) ≥ λ .

We distinguish again two cases.
• H(ωκ∗−1∩η) ≥ λ. Since H(ωκ∗−1∩η) ≤ H(ωκ∗−1) ≤ λ, then ωκ∗−1∩η
and ωκ∗−1 have both an energy equal to λ, and by lemma 3.1, we conclude
that ωκ∗−1 ∩ η = ωκ∗−1 and ωκ∗−1 is included in η. Since we are assuming
that the slim path moves at step κ∗, the original path and the slim path
undergo the same spin flip so that they must coincide also at step κ∗,
contradicting the assumption that ωκ∗ ∩ η 6∈ A.
• H(ωκ∗ ∩ η) ≥ λ. By the attractive inequality

H(ωκ∗)−H(ωκ∗ ∩ η) ≥ H(ωκ∗−1 ∪ η)−H(η) ≥ 0 ,

whence
H(ωκ∗ ∩ η) ≤ H(ωκ∗) ≤ λ .

Thus ωκ∗ ∩ η and ωκ∗ have both an energy equal to λ. By lemma 3.1, we
conclude that ωκ∗∩η = ωκ∗ , contradicting the assumption that ωκ∗∩η 6∈ A.

We consider next the second case. The argument is very similar in the two
dual cases i) and ii), yet it seems necessary to handle them separately.

ii) if the κ∗-th spin flip is outside η, then ωκ∗ ∩ η = ωκ∗−1 ∩ η, so that only
the fat path moves and exits A at index κ∗. Thus

ωκ∗−1 ∪ η ∈ A , ωκ∗ ∪ η 6∈ A

and these two configurations communicates, therefore

max(H(ωκ∗−1 ∪ η), H(ωκ∗ ∪ η)) ≥ λ .

We distinguish again two cases.
• H(ωκ∗−1∪η) ≥ λ. Since H(ωκ∗−1∪η) ≤ H(ωκ∗−1) ≤ λ, then ωκ∗−1∪η
and ωκ∗−1 have both an energy equal to λ, and by lemma 3.1, we conclude
that ωκ∗−1 ∪ η = ωκ∗−1 and ωκ∗−1 contains η. Since we are assuming that
the fat path moves at step κ∗, the original path and the fat path undergo
the same spin flip so that they must coincide also at step κ∗, contradicting
the assumption that ωκ∗ ∪ η 6∈ A.
• H(ωκ∗ ∪ η) ≥ λ. By the attractive inequality

H(ωκ∗)−H(ωκ∗ ∪ η) ≥ H(ωκ∗−1 ∩ η)−H(η) ≥ 0 ,

whence
H(ωκ∗ ∪ η) ≤ H(ωκ∗) ≤ λ .
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Thus ωκ∗ ∪ η and ωκ∗ have both an energy equal to λ. By lemma 3.1, we
conclude that ωκ∗∪η = ωκ∗ , contradicting the assumption that ωκ∗∪η 6∈ A.

�

Lemma 5.4 Suppose that h is irrational. The bottom bottom(A) of any
cycle compound A contains a single configuration.

Proof. If η1, η2 ∈ bottom(A), then by lemma 5.3 we have also η1∪η2 ∈ A
and η1 ∩ η2 ∈ A, so that H(η1) +H(η2) ≤ H(η1 ∪ η2) +H(η1 ∩ η2). But
by the attractive inequality,

H(η1 ∪ η2) +H(η1 ∩ η2) ≤ H(η1) +H(η2),

so that η1 ∪ η2 and η1 ∩ η2 are also in bottom(A). Lemma 3.1 implies that
η1 ∪ η2 = η1 ∩ η2, showing that η1 = η2. �

5.3 The space–time clusters in a cycle compound.

In this section, we study some properties of the paths contained in suitable
cycle compounds. In order to avoid unnecessary notation, with a slight
abuse of terms, we consider space–time clusters associated to a discrete
time trajectory. In other words, in this section the world ”time” has the
meaning of ”index of the configuration in the trajectory”, and the space-
time clusters considered here are pure geometrical objects. We will use
these geometrical results in order to control the diameter of the space-time
clusters of our processes.

As in the previous section, we consider a finite box Q endowed with
a boundary condition ξ. To alleviate the formulas, we write simply H
instead of Hξ

Q. A connected component of a configuration σ is a maximal
connected subset of the plus sites of σ

{ x ∈ Zd : σ(x) = +1 } ,

two sites being connected if they are nearest neighbors on the lattice. We
denote by C(σ) the connected components of σ. If C ∈ C(σ), then we define
its energy as

H(C) =
∣∣{ { x, y } : x 6∈ C, y ∈ C, |x− y| = 1 }

∣∣− h|C| .

In particular, we have

H(σ) =
∑

C∈C(σ)

H(C) .
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Let ω = (ω0, . . . , ωr) be a path of configurations in the box Q. We endow
the set of the space–time points Q × N with the following connectivity
relation associated to ω: the two space-time points (x, i) and (y, j) are
connected if ωi(x) = ωj(y) = +1 and
• either i = j and |x− y| ≤ 1;
• or x = y and |i− j| = 1.
A space–time cluster of the path ω is a maximal connected component
of space–time points in ω. We consider a domain D, which is a set of
configurations satisfying the following hypothesis.

Hypothesis on D. The configurations in D are such that:
• There exists vD (independent of β) such that |σ| ≤ vD for any σ ∈ D.
• If σ ∈ D and C is a connected component of σ, then we have H(C) >
H(−1). • If σ ∈ D and η is such that η ⊂ σ and H(η) ≤ H(σ), then
η ∈ D.

Lemma 5.5 Let A be a cycle compound included in D and let η be the
unique configuration of bottom(A). Let ω = (ω0, . . . , ωr) be a path in A
starting at η and ending at η. Let C be a connected component of η. Then
the space–time sets C × {0} and C × {r} belong to the same space–time
cluster of ω.

Proof. From lemma 5.4, we know that bottom(A) is reduced to a single
configuration η. By lemma 5.3, the path

ω ∩ η = (ω0 ∩ η, . . . , ωr ∩ η)

is still a path in A that goes from η to η. Moreover, the space–time clusters
of ω∩η are included in those of ω, therefore it is enough to prove the result
for the path ω ∩ η. Let ω̃ be the path obtained from ω ∩ η by removing
all the space–time clusters of ω ∩ η which don’t intersect η × {0}. The
path ω̃ is still admissible, i.e., it is a sequence of configurations such that
each configuration communicates with its successor. Let i ∈ { 0, · · · , r }.
We have ω̃i ⊂ ωi ∩ η. Since ω̃i is obtained from ωi ∩ η by removing some
connected components of ωi ∩ η, the second hypothesis on the domain D
yields that H(ω̃i) ≤ H(ωi ∩ η). With the help of the third hypothesis on
D, we conclude that ω̃i is in D. In particular the whole path ω̃ stays in D.
Suppose that the path ω̃ leaves A at some index i, so that ω̃i 6= ωi ∩ η. We
consider two cases.
• ω̃i−1 = ωi−1 ∩ η. In this case, the spin flip between ωi−1 ∩ η and ωi ∩ η
creates a new STC which does not intersect η × {0}, hence ω̃i = ωi−1 ∩ η.
This contradicts the fact that ω̃ leaves A at index i.
• ω̃i−1 6= ωi−1 ∩ η. Since we have also ω̃i 6= ωi ∩ η, then by lemma 3.1 we
have the strict inequality

max
(
H(ω̃i−1), H(ω̃i)

)
< max

(
H(ωi−1 ∩ η), H(ωi ∩ η)

)
≤ E(A,X \ A) .
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However, since ω̃ leaves A at index i, we have also

max
(
H(ω̃i−1), H(ω̃i)

)
≥ E(A,X \ A) ,

which is absurd. Thus the path ω̃ stays also in A. Since

H(ω̃r) ≤ H(ωr ∩ η) , ω̃r ⊂ ωr ∩ η = η ,

we have ω̃r = η by lemma 3.1. The path ω̃ is included in η × { 0, . . . , r },
hence, for any connected component C of η, the space–time cluster of ω̃
containing C × { r } is included in C × { 0, . . . , r }, so that its intersection
with η×{ 0 }, which is not empty by construction, must be equal to C×{ 0 }.

�

5.4 Triangle inequality for the diameters of the STCs

In the sequel, we consider a trajectory of the process (σQ,t, t ≥ 0) in a finite
box Q and we study its space–time clusters. For s < t, we define

diam∞ STC(s, t) = max
( ∑

C∈STC(s,t)
C∩(Q×{ s,t }) 6=∅

diam∞ C, max
C∈STC(s,t)

C∩(Q×{ s,t })=∅

diam∞ C
)
.

The main point of this awkward definition is the following triangle inequal-
ity.

Lemma 5.6 For any s < u < t, we have

diam∞ STC(s, t) ≤ diam∞ STC(s, u) + diam∞ STC(u, t) .

Proof. When we look at the restriction to the time intervals (s, u) and
(u, t) of a STC in STC(s, t) which is alive at time u, this STC splits into
several STC belonging to STC(s, u) ∪ STC(u, t). Yet the diameter of the
initial STC is certainly less than the sum of all the diameters of the STC in
STC(s, u) ∪ STC(u, t) which are alive at time u. The proof is quite tedious,
however since this inequality is fundamental for our argument we provide
a detailed verification. First, we have

∑

C∈STC(s,t)
C∩(Q×{ s,t }) 6=∅

C∩(Q×{u }) 6=∅

diam∞ C ≤
∑

C∈STC(s,u)
C∩(Q×{u }) 6=∅

diam∞ C +
∑

C∈STC(u,t)
C∩(Q×{ u }) 6=∅

diam∞ C .

Next, if C ∈ STC(s, t) and C∩(Q×{ u }) = ∅, then C ∈ STC(s, u)∪STC(u, t).
Thus

∑

C∈STC(s,t)
C∩(Q×{ s,t }) 6=∅

C∩(Q×{ u })=∅

diam∞ C ≤
∑

C∈STC(s,u)
C∩(Q×{ s }) 6=∅

C∩(Q×{u })=∅

diam∞ C +
∑

C∈STC(u,t)
C∩(Q×{ u })=∅

C∩(Q×{ t }) 6=∅

diam∞ C .
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Summing the two previous inequalities, we get

∑

C∈STC(s,t)
C∩(Q×{ s,t }) 6=∅

diam∞ C ≤
∑

C∈STC(s,u)
C∩(Q×{ s,u }) 6=∅

diam∞ C +
∑

C∈STC(u,t)
C∩(Q×{u,t }) 6=∅

diam∞ C

≤ diam∞ STC(s, u) + diam∞ STC(u, t) .

Moreover, if C ∈ STC(s, t), C ∩ (Q × { s, t }) = ∅ and C ∩ (Q × { u }) 6= ∅

then

diam∞ C ≤
∑

C∈STC(s,u)
C∩(Q×{u }) 6=∅

C∩(Q×{ s })=∅

diam∞ C +
∑

C∈STC(u,t)
C∩(Q×{u }) 6=∅

C∩(Q×{ t })=∅

diam∞ C .

Finally if C ∈ STC(s, t), C∩(Q×{ s, u, t }) = ∅ then C ∈ STC(s, u)∪STC(u, t)
and

diam∞ C ≤ max
C∈STC(s,u)

C∩(Q×{ s,u })=∅

diam∞ C + max
C∈STC(u,t)

C∩(Q×{u,t })=∅

diam∞ C .

The two previous inequalities yield

max
C∈STC(s,t)

C∩(Q×{ s,t })=∅

diam∞ C ≤ diam∞ STC(s, u) + diam∞ STC(u, t)

and the proof is completed. �

5.5 The diameter of the space–time clusters

We consider boxes that grow slowly with β. This creates a major compli-
cation in the description of the energy landscape, but it allows to obtain
very strong estimates that will be used to control entropy effects in the
dynamics of growing droplets. We make the following hypothesis on the
volume of the box Q.

Hypothesis on Q. The box Q is such that |Q| = exp o(lnβ), which
means that

lim
β→∞

ln |Q|

lnβ
= 0 .

Let n ∈ { 0, . . . , d }. As in section 5.3, we consider a set of configurations
D in the box Q satisfying the following hypothesis.

Hypothesis on D. The configurations in D are such that:
• There exists vD (independent of β) such that |σ| ≤ vD for any σ ∈ D.
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• If σ ∈ D and C is a connected component of σ, then we have

Hn±
Q (C) > Hn±

Q (−1) .

• If σ ∈ D and η is such that η ⊂ σ and Hn±
Q (η) ≤ Hn±

Q (σ), then η ∈ D.

The hypothesis on D ensures that the number of the energy values of the
configurations in D with n± boundary conditions is bounded by a value
independent of β. Indeed, for any σ ∈ D,

Hn±
Q (σ) =

∑

C∈C(σ)

Hn±
Q (C) ,

where C(σ) is the set of the connected components of σ. Yet there is at
most vD elements in C(σ) and any element of C(σ) has volume at most vD,
hence the number of possible values for H is at most c(d)(vD)2 where c(d)
is a constant depending on the dimension d only. Let next

δ0 < δ1 < · · · < δp

be the possible values for the difference of the energies of two configurations
of D, i.e.,

{ δ0, · · · , δp } = {
∣∣Hn±

Q (σ)−Hn±
Q (η)

∣∣
+
: σ, η ∈ D } .

Notation. We will study the space–time clusters associated to different
processes. For α an initial configuration and ζ a boundary condition, we
denote by

STC(σα,ζ
Q,t , s ≤ t ≤ u)

the STC associated to the trajectory of the process (σα,ζ
Q,t)t≥0 during the

time interval [s, u]. Accordingly,

diam∞ STC(σα,ζ
Q,t , s ≤ t ≤ u)

is equal to diam∞ STC(s, u) computed for the STC of the process (σα,ζ
Q,t)t≥0

on the time interval [s, u].

Theorem 5.7 Let n ∈ { 1, . . . , d }. For any K > 0, there exists a value D
which depends only on vD and K such that, for β large enough, we have

∀α ∈ D P
(
diam∞ STC(σα,n±

Q,t , 0 ≤ t ≤ τ(D)) ≥ D
)
≤ exp(−βK) .

To alleviate the formulas, we drop the superscripts which do not vary, like
the boundary conditions n± and sometimes the initial configuration α.
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Throughout the proof we fix an integer n ∈ { 1, . . . , d } and σQ,t stands for
σα,n±
Q,t . For A an arbitrary set and t ≥ 0, we define the time τ(A, t) of exit

from A after time t

τ(A, t) = inf { s ≥ t : σQ,s 6∈ A } .

Let E be a subset ofD. We consider the decomposition of E into its maximal
cycle compounds M(E) and we look at the successive jumps between the
elements of M(E). For γ ∈ E , we denote by

π(γ, E)

the maximal cycle compound of E containing γ. Let α ∈ E be the ini-
tial configuration. We define recursively a sequence of random times and
maximal cycle compounds included in E :

τ0 = 0, π0 = π(α, E),
τ1 = τ(π0, τ0), π1 = π(σQ,τ1 , E),

...
...

τk = τ(πk−1, τk−1), πk = π(σQ,τk , E),
...

...
τR = τ(πR−1, τR−1), πR = π(σQ,τR , E),

τR+1 = τ(E).

The sequence (π0, . . . , πR−1, πR) is the path of the maximal cycle com-
pounds in E visited by (σQ,t)t≥0 and it is denoted by π(E). We first obtain
a control on the random length R(E) of π(E).

Proposition 5.8 There exists a constant c > 0 depending only on vD such
that, for any subset E of D, for β large enough,

∀α ∈ E ∀r ≥ 1 P
(
R(E) ≥ r

)
≤

1

c
exp(−βcr) .

Proof. Let us set A0 = π(α, E). We write

P (R(E) = r) =
∑

A1,...,Ar∈M(E)

P
(
π(E) = (A0,A1, . . . ,Ar)

)
.

Let A1, . . . ,Ar be a fixed path in M(E). With the help of the Markov
property, we have

P
(
π(E) = (A0,A1, . . . ,Ar)

)

=
∑

α1∈A1∩∂A0,...,αr∈Ar∩∂Ar−1

P

(
π(E) = (A0,A1, . . . ,Ar)

σQ,τ1 = α1, . . . , σQ,τr = αr

)

=
∑

α1∈A1∩∂A0,...,αr∈Ar∩∂Ar−1

P
(
σα
Q,τ1 = α1

)
· · · P

(
σ
αr−1

Q,τ1
= αr

)
.
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Using the hypothesis on Q and D, for ε > 0 and for β large enough, we
can bound the prefactor appearing in corollary 2.10 by

deg(α)|X | ≤ exp(βε) .

For i ∈ { 1, . . . , r }, let ai in E be such that H(ai) = E(Ai−1,X \ Ai−1).
Applying next corollary 2.10, we obtain

P
(
π(E) = (A0,A1, . . . ,Ar)

)

≤
∑

α1∈A1∩∂A0,...,αr∈Ar∩∂Ar−1

exp(rβε)

r∏

i=1

exp
(
− βmax

(
0, H(αi)−H(ai)

))

≤
∑

α1∈A1∩∂A0,...,αr∈Ar∩∂Ar−1

exp(rβε) exp
(
− βδ1

∣∣{ i ≤ r : H(αi) > H(ai)
}∣∣
)
.

For 1 ≤ i ≤ r, the point αi belongs to ∂Ai−1, by lemma 2.12, this implies
that H(αi) 6= H(ai). Moreover there is no strictly decreasing sequence of
energy values of length larger than p+2 (recall that δ0 < δ1 < · · · < δp are
the possible values for the difference of the energies of two configurations
of D). Therefore

∣∣{ i ≤ r : H(αi) > H(ai)
}∣∣ ≥

⌊
r

p+ 2

⌋
.

We conclude that

P
(
π(E) = (A0,A1, . . . ,Ar)

)
≤ |E|r exp

(
rβε− βδ1

⌊
r

p+ 2

⌋)
,

and

P (R(E) = r) ≤
∣∣M(E)

∣∣r|E|r exp
(
rβε − βδ1

⌊
r

p+ 2

⌋)
.

By lemmas 2.11 and 5.4, the map which associates to each maximal cycle
compound its bottom is one to one, hence

∣∣M(E)
∣∣ ≤ |E|. The hypothesis

on D yields that, for ε > 0 and for β large enough,

|E| ≤ vD
∣∣Q
∣∣vD ≤ exp(βε) ,

whence

P (R(E) = r) ≤ exp
(
3rβε− βδ1

⌊
r

p+ 2

⌋)
.

Choosing ε small enough and resumming this inequality, we obtain the
desired estimate. �
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We start now the proof of theorem 5.7. We consider the decomposition of
D into its maximal cycle compounds M(D) in order to reduce the problem
to the case where D is a cycle compound. We decompose

P
(
diam∞ STC(0, τ(D)) ≥ D

)
≤ P (R(D) ≥ r)

+
∑

0≤k<r

P
(
diam∞ STC(0, τ(D)) ≥ D, R(D) = k

)
.

Let us fix k < r. We write, using the notation defined before proposi-
tion 5.8, and setting A0 = π(α,D),

P
(
diam∞ STC(0, τ(D)) ≥ D, R(D) = k

)

≤
∑

A1,...,Ak∈M(D)

P

( ∑
0≤j≤k diam∞ STC(τj , τj+1) ≥ D

π(D) = (A0,A1, . . . ,Ak)

)

≤
∑

A1,...,Ak∈M(D)

k∑

j=0

∑

αj∈Aj

P

( diam∞ STC(σα,n±
Q,t , τj ≤ t ≤ τj+1) ≥ D/r

σα,n±
Q,τj

= αj , π(D) = (A0,A1, . . . ,Ak)

)

≤
∑

A1,...,Ak∈M(D)

k∑

j=0

∑

αj∈Aj

P
(
diam∞ STC(σ

αj ,n±
Q,t , 0 ≤ t ≤ τ(Aj)) ≥ D/r

)
.

Given a value K, we choose r such that cr > 2K, where c is the constant
appearing in proposition 5.8. We choose then ε > 0 such that rε < K.
By lemmas 2.11 and 5.4, the map which associates to each maximal cycle
compound its bottom is one to one, hence

∣∣M(D)
∣∣ ≤ |D| ≤ exp(βε) .

The last inequality holds for β large, thanks to the hypothesis on D. Com-
bining the previous estimates, we obtain, for β large enough,

P
(
diam∞ STC(0, τ(D)) ≥ D

)
≤

1

c
exp(−2βK)+

r2 exp(βrε) max
A∈M(D)

α∈A

P
(
diam∞ STC(σα,n±

Q,t , 0 ≤ t ≤ τ(A)) ≥ D/r
)
.

To conclude, we need to control the size of the space–time clusters created
inside a cycle compound A included in D. More precisely, we need to prove
the statement of theorem 5.7 for a cycle compound. We shall prove the
following result by induction on the depth of the cycle compound.

Induction hypothesis at step i: For any K > 0, there exists Di de-
pending only on vD and K such that, for β large enough, for any cycle
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compound A included in D having depth less than or equal to δi,

∀α ∈ A P
(
diam∞ STC(σα,n±

Q,t , 0 ≤ t ≤ τ(A)) ≥ Di

)
≤ exp(−βK) .

Once this result is proved, to conclude the proof of theorem 5.7, we simply
choose D such that

D

r
> max

{
Di(2K) : 0 ≤ i ≤ p

}

where Di(2K) is the constant associated to 2K in the induction hypoth-
esis. We proceed next to the inductive proof. Suppose that A is a cycle
compound of depth 0. Then A = { η } is a singleton and therefore

diam∞ STC(0, τ(A)) ≤
∑

C∈C(η)

diam∞ C + 1 ≤ vD + 1 .

Let i ≥ 0. Suppose that the result has been proved for all the cycle com-
pounds included in D of depth less than or equal to δi. Let now A be a
cycle compound of depth δi+1. By lemma 5.4 the bottom of A consists of
a unique configuration η. Let α ∈ A be a starting configuration. We study
next the process (σα,n±

Q,t )t≥0, and unless stated otherwise, the STC and the
quantities like diam∞ STC are those associated to this process. We define
the time θ of the last visit to η before the time τ(A), i.e.,

θ = sup{ s ≤ τ(A) : σQ,s = η }

(if the process does not visit η before τ(A), then we take θ = 0). Consid-
ering the random times τ(A \ { η }), θ and τ(A), we have by lemma 5.6

diam∞ STC(0, τ(A)) ≤ diam∞ STC(0, τ(A \ { η }))

+ diam∞ STC(τ(A \ { η }), θ) + diam∞ STC(θ, τ(A)) .

Indeed, if τ(A \ { η }) < τ(A), then τ(A \ { η }) ≤ θ ≤ τ(A) and the above
inequality holds. Otherwise, if τ(A \ { η }) = τ(A), then θ = 0 and the
second term of the righthand side vanishes. Let D > 0 and let us write

P
(
diam∞ STC(0, τ(A)) ≥ D

)
≤ P

(
diam∞ STC(0, τ(A \ { η })) ≥ D/3

)

+P
(
diam∞ STC(τ(A \ { η }), θ) ≥ D/3

)

+P
(
diam∞ STC(θ, τ(A)) ≥ D/3

)
.

We will now consider different starting points, hence we use the more ex-
plicit notation for the STC. From the Markov property, we have

P
(
diam∞ STC(σα,n±

Q,t , τ(A \ { η }) ≤ t ≤ θ) ≥ D/3
)
≤

P
(
diam∞ STC(ση,n±

Q,t , 0 ≤ t ≤ θ) ≥ D/3
)
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and

P
(
diam∞ STC(σα,n±

Q,t , θ ≤ t ≤ τ(A)) ≥ D/3
)

≤ P
(
diam∞ STC(ση,n±

Q,t , 0 ≤ t ≤ τ(A)) ≥ D/3, τ(A) = τ(A \ { η })
)

≤ P
(
diam∞ STC(ση,n±

Q,t , 0 ≤ t ≤ τ(A \ { η })) ≥ D/3
)

whence

P
(
diam∞ STC(σα,n±

Q,t , 0 ≤ t ≤ τ(A)) ≥ D
)
≤

2 sup
γ∈A

P
(
diam∞ STC(σγ,n±

Q,t , 0 ≤ t ≤ τ(A \ { η })) ≥ D/3
)

+P
(
diam∞ STC(ση,n±

Q,t , 0 ≤ t ≤ θ) ≥ D/3
)
.

We first control the size of the space–time clusters created during an ex-
cursion outside the bottom η.

Lemma 5.9 For any K ′ > 0, there exists D′ depending only on vD,K
′

such that, for β large enough, for any α ∈ A,

P
(
diam∞ STC(σα,n±

Q,t , 0 ≤ t ≤ τ(A \ { η })) ≥ D′
)
≤ exp(−βK ′) .

Proof. The argument is very similar to the initial step of the proof of
theorem 5.7, i.e., we reduce the problem to the maximal cycle compounds
included in A\{ η }. Although it is possible to include these two steps in a
more general result, for the clarity of the exposition, we prefer to repeat the
argument rather than to introduce additional notations. We consider the
decomposition of A\ { η } into its maximal cycle compounds M(A\ { η }).
Each cycle compound of M(A \ { η }) has a depth strictly less than δi+1,
hence we can apply the induction hypothesis and control the size of the
space–time clusters created inside such a cycle compound. We decompose
next

P
(
diam∞ STC(0, τ(A \ { η })) ≥ D′

)
≤ P (R(A \ { η }) ≥ r)

+
∑

0≤k<r

P
(
diam∞ STC(0, τ(A \ { η })) ≥ D′, R(A \ { η }) = k

)
.

Let us fix k < r and, denoting simply M = M(A \ { η }), we write, using
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the notation defined before proposition 5.8, and setting A0 = π(α,A\{ η }),

P
(
diam∞ STC(0, τ(A \ { η })) ≥ D′, R(A \ { η }) = k

)

≤
∑

A1,...,Ak∈M

P

( ∑
0≤j≤k diam∞ STC(τj , τj+1) ≥ D′

π(A \ { η }) = (A0,A1, . . . ,Ak)

)

≤
∑

A1,...,Ak∈M

∑

0≤j≤k

∑

αj∈Aj

P

( diam∞ STC(σα,n±
Q,t , τj ≤ t ≤ τj+1) ≥ D′/r

σα,n±
Q,τj

= αj , π(A \ { η }) = (A0,A1, . . . ,Ak)

)

≤
∑

A1,...,Ak∈M

∑

0≤j≤k

∑

αj∈Aj

P
(
diam∞ STC(σ

αj ,n±
Q,t , 0 ≤ t ≤ τ(Aj)) ≥ D′/r

)
.

Given a value K ′, we choose r such that cr > 2K ′, where c is the constant
appearing in proposition 5.8 and D′ such that D′/r > Di(2K

′) where
Di(2K

′) is the value given by the induction hypothesis at step i associated
to 2K ′. Notice that this value is uniform with respect to the cycle com-
pound A ⊂ D of depth δi+1, because all the cycle compounds of M are
included in D and have a depth at most equal to δi. We choose then ε > 0
such that rε < K ′. By lemmas 2.11 and 5.4, the map which associates to
each maximal cycle compound its bottom is one to one, hence

∣∣M(A \ { η })
∣∣ ≤

∣∣A \ { η }
∣∣ ≤ |D| ≤ exp(βε) .

The last inequality holds for β large, thanks to the hypothesis on D. Com-
bining the previous estimates, we obtain, for β large enough,

P
(
diam∞ STC(0, τ(A \ { η })) ≥ D′

)
≤

∣∣M(A \ { η })
∣∣r−1

r2
∣∣A \ { η }

∣∣ exp(−2βK ′) +
1

c
exp(−βcr)

≤ r2 exp(β(rε − 2K ′)) +
1

c
exp(−2βK ′) .

The last quantity is less than exp(−βK ′) for β large enough. �

The remaining task is to control the space–time clusters between τ(A\{ η })
and θ, which amounts to control

P
(
diam∞ STC(ση,n±

Q,t , 0 ≤ t ≤ θ) ≥ D/3
)
.

We suppose that τ(A\{ η }) < τ(A) (otherwise θ = 0) and that the process
is in η at time 0. To the continuous–time trajectory

(
ση,n±
Q,t , 0 ≤ t ≤ θ

)
,
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we associate a discrete path ω as follows:

T0 = 0 , ω0 = σQ,0 = η ,
T1 = min { t > T0 : σQ,t 6= ω0 } , ω1 = σQ,T1

,
T2 = min { t > T1 : σQ,t 6= ω1 } , ω2 = σQ,T2

,
...

...
Tk = min { t > Tk−1 : σQ,t 6= ωk−1 } , ωk = σQ,Tk

,
...

...
TS−1 = min { t > TS−2 : σQ,t 6= ωS−2 } , ωS−1 = σQ,TS−1

,
TS = θ , ωS = σQ,TS

= η .

Let R be the number of visits of the path ω to η, i.e.,

R =
∣∣ { 1 ≤ i ≤ S : ωi = η }

∣∣ .

We define then the indices φ(0), . . . , φ(R) of the successive visits to η by
setting φ(0) = 0 and for i ≥ 1,

φ(i) = min { k : k > φ(i − 1) , ωk = η } .

The times τ0, . . . , τR corresponding to these indices are

τi = Tφ(i) , 0 ≤ i ≤ R .

Each subpath
ω̃i = (ωk, φ(i) ≤ k ≤ φ(i + 1))

is an excursion outside η inside A. We denote by C(η) the connected
components of η. Let C belong to C(η). By lemma 5.5, the space–time
sets C × {φ(i)} and C × {φ(i + 1)} belong to the same space–time cluster
of ω̃i, therefore they are also in the same space–time cluster of STC(τi, τi+1).
Thus the space–time set

C × { τ0, · · · , τR }

belongs to one space–time cluster of STC(0, θ). The following computations
deal with the process (ση,n±

Q,t )t≥0 starting from η at time 0. Hence all the
STC and the exit times are those associated to this process. Let C belong
to STC(0, θ). We consider two cases:

• If C ∩
(
η × { τ0, · · · , τR }

)
= ∅, then there exists i ∈ { 0, . . . , R − 1 }

such that

C ∈ STC(τi, τi+1) , C ∩ (η × { τi, τi+1 }) = ∅ .
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Therefore
diam∞ C ≤ max

C∈STC(τi,τi+1)
C∩(Q×{ τi,τi+1 })=∅

diam∞ C .

• If C ∩
(
η × { τ0, · · · , τR }

)
6= ∅, then there exists a connected compo-

nent C ∈ C(η) and i ∈ { 0, . . . , R } such that C ∩
(
C × { τi }

)
6= ∅. From

the previous discussion, we conclude that C × { τ0, · · · , τR } is included in
C. In fact, for any C in C(η), we have

either C ∩
(
C × { τ0, · · · , τR }

)
= ∅ or C × { τ0, · · · , τR } ⊂ C .

For C in C(η) and i ∈ { 0, . . . , R − 1 }, we denote by STC(τi, τi+1)(C) the
space–time cluster of STC(τi, τi+1) containing C × { τi, τi+1 }. The space–
time cluster C is thus included in the set

⋃

C∈C(η)
C×{ 0, θ }⊂C

⋃

0≤i<R

STC(τi, τi+1)(C) .

For any C ∈ C(η), the space–time set
⋃

0≤i<R

STC(τi, τi+1)(C)

is connected, and its diameter is bounded by

2 max
0≤i<R

diam∞ STC(τi, τi+1)(C) .

The factor 2 is due to the fact that the two sites realizing the diameter
might belong to two different excursions outside η. Therefore

diam∞ C ≤
∑

C∈C(η)
C×{ 0, θ }⊂C

2 max
0≤i<R

diam∞ STC(τi, τi+1)(C) .

From the inequality obtained in the first case, we conclude that

max
C∈STC(0,θ)

C∩(Q×{ 0, θ })=∅

diam∞ C ≤ max
0≤i<R

max
C∈STC(τi,τi+1)

C∩(Q×{ τi,τi+1 })=∅

diam∞ C .

We sum next the inequality of the second case over all the elements of
STC(0, θ) intersecting Q × { 0, θ }. Since two distinct STC of STC(0, θ) do
not intersect at time 0, they don’t meet the same connected components
of η and we obtain

∑

C∈STC(0,θ)
C∩(Q×{ 0,θ }) 6=∅

diam∞ C ≤
∑

C∈C(η)

2 max
0≤i<R

diam∞ STC(τi, τi+1)(C) .
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Putting together the two previous inequalities, we conclude that

diam∞ STC(0, θ) ≤ 2|η| max
0≤i<R

diam∞ STC(τi, τi+1) .

We write

P
(
diam∞ STC(0, θ) ≥ D/3

)
≤

P
(
R ≥ r

)
+
∑

0≤k<r

P
(
diam∞ STC(0, θ) ≥ D/3, R = k

)
.

For a fixed integer k, the previous inequalities and the Markov property
yield

P
(
diam∞ STC(0, θ) ≥ D/3, R = k

)

≤ P
(
2|η| max

0≤i<k
diam∞ STC(τi, τi+1) ≥ D/3, R = k

)

≤ kP
(
2|η| diam∞ STC(0, τ1) ≥ D/3, τ1 < τ(A)

)
.

Recalling that

T1 = min { t > T0 : σQ,t 6= η } , τ1 = min { t > T1 : σQ,t = η } ,

we claim that, on the event τ1 < τ(A), we have

diam∞ STC(0, τ1) ≤ diam∞ STC(T1, τ1) + 1 .

Indeed, let C belong to STC(0, τ1). If C is in STC(T1, τ1), then obviously

diam∞ C ≤ diam∞ STC(T1, τ1) .

Otherwise, the set C ∩ (Q × [T1, τ1]) is the union of several elements of
STC(T1, τ1), say C1, . . . , Cr, which all intersect Q × {T1 }. The spin flip
leading from η to σQ,T1

can change only by one the sum of the diameters
of the STC present at time 0. This spin flip occurred in C if and only if

C ∩ (Q× { 0 }) 6= C ∩ (Q × {T1 }) ,

thus

diam∞ C ≤
∑

1≤i≤r

diam∞ Ci + 1C∩(Q×{ 0 }) 6=C∩(Q×{T1 }) .

Summing over all the elements of STC(0, τ1) which intersect Q × { 0 }, we
obtain the desired inequality. Reporting in the previous computation and
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conditioning with respect to ση,n±
Q,T1

, we get

P
(
diam∞ STC(0, θ) ≥ D/3, R = k

)

≤ kP
(
diam∞ STC(T1, τ1) ≥

D

6|η|
− 1, τ1 < τ(A)

)

≤
∑

γ∈A\{ η }

kP
(
ση,n±
Q,T1

= γ, diam∞ STC(T1, τ1) ≥
D

6|η|
− 1, τ1 < τ(A)

)

≤
∣∣A
∣∣k max

γ∈A
P
(
diam∞ STC(σγ,n±

Q,t , 0 ≤ t ≤ τ(A \ { η })) ≥
D

6|η|
− 1
)
.

Summing over k, we arrive at

P
(
diam∞ STC(0, θ) ≥ D/3

)
≤ P

(
R ≥ r

)

+r2
∣∣A
∣∣ max

γ∈A
P
(
diam∞ STC(σγ,n±

Q,t , 0 ≤ t ≤ τ(A \ { η })) ≥
D

6|η|
− 1
)
.

By the Markov property, the variable R satisfies for any n,m ≥ 0,

P
(
R ≥ n+m) = P

(
φ(n+m) < τ(A)

)

= P
(
φ(n) < τ(A), φ(n +m) < τ(A)

)

= P
(
φ(n) < τ(A)

)
P
(
φ(m) < τ(A)

)

= P
(
R ≥ n)P

(
R ≥ m) .

Therefore the law of R is the discrete geometric distribution and

∀n ≥ 0 P
(
R ≥ n) =

(
E(R)

1 + E(R)

)n

≤ exp−
n

1 + E(R)
.

By corollary 2.10, or more precisely its discrete–time counterpart, for β
large enough,

E(R) ≤ exp
(3
2
β depth(A)

)
≤ exp(2βδi+1)− 1 .

Choosing
r = β2 exp(2βδi+1) ,

we obtain from the previous inequalities that

P
(
diam∞ STC(0, θ) ≥ D/3

)
≤ exp−β2 + β4 exp(4βδi+1)

∣∣A
∣∣×

max
γ∈A

P
(
diam∞ STC(σγ,n±

Q,t , 0 ≤ t ≤ τ(A \ { η })) ≥
D

6vD
− 1
)
.
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We complete now the induction step at rank i + 1. Let K > 0 be given.
Let K ′ > 0 be such that 4δi+1 −K ′ < −3K and let D′ associated to K ′ as
in lemma 5.9. Let D′′ be such that

D′′

6vD
− 1 > D′ ,

D′′

3
> D′ .

Thanks to the hypothesis on D and Q, for β large enough,
∣∣A
∣∣ ≤

∣∣D
∣∣ ≤ exp(βK) .

From the previous computation, we have

P
(
diam∞ STC(ση,n±

Q,t , 0 ≤ t ≤ θ) ≥ D′′/3
)
≤ exp−β2 + β4 exp(−2βK) .

Since D′′/3 > D′, we have also for any γ ∈ A,

P
(
diam∞ STC(σγ,n±

Q,t , 0 ≤ t ≤ τ(A \ { η })) ≥ D′′/3
)
≤ exp(−3βK) .

Substituting the previous inequalities into the inequality obtained before
lemma 5.9, we conclude that, for any α ∈ A,

P
(
diam∞ STC(σα,n±

Q,t , 0 ≤ t ≤ τ(A)) ≥ D′′
)
≤ (β4 + 3) exp(−2βK)

and the induction is completed.

6 The metastable regime.

The goal of this section is to prove theorem 6.4, which states roughly the
following. Under an appropriate hypothesis on the initial law and on the
initial STC, for any κ < κd, the probability that a space–time cluster
of diameter larger than exp(βLd) is created before time exp(βκ) is SES.
The hypothesis is satisfied by the law of a typical configuration in the
metastable regime. This result allows to control the speed of propagation
of large supercritical droplets. As already pointed out by Dehghanpour
and Schonmann, the control of this speed is a crucial point for the study
of metastability in infinite volume. This estimate is quite delicate and it is
performed by induction over the dimension. More precisely, we consider a
set of the form

Λn(exp(βL))× Λd−n(lnβ)

with n± boundary conditions and we do the proof by induction over n.
The process in this set and with these boundary conditions behaves roughly
like the process in dimension n. Proposition 6.3 handles the case n = 0. A
difficult point is that the growth of the supercritical droplet is more com-
plicated than a simple growth process. Indeed, supercritical droplets might
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be helped when they touch some clusters of pluses, which were created in-
dependently. Therefore we cannot proceed as in the simpler growth model
handled in [CM11]. To tackle this problem, we introduce an hypothesis on
the initial law and on the initial space–time clusters. The hypothesis on the
initial law guarantees that regions which are sufficiently far away are decou-
pled. The hypothesis on the initial space–time clusters provides a control
on the space–time clusters initially present in the configuration. The point
is that these two hypotheses are satisfied by the law of the process in a
fixed good region until the arrival of the first supercritical droplets.

The key ingredient in this part of the proof is the lower bound on the
time needed to cross parallelepipeds of the above kind. Heuristically, we
will take into account the effect of the growing supercritical droplet by using
suitable boundary conditions, i.e., by using the Hamiltonian Hn± instead
of H−. Moreover, at the time when the configuration in the parallelepiped
starts to feel this effect, it is rather likely that the parallelepiped is not
void, so that we have to consider more general initial configurations.

In any fixed n–small parallelepiped, it is very unlikely that nucleation
occurs before τβ , or that a large space–time cluster is created before nucle-
ation. However, the region under study contains an exponential number of
n–small parallelepipeds, thus the previous events will occur somewhere. In
proposition 6.2, we show that these events occur in at most ln lnβ places.
The proof uses the hypothesis on the initial law and a simple counting
argument. The proof of theorem 6.4 relies on a notion already used in
bootstrap percolation, namely boxes crossed by a space–time cluster (see
definition 6.6). An n dimensional box Φ is said to be crossed by a STC

before time t if, for the dynamics restricted to Φ×Λd−n(lnβ), there exists
a space–time cluster whose projection on the first n coordinates intersects
two opposite faces of Φ. The point is that, if a box is crossed by a space–
time cluster in some time interval, then it is also crossed in the dynamics
restricted to the box with appropriate boundary conditions. These appro-
priate boundary conditions are obtained as follows. We put n± boundary
conditions on the restricted box exactly as on the large box, and we put +
boundary conditions on the faces which are normal to the direction which
is crossed. The induction step is long and it is decomposed in eleven steps.

We will use the notation defined in sections 4 and 5. Our main objective
is to control the maximal diameter of the STC created in a finite volume
before the relaxation time. Let d ≥ 1, let n ∈ { 0, . . . , d } and let us consider
a parallelepiped Σ in Zd of the form

Σ = Λn(Lβ)× Λd−n(ln β)

where Λn(Lβ) is a n dimensional cubic box of side length Lβ, Λ
d−n(lnβ)

is a d − n dimensional cubic box of side length lnβ, and the length Lβ
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satisfies

Lβ ≥ lnβ , lim sup
β→∞

1

β
lnLβ < +∞ .

We set κ0 = L0 = Γ0 = 0 and for n ≥ 1

κn =
1

n+ 1

(
Γ1 + · · ·+ Γn

)
, Ln =

Γn − κn

n
.

In the sequel we consider a time τβ satisfying

lim sup
β→∞

1

β
ln τβ < κn .

We say that a probability P (·) is super–exponentially small in β (written
in short SES) if it satisfies

lim
β→∞

1

β
lnP (·) = −∞ .

6.1 Initial law

We estimate the speed of growth of exponentially large droplets by bound-
ing from below the time needed by a large droplet to cross some tiles. In
each tile, we use n± boundary conditions in order to take into account the
effect of the droplet. A major difficulty is to control the configuration until
the arrival of the supercritical droplets. We introduce an adequate hypoth-
esis on the initial law describing the configuration into the tile when the
droplet enters. This is achieved with the help of the following definitions.
n–small parallelepipeds. Let n ≥ 1. A parallelepiped is n–small if
all its sides have a length larger than ln lnβ and smaller than n lnβ. A
parallelepiped is 0–small if all its sides have a length larger than ln lnβ and
smaller than 2 ln ln β.
Restricted ensemble. Let n ≥ 0. We denote by mn the volume of the
n dimensional critical droplet. Let Q be an n–small parallelepiped. The
restricted ensemble Rn(Q) is the set of the configurations σ in Q such that
|σ| ≤ mn and Hn±

Q (σ) ≤ Γn, i.e.,

Rn(Q) =
{
σ ∈ {−1,+1 }Q : |σ| ≤ mn, H

n±
Q (σ) ≤ Γn

}
.

We observe that Rn(Q) is a cycle compound and that

E
(
Rn(Q), {−1,+1 }Q \ Rn(Q)

)
= Γn .

Notice that the restricted ensemble satisfies the hypothesis on the domain
D stated at the beginning of section 5.5. We introduce next the hypothesis
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on the initial law, which is preserved until the arrival of the supercritical
droplets and which allows to perform the induction.
Hypothesis on the initial law at rank n. At rank n = 0 we simply
assume that the initial law µ is the Dirac mass on the configuration equal
to −1 everywhere on Σ. At rank n ≥ 1, we will work with an initial law
µ on the configurations in Σ satisfying the following condition. For any
family (Qi, i ∈ I) of n–small parallelepipeds included in Σ such that two
parallelepipeds of the family are at distance larger than

5(d− n+ 1) ln lnβ ,

we have the following estimates: for any family of configurations (σi, i ∈ I)
in the parallelepipeds (Qi, i ∈ I),

µ
(
∀i ∈ I σ|Qi

= σi

)
≤
∏

i∈I

(
φn(β) ρ

n±
Qi

(σi)
)
,

where

ρn±Qi
(σi) =

{
exp

(
− βHn±

Qi
(σi)

)
if σi ∈ Rn(Qi)

exp(−βΓn) if σi 6∈ Rn(Qi)

and φn(β) is a function depending only upon β which is exp o(β), meaning
that

lim
β→∞

1

β
ln φn(β) = 0 .

Hypothesis on the initial STC at rank n. We take also into account
the presence of STC in the initial configuration ξ. These STC are unions
of clusters of pluses present in ξ, we denote them by STC(ξ). We suppose
that for any n–small parallelepiped Q included in Σ

∑

C∈STC(ξ)
C∩Q6=∅

diam∞ C ≤ (d− n+ 1) ln lnβ .

6.2 Lower bound on the nucleation time.

In this section we give a lower bound on the nucleation time in a finite
box. The proof rests on a coupling with the dynamics conditioned in the
restricted ensemble, which we define next.
Dynamics conditioned to stay in Rn(Q). We denote by (σ̃n±,ξ

Q,t , t ≥ 0)
the process (σn±,ξ

Q,t , t ≥ 0) conditioned to stay in Rn(Q). Its rates c̃n±Q (x, σ)
are identical to those of the process (σn±,ξ

Q,t , t ≥ 0) whenever σx belongs to
Rn(Q) and they are equal to 0 whenever σx 6∈ Rn(Q). As usual, we couple
the processes

(σ̃n±,ξ
Q,t , t ≥ 0) , (σn±,ξ

Q,t , t ≥ 0)
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so that
∀ξ ∈ Rn(Q) ∀t ≤ τ(Rn(Q)) σ̃n±,ξ

Q,t = σn±,ξ
Q,t .

Finally the measure µ̃n±
Q defined by

∀σ ∈ Rn(Q) µ̃n±
Q (σ) =

µn±
Q (σ)

µn±
Q (Rn(Q))

is a stationary measure for the process (σ̃n±,ξ
Q,t , t ≥ 0).

Local nucleation. We say that local nucleation occurs before τβ in the
parallelepiped Q starting from ξ if the process (σn±,ξ

Q,t , t ≥ 0) exits Rn(Q)
before τβ . In words, local nucleation occurs if the process creates a con-
figuration of energy larger than Γn or of volume larger than mn before τβ ,
i.e.,

max
{
Hn±

Q

(
σn±,ξ
Q,t

)
: t ≤ τβ

}
> Γn or max

{ ∣∣σn±,ξ
Q,t

∣∣ : t ≤ τβ

}
> mn .

Lemma 6.1 Let n ≥ 0 and let Q be a parallelepiped. We consider the
process (σn±,µ̃

Q,t , t ≥ 0) in the box Q with n± boundary conditions and initial
law the measure µ̃n±

Q . For any deterministic time τβ, we have for β ≥ 1,

P

(
local nucleation occurs before τβ

in the process (σn±,µ̃
Q,t , t ≥ 0)

)
≤

4β(mn + 2)2|Q|2mn+2τβ exp(−βΓn) + exp(−β|Q|τβ lnβ) .

Proof. To alleviate the text, we drop µ̃ from the notation, writing σn±
Q,t

instead of σn±,µ̃
Q,t . To the continuous–time Markov process (σ̃n±

Q,t, t ≥ 0), we
associate in a standard way a discrete–time Markov chain

(σ̃n±
Q,k, k ∈ N) .

We define first the time of jumps. We set τ0 = 0 and for k ≥ 1,

τk = inf
{
t > τk−1 : σ̃n±

Q,t 6= σ̃n±
Q,τk−1

}
.

We define then
∀k ∈ N σ̃n±

Q,k = σ̃n±
Q,τk

.

Let X be the total number of arrival times less than τβ of all the Poisson
processes associated to the sites of the box Q. The law of X is Poisson
with parameter λ = |Q|τβ . Next, for any N ≥ λ,

P (X ≥ N) =
∑

i≥N

λi

i!
exp(−λ) ≤ λN exp(−λ)

∑

i≥N

N i−N

i!

=

(
λ

N

)N

exp(−λ)
∑

i≥N

N i

i!
≤

(
λ

N

)N

exp(N − λ) .
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Thus
P (X ≥ 4βλ) ≤ exp(−βλ lnβ) .

The measure µ̃n±
Q is a stationary measure for the Markov chain (σ̃n±

Q,k)k≥0,
thus

P
(
τ(Rn(Q)) ≤ τβ

)
≤ P

(
∃ t ≤ τβ σn±

Q,t 6∈ Rn(Q)
)

≤ P
(
X ≤ 4βλ, ∃ t ≤ τβ σn±

Q,t 6∈ Rn(Q)
)
+ P

(
X > 4βλ) .

The second term is already controlled. Let us estimate the first term:

P
(
X ≤ 4βλ, ∃ t ≤ τβ σn±

Q,t 6∈ Rn(Q)
)
≤

P
(
X ≤ 4βλ, ∃ k ≤ X σn±

Q,0, . . . , σ
n±
Q,k−1 ∈ Rn(Q), σn±

Q,k 6∈ Rn(Q)
)

≤
∑

1≤k≤4βλ

∑

η∈Rn(Q)

∑

ρ∈∂Rn(Q)

P
(
σn±
Q,k−1 = σ̃n±

Q,k−1 = η, σn±
Q,k = ρ

)
.

Next, for any η ∈ Rn(Q), ρ ∈ ∂Rn(Q),

P
(
σn±
Q,k−1 = σ̃n±

Q,k−1 = η, σn±
Q,k = ρ

)

≤ µ̃n±
Q (η) exp

(
−βmax

(
0, Hn±

Q (ρ)−Hn±
Q (η)

))

≤ exp
(
−βmax

(
Hn±

Q (ρ), Hn±
Q (η)

))

≤ exp
(
−βE

(
Rn(Q), {−1,+1 }Q \ Rn(Q)

))
≤ exp(−βΓn) .

Coming back in the previous inequalities, we get

P
(
X ≤ 4βλ, ∃ t ≤ τβ σn±

Q,t 6∈ Rn(Q)
)

≤ 4βλ
∣∣Rn(Q)

∣∣ ∣∣∂Rn(Q)
∣∣ exp(−βΓn)

≤ 4βλ (mn + 1)|Q|mn(mn + 2)|Q|mn+1 exp(−βΓn) ,

since the number of pluses in a configuration of ∂Rn(Q) is at most mn+1.
Putting together the previous inequalities, we arrive at

P
(
τ(Rn(Q)) ≤ τβ

)
≤

4β(mn + 2)2|Q|2mn+2τβ exp(−βΓn) + exp(−β|Q|τβ lnβ)

as required. �
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6.3 Local nucleation or creation of a large STC

The condition on the initial law and the initial STC implies that the process
is initially in a metastable state. We will need to control the STC created
until the arrival of the supercritical droplets. Let Q be a parallelepiped
included in Σ. To build the STC of the process (σn±,ξ

Q,t , t ≥ 0) we take into
account the STC initially present in ξ and we denote by STCξ(0, t) the
resulting STC on the time interval [0,t]. Hence an element of STCξ(0, t) is
either a STC of STC(0, t) which is born after time 0 or it is the union of the
STC of STC(0, t) which intersect an initial STC of STC(ξ). We define then
diam∞ STCξ(0, t) as in section 5.4 by

diam∞ STCξ(0, t) = max
( ∑

C∈STCξ(0,t)
C∩(Q×{ 0,t }) 6=∅

diam∞ C, max
C∈STCξ(0,t)

C∩(Q×{ 0,t })=∅

diam∞ C
)
.

To control this quantity, we will rely on the following inequality:

diam∞ STCξ(0, t) ≤
∑

C∈STC(ξ)
C∩Q6=∅

diam∞ C + diam∞ STC(0, t) .

The first term will be controlled with the help of the hypothesis on the
initial STC, the second term with the help of theorem 5.7.
Local nucleation. We say that local nucleation occurs before τβ in the
parallelepiped Q starting from ξ if the process (σn±,ξ

Q,t , t ≥ 0) exits Rn(Q)
before τβ . In words, local nucleation occurs if the process creates a con-
figuration of energy larger than Γn or of volume larger than mn before τβ ,
i.e.,

max
{
Hn±

Q

(
σn±,ξ
Q,t

)
: t ≤ τβ

}
> Γn or max

{ ∣∣σn±,ξ
Q,t

∣∣ : t ≤ τβ

}
> mn .

Creation of large STC. We say that the dynamics creates a large STC

before time τβ in the parallelepiped Q starting from ξ if for the process
(σn±,ξ

Q,t , t ≥ 0), we have

diam∞ STC(0, τβ) ≥ ln lnβ .

We denote by R(Q) the event:

R(Q) =




neither local nucleation nor creation
of a large STC occurs before time τβ
in the parallelepiped Q starting from ξ




The next proposition gives a control on the number of these events in
a box of subcritical volume until time τβ .

61



Proposition 6.2 Let n ∈ { 1, . . . , d }. We suppose that the hypothesis on
the initial law at rank n is satisfied. Let Rβ be a parallelepiped whose
volume satisfies

lim sup
β→∞

1

β
ln |Rβ | ≤ nLn .

The probability that for the process (σn±,ξ
Σ,t , t ≥ 0) ln lnβ local nucleations

or creations of a large STC occur before time τβ in n–small parallelepipeds
included in Rβ which are pairwise at distance larger than 5(d−n+1) ln lnβ
is super–exponentially small in β.

Proof. Let us rephrase more precisely the event described in the state-
ment of the proposition: there exists a family (Qi, i ∈ I) of ln lnβ n–small
parallelepipeds included in Rβ such that:

∀i, j ∈ I , i 6= j ⇒ d(Qi, Qj) > 5(d− n+ 1) ln lnβ ,

and for i ∈ I, the event R(Qi) does not occur for the process (σ
n±,ξ
Qi,t

, t ≥ 0).
Denoting this event by E , we have

P (E) ≤
∑

(Qi)i∈I

P

(
⋂

i∈I

R(Qi)
c

)

where the sum runs over all the possible choices of boxes (Qi)i∈I . We con-
dition next on the initial configurations (σi, i ∈ I) in the boxes (Qi, i ∈ I):

P (E) ≤
∑

(Qi)i∈I

∑

(σi)i∈I

P

(
⋂

i∈I

R(Qi)
c
∣∣∀i ∈ I ξ|Qi

= σi

)

× µ
(
∀i ∈ I ξ|Qi

= σi

)
.

Once the initial configurations (σi, i ∈ I) are fixed, the nucleation events in
the boxes (Qi, i ∈ I) become independent because they depend on Poisson
processes associated to disjoint boxes. Thanks to the geometric condition
imposed on the boxes, we can apply the estimates given by the hypothesis
on the initial law µ:

P (E) ≤
∑

(Qi)i∈I

∑

(σi)i∈I

∏

i∈I

P
(
R(Qi)

c
∣∣ ξ|Qi

= σi

)
φn(β) ρ

n±
Qi

(σi)

=
∑

(Qi)i∈I

∏

i∈I

(
φn(β)

∑

σi

P
(
R(Qi)

c
∣∣ ξ|Qi

= σi

)
ρn±Qi

(σi)

)
.
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Let us fix i ∈ I and let us estimate the term inside the big parenthesis. Let
Q be an n–small box. We write

∑

η

P
(
R(Q)c

∣∣ ξ|Q = η
)
ρn±Q (η)

≤
∑

η

P

(
the process (σn±,η

Q,t , t ≥ 0)

nucleates before time τβ

)
ρn±Q (η)

+
∑

η

P

(
the process (σn±,η

Q,t , t ≥ 0) creates

a large STC before nucleating

)
ρn±Q (η) .

First, by theorem 5.7, the probability that the process (σn±,η
Q,t , t ≥ 0) creates

a large STC before nucleating is SES. Second,

∑

η 6∈Rn(Q)

P

(
the process (σn±,η

Q,t , t ≥ 0)

nucleates before time τβ

)
ρn±Q (η) ≤ 2|Q| exp(−βΓn) .

Third, for η ∈ Rn(Q), using the notation of section 6.2,

ρn±Q (η) ≤ |Rn(Q)| µ̃n±
Q (η) ≤ (mn + 1)|Q|mnµ̃n±

Q (η)

whence, using lemma 6.1,

∑

η∈Rn(Q)

P

(
the process (σn±,η

Q,t , t ≥ 0)

nucleates before time τβ

)
ρn±Q (η)

≤ (mn + 1)|Q|mnP

(
the process (σn±,µ̃

Q,t , t ≥ 0)

nucleates before time τβ

)

≤ 4β(mn + 2)3(n lnβ)d(2mn+3)τβ exp(−βΓn) + SES .

Substituting these estimates into the last inequality on P (E), we obtain

P (E) ≤
(∣∣Rβ

∣∣(n lnβ)d
(
2(n ln β)d

+ 4β(mn + 2)3(n lnβ)2dmn+3dτβ
)
φn(β) exp(−βΓn) + SES

)|I|
.

Since |I| = ln lnβ and

lim sup
β→∞

1

β
ln
(
|Rβ | τβ φn(β) exp(−βΓn)

)
< nLn + κn − Γn = 0 ,

we conclude that the above quantity is SES. �
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6.4 Control of the metastable space–time clusters

The key result is the following control on the size of the space–time clusters
in the configuration. The next proposition states the result at rank 0, the
theorem thereafter states the result at rank n ≥ 1.

Proposition 6.3 We suppose that the law µ of the initial configuration ξ
satisfies the hypothesis at rank 0. Let τβ be a time satisfying

lim sup
β→∞

1

β
ln τβ < κ0 = 0 .

The probability that a STC of diameter larger than ln lnβ is created in the
process (σ0±,ξ

Σ,t , 0 ≤ t ≤ τβ) is SES.

Proof. With n = 0, we have

Σ = Λd(lnβ) , Γ0 = κ0 = L0 = m0 = 0 ,

the boundary condition is plus on ∂ outΣ and R0(Q) = {−1} for any box
Q. By the hypothesis on µ at rank 0, the initial law µ is the Dirac mass
on the configuration equal to −1 everywhere on Σ. Now

P
(
∃ C ∈ STC(0, τβ) with diam∞ C ≥ ln lnβ

)
≤

P

(
there are at least ln lnβ arrival times less than τβ
for the Poisson processes associated to the sites of Σ

)

= P (X ≥ ln lnβ)

where X is a variable whose law is Poisson with parameter

λ = |Σ|τβ = (lnβ)dτβ .

So

P (X ≥ ln lnβ) =
∑

k≥ln ln β

exp(−λ)
λk

k!
≤ 3λln ln β

which is SES. �

For the case n = 0 the initial configuration is −1 everywhere and all the
STC born before the initial configuration are dead. In the case n ≥ 1, the
situation is more delicate and we must deal with STC born in the past.
To build the STC of the process (σn±,ξ

Σ,t , t ≥ 0) we take into account the
STC initially present in ξ and we denote by STCξ(0, t) the resulting STC on
the time interval [0,t]. Hence an element of STCξ(0, t) is either a STC of
STC(0, t) which is born after time 0 or it is the union of the STC of STC(0, t)
which intersect an initial STC of STC(ξ). We recall that STC(ξ) denotes the
initial STC present in ξ, these STC are unions of clusters of pluses of ξ.
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Theorem 6.4 Let n ∈ { 1, . . . , d }. We suppose that both the hypothesis on
the initial law at rank n and on the initial STC present in ξ are satisfied.
Let τβ be a time satisfying

lim sup
β→∞

1

β
ln τβ < κn .

The probability that, for the process (σn±,ξ
Σ,t )t≥0, there exists a space–time

cluster in STCξ(0, τβ) of diameter larger than exp(βLn) is SES.

Theorem 6.4 is proved by induction over n. We suppose that the result
at rank n − 1 has been proved and that a STC of diameter larger than
exp(βLn) is formed before time τβ . The induction step is long and it is
decomposed in the eleven following steps.

Step 1: Reduction to a box Ri,j of side length of order exp(βLn).
By a trick going back to the work of Aizenmann and Lebowtiz on bootstrap
percolation [AL88], there exists a STC of diameter between exp(βLn)/2 and
exp(βLn) + 1 which is formed before time τβ . In particular there exists a
box Ri,j of side length of order exp(βLn) which is crossed by a STC before
time τβ .

Step 2: Reduction to a box Si of side length of order exp(βLn)/ lnβ
devoid of bad events. Thanks to proposition 6.2, the number of bad
events, like local nucleation or creation of a large STC, is at most ln lnβ,
up to a SES event. By a simple counting argument, there exists a box Si of
side length of order exp(βLn)/ lnβ in the n–th direction which is crossed
vertically before τβ and in which no bad events occur. We consider next
the dynamics in this box Si with either n± or n−1± boundary conditions.

Step 3: Control of the diameters of the STC born in Si with n±
boundary conditions. By construction, for the dynamics in the box Si

with n± boundary conditions, no bad events occur before time τβ , there-
fore the process stays in the metastable state. Until time τβ , only small
droplets are created, and they survive for a short time. We quantify this
in lemma 6.7, where we prove that any STC in STCξ(σ

n±,ξ
Si,t

, 0 ≤ t ≤ τβ) has
a diameter at most (d− n+ 2) ln lnβ.

Step 4: Reduction to a flat box ∆i,j ⊂ Si of height lnβ crossed

vertically in a time exp
(
β(κ − Ln)

)
/(lnβ)2. The box Si has height

of order exp(βLn)/ lnβ. In the dynamics restricted to Si with n − 1±
boundary conditions, the box Si is vertically crossed by a STC in a time
τβ . From the result of step 3, we conclude that the crossing STC emanates
either from the bottom or the top of Si, because the vertical crossing can
occur only with the help of the boundary conditions. This STC has to be
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born close to the top or the bottom of Si and it propagates then towards
the middle plane of Si. We partition Si in slabs of height lnβ, the number
of these slabs is of order exp(βLn)/(lnβ)

2. By summing the crossing times
of each of these slabs, we obtain that one slab, denoted by ∆i,j , has to be
crossed vertically in a time exp

(
β(κ− Ln)

)
/(lnβ)2. We denote by Ta the

event: At time a, the set ∆i,j has not been touched by a STC emanating
from top or bottom of Si in the process (σn−1±,ξ

Si,t
, t ≥ 0). We denote by

Vb the event: At time b, the set ∆i,j is vertically crossed in the process
(σn−1±,ξ

Si,t
, t ≥ 0). We show that there exist two integer values a < b such

that b− a < exp
(
β(κ−Ln)

)
/(lnβ)2 and the events Ta and Vb both occur.

Step 5: Conditioning on the configuration at the time of arrival

of the large STC. We want to estimate the probability of the event
Ta ∩ Vb. This event will have a low probability, because it requires that
the slab ∆i,j is vertically crossed too quickly, before it had time to relax
to equilibrium. To this end, we condition with respect to the configuration
in ∆i,j at time a and we estimate the probability of the vertical crossing
in a time b − a. We first replace the condition that no bad events occur
before time τβ , by the weaker condition that no bad events occur before
time a (otherwise the conditionned dynamics after time a would be much
more complicated). We then perform the conditioning with respect to the
configuration in ∆i,j at time a. We denote by ζ this configuration, by ν its
law and by STC(ζ) the STC present in ζ. The idea is to apply the induction
hypothesis to the process in ∆i,j between times a and b. To this end, we
check that ν and STC(ζ) satisfy the hypothesis at rank n− 1.

Step 6: Check of the hypothesis on the initial STC at rank n− 1.
We use the initial hypothesis on the STC at rank n and the fact that no
bad events, like nucleation or creation of a large STC, occur until time a to
obtain the appropriate control on the STC at time a. The factor (d − n+
1) ln lnβ is tuned adequately to perform the induction step. The condition
is stronger at step n than at step n − 1. Indeed, the hypothesis is done
at step n on the initial STC, and because of the metastable dynamics,
the diameters of the STC might increase by ln ln β until the arrival of the
supercritical droplets. Thus the hypothesis on the STC at rank n−1 is still
fulfilled.

Step 7: Check of the hypothesis on the initial law at rank n− 1.
Similarly, we use the hypothesis on the initial law at rank n and the fact
that no bad events, like nucleation or creation of a large STC, occur until
time a to obtain the appropriate decoupling on the law of the configuration
at time a. The hypothesis on the law at rank n implies that small boxes
at distance larger than 5(d− n+ 1) lnβ are independent. Until time a, no
bad events occur, hence the metastable dynamics inside a small box Q can
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only be influenced by events happening at distance ln lnβ from the small
box, i.e., inside a slightly larger box R. This way we obtain the appropriate
decoupling on boxes which are at distance larger than 5(d− n+ 2) lnβ.

Step 8: Comparison of µ̃n±
R |Q and ρn−1±

Q . To obtain the appropriate
bounding factor we have to prove that, if Q,R are two parallelepipeds which
are n–small and such that Q ⊂ R, then for any configuration η in Q,

µ̃n±
R

(
σ|Q = η

)
≤ φn−1(β) ρ

n−1±
Q (η) ,

where φn−1(β) is a function depending only upon β. This is done with
the help of three geometric lemmas. First we show that a configuration
σ having at most mn pluses and such that Hn±

R (σ) ≤ Γn−1 can have at
most mn−1 pluses. The next point is that, when the number of pluses
in the configuration η is less than mn−1, the Hamiltonian in R with n±
boundary conditions will always be larger than the Hamiltonian in Q with
n− 1± boundary conditions, up to a polynomial correcting factor.

Step 9: Reduction to a box Φ of side length of order exp(βLn−1).
We are now able to apply the induction hypothesis at rank n−1: Up to a SES

event, there is no space–time cluster of diameter larger than exp(βLn−1) for
the process in ∆ with n− 1± boundary conditions. Therefore the vertical
crossing of ∆ has to occur in a box Φ of side length of order exp(βLn−1).

Step 10: Reduction to boxes Φi ⊂ Φ of vertical side length of order

lnβ/ ln lnβ. We partition Φ in slabs Φi of height lnβ/ ln lnβ, the number of
these slabs is of order ln lnβ. We can choose a subfamily of slabs such that
two slabs of the subfamily are at distance larger than 5(d − n+ 2) ln lnβ.
Since Φ endowed with n − 1± boundary conditions is vertically crossed
before time exp

(
β(κ− Ln)

)
/(lnβ)2, so are each of these slabs Φi.

Step 11: Conclusion of the induction step. These crossings imply that
a large STC is created. The dynamics in each slab Φi with n−1± boundary
conditions are essentially independent, thanks to the boundary conditions
and the hypothesis on the initial law. It follows that the probability of
creating simultaneously these ln ln β large STC is SES.
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We start now the precise proof, which follows the above strategy. We
suppose that the result at rank n − 1 has been proved and that a STC of
diameter larger than exp(βLn) is formed before time τβ .

Step 1: Reduction to a box Ri,j of side length of order exp(βLn).

Let us consider the function

f(t) = max
{
diam∞ C : C ∈ STCξ(0, t)

}
.

This function is non–decreasing, it changes when a spin flip creates a larger
STC by merging two or more existing STC. Suppose there is a spin flip at
time t. Just before the spin flip, the largest STC had diameter at most

f(t−) = lim
s<t
s→t

f(s)

hence after the spin flip, the largest STC has diameter at most 2f(t−) + 1.
Therefore

∀t ≥ 0 f(t) ≤ 2f(t−) + 1 .

With the same reasoning applied to a specific STC, we get the following
result.

Lemma 6.5 Let D be such that

D ≥ max
{
diam∞ C : C ∈ STC(ξ)

}
.

Let C be a STC in STCξ(0, t) having diameter larger than D. There exists
s ≤ t and C′ a STC in STCξ(0, s) such that

C′ ⊂ C , D ≤ diam∞ C′ ≤ 2D .

The hypothesis on the initial STC present in ξ implies that

max
{
diam∞ C : C ∈ STC(ξ)

}
≤ (d− n+ 1) ln lnβ .

Therefore, if
f(τβ) ≥ exp(βLn) ,

then, by lemma 6.5, there exists a random time T ≤ τβ and C ∈ STCξ(0, T )
such that

exp(βLn) ≤ diam∞ C ≤ 2 exp(βLn) .

Let Φ be the smallest n dimensional box such that

C ⊂
(
Φ× Λd−n(lnβ)

)
× [0, T ] .

With the help of lemma 5.1, we observe that the box Φ is crossed by a STC

before time τβ , where the meaning of “crossed” is explained next.
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Definition 6.6 An n dimensional box Φ is said to be crossed by a STC

before time t if, for the dynamics restricted to Φ× Λd−n(lnβ) with initial
configuration ξ and n± boundary condition, there exists C in STCξ(0, t)
whose projection on the first n coordinates intersects two opposite faces
of Φ.

With this definition, we have

P
(
∃ C ∈ STCξ(0, τβ) with diam∞ C ≥ exp(βLn)

)

≤ P




∃Φ n dimensional box ⊂ Λn(Lβ),
exp(βLn) ≤ diam∞ Φ ≤ 2 exp(βLn),
Φ is crossed by a STC before time τβ




≤
∣∣Λn(Lβ)| × 2 exp(βLn)×max

x,k
P

(
the box

(
x+ Λn(k)

)
× Λd−n(lnβ)

is crossed by a STC before time τβ

)

where the maximum is taken over x, k such that

exp(βLn) ≤ k ≤ 2 exp(βLn) ,
(
x+ Λn(k)

)
⊂ Λn(Lβ) .

Let us now fix x, k as above, for simplicity we take x = 0, and let us
suppose that Λn(k)×Λd−n(lnβ) is crossed by a STC before time τβ for the
process with initial configuration ξ and n± boundary condition. We can
suppose for instance that Λn(k)×Λd−n(lnβ) is crossed vertically, i.e., that
the crossing occurs along the nth coordinate. Using the monotonicity with
respect to the boundary conditions, we observe that, for any i, j such that
−k/2 ≤ i ≤ j ≤ k/2, the parallelepiped

Ri,j = Λn−1(k)× [i, j]× Λd−n(lnβ)

is also crossed vertically before time τβ for the process with initial config-
uration ξ|Ri,j

and n− 1± boundary condition on Ri,j .

Step 2: Reduction to a box Si of side length of order exp(βLn)/ lnβ
devoid of bad events.

With k defined above, we consider next the collection of the sets

Si = Λn−1(k)×

[
(2i)k

4 lnβ
,
(2i+ 1)k

4 lnβ

]
× Λd−n(lnβ) , |i| < lnβ −

1

2
.

These sets are pairwise at distance larger than lnβ. By proposition 6.2, up
to a SES event, there exists a set Si in which the event

R(Si) =
⋂

Q n–small
Q⊂Si

R(Q)
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occurs. This means that neither local nucleation nor the creation of a large
STC occurs before time τβ for the process in Si with initial configuration
ξ|Si

and n± boundary condition. From now onwards we will study what
is happening in this particular set Si. Let us define

bottom = Λn−1(k)×

{
(2i)k

4 lnβ

}
× Λd−n(lnβ) ,

top = Λn−1(k)×

{
(2i+ 1)k

4 lnβ

}
× Λd−n(lnβ) .

By lemma 5.1, any STC of the process

(σn−1±,ξ
Si,t

, 0 ≤ t ≤ τβ)

which intersects neither top nor bottom is also a STC of the process

(σn±,ξ
Si,t

, 0 ≤ t ≤ τβ) ,

because it has not been “helped” by the n− 1± boundary condition.

Step 3: Control of the diameters of the STC born in Si with n±
boundary conditions.

Lemma 6.7 On the event R(Si), any STC in STCξ(σ
n±,ξ
Si,t

, 0 ≤ t ≤ τβ) has
a diameter at most (d− n+ 2) ln lnβ.

Proof. Indeed, suppose that there exists C in STCξ(σ
n±,ξ
Si,t

, 0 ≤ t ≤ τβ)
with

diam∞ C > (d− n+ 2) ln lnβ .

By lemma 6.5, there exists T ≤ τβ and C′ in STCξ(σ
n±,ξ
Si,t

, 0 ≤ t ≤ T ) such
that

(d− n+ 2) ln lnβ ≤ diam∞ C′ ≤
1

3
lnβ .

Let Q′ be a box of side length lnβ included in Si and centered on a point
of C′. By lemma 5.1, C′ is also a STC of the process (σn±,ξ

Q′,t , 0 ≤ t ≤ τβ).
Yet

diam∞ C′ ≤ diam∞ STCξ(σ
n±,ξ
Q′,t , 0 ≤ t ≤ T )

≤
∑

C∈STC(ξ)
C∩Q′ 6=∅

diam∞ C + diam∞ STC(σn±,ξ
Q′,t , 0 ≤ t ≤ T )

≤ (d− n+ 1) ln lnβ + diam∞ STC(σn±,ξ
Q′,t , 0 ≤ t ≤ T ) .
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We have used the hypothesis on the initial clusters present in ξ to bound
the sum. This inequality implies that

diam∞ STC(σn±,ξ
Q′,t , 0 ≤ t ≤ T ) ≥ ln lnβ ,

hence the events R(Q′) and R(Si) would not occur. �

Step 4: Reduction to a flat box ∆i,j ⊂ Si crossed vertically in a

time (lnβ)2.

By lemma 5.1, any STC in (σn−1±,ξ
Si,t

, 0 ≤ t ≤ τβ) of diameter strictly larger
than (d − n + 2) ln lnβ intersects top or bottom. Since Si is vertically
crossed by time τβ , the middle set, defined by

middle = Λn−1(k)×

{
(2i+ 1

2 )k

4 lnβ

}
× Λd−n(lnβ) ,

is hit before time τβ by a STC emanating either from the bottom or from
the top of Si. Let us define

τbottom(h) = inf
{
u ≥ 0 : ∃ C ∈ STCξ(σ

n−1±,ξ
Si,t

, 0 ≤ t ≤ u) ,

C ∩ bottom 6= ∅ , ∃x = (x1, . . . , xd) ∈ C xn = h
}
.

Suppose for instance that the first STC hitting middle emanates from the
bottom. We have then

τbottom

(
(2i+ 1

2 )k

4 lnβ

)
≤ τβ .

Moreover, setting h = 2i/(4 lnβ), we have

τbottom

(
h+

k

8 lnβ

)
≥

∑

1≤j≤J

(
τbottom (h+ j lnβ)− τbottom (h+ (j − 1) lnβ)

)

where

J =
k

8(lnβ)2
.

Therefore there exists an index j ≤ J such that

τbottom (h+ j lnβ)− τbottom (h+ (j − 1) lnβ) ≤
τβ
J

.

Let ∆i,j be the set

∆i,j = Λn−1(k)× [h+ (j − 1) lnβ, h+ j lnβ]× Λd−n(lnβ).

72



The set ∆i,j is isometric to a set of the form

Λn−1(k)× Λd−n+1(ln β) .

We conclude that there exist two indices i, j and two times a, b such that:

• i, j are integers and satisfy 0 ≤ |i| ≤ lnβ, 0 ≤ j ≤ J .

• a, b are integers and satisfy 0 ≤ b− a ≤ τβ/J + 2.

• The event R(Si) occurs.

• At time a, the set ∆i,j has not been touched by a STC emanating from
top or bottom of Si in the process (σn−1±,ξ

Si,t
, t ≥ 0). We denote this event

by Ta.

• At time b, the set ∆i,j is vertically crossed in the process (σn−1±,ξ
Si,t

, t ≥ 0).
We denote this event by Vb.

From the previous discussion, we see that

P

(
Λn(k)× Λd−n(lnβ) is crossed

vertically before time τβ

)
≤
∑

i,j

∑

a,b

P (R(Si), Ta, Vb)

with the summation running over indices i, j, a, b satisfying the above con-
ditions.

Step 5: Conditioning on the configuration at the time of arrival

of the large STC.

We next estimate the probability appearing in the summation. To alleviate
the formulas, we drop i, j from the notation, writing S,∆, ζ instead of
Si,∆i,j , ζi,j . For Q an n–small parallelepiped, we denote by R(Q, a) the
event

R(Q, a) =




neither local nucleation nor creation
of a large STC occurs before time a

for the process (σn±,ξ
Q,t , t ≥ 0)


 .

We define the event R(S, a) as

R(S, a) =
⋂

Q n–small
Q⊂S

R(Q, a)

and we estimate its probability as in proposition 6.2. For a ≤ τβ , we obtain
that

P (R(S, a)c) ≤ SES+
∣∣S
∣∣(n lnβ)d

(
2(n ln β)d+4β(mn + 2)3(n lnβ)2dmn+3dτβ

)
φn(β) exp(−βΓn) .
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Since

lim sup
β→∞

1

β
ln
(
|S| τβ exp(−βΓn)

)
< nLn + κn − Γn = 0 ,

we conclude that
lim
β→∞

P (R(S, a)) = 1 .

We will next condition on the configuration at time a in ∆ in order to
estimate the probability of the event Vb:

P (R(S), Ta, Vb) =
∑

ζ

P (R(S), Ta, Vb, σ
n−1±,ξ
S,a |∆ = ζ

)

≤
∑

ζ

P (R(S, a), Ta, Vb, σ
n−1±,ξ
S,a |∆ = ζ

)
.

Yet the knowledge of the configuration at time a is not enough to decide
whether the event Vb will occur: we need also to take into account the
STC present at time a in ∆ to determine whether a vertical crossing occurs
in ∆ before time b. Thus we record the STC which are present in the
configuration σn−1±,ξ

S,a |∆. We write

σn−1±,ξ
S,a |∆ = ζ , STCξ

(
σn−1±,ξ
S,t , 0 ≤ t ≤ a

)
|∆×{a} = STC(ζ)

to express that the configuration in ∆ at time a is ζ and that the trace
at time a of the STC created before time a in ζ is given by STC(ζ). We
condition next on this information:

∑

ζ

P (R(S, a), Ta, Vb, σ
n−1±,ξ
S,a |∆ = ζ

)

=
∑

ζ,STC(ζ)

P

(
R(S, a), Ta, Vb, σ

n−1±,ξ
S,a |∆ = ζ,

STCξ

(
σn−1±,ξ
S,t , 0 ≤ t ≤ a

)
|∆×{a} = STC(ζ)

)

=
∑

ζ,STC(ζ)

P

(
Vb

∣∣∣ R(S, a), Ta, σ
n−1±,ξ
S,a |∆ = ζ,

STCξ

(
σn−1±,ξ
S,t , 0 ≤ t ≤ a

)
|∆×{a} = STC(ζ)

)

× P

(
R(S, a), Ta, σ

n−1±,ξ
S,a |∆ = ζ,

STCξ

(
σn−1±,ξ
S,t , 0 ≤ t ≤ a

)
|∆×{a} = STC(ζ)

)
.

On the event Ta, by lemma 5.1,

σn−1±,ξ
S,a |∆ = σn±,ξ

S,a |∆ ,

STCξ

(
σn−1±,ξ
S,t , 0 ≤ t ≤ a

)
|∆×{a} = STCξ

(
σn±,ξ
S,t , 0 ≤ t ≤ a

)
|∆×{a} ,
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whence

P

(
R(S, a), Ta, σ

n−1±,ξ
S,a |∆ = ζ,

STCξ

(
σn−1±,ξ
S,t , 0 ≤ t ≤ a

)
|∆×{a} = STC(ζ)

)
≤

P

(
R(S, a), σn±,ξ

S,a |∆ = ζ,

STCξ

(
σn±,ξ
S,t , 0 ≤ t ≤ a

)
|∆×{a} = STC(ζ)

)
.

Let us set
ν(ζ) = P

(
σn±,ξ
S,a |∆ = ζ

∣∣R(S, a)
)
.

Thus ν is the law of the configuration σn±,ξ
S,a |∆ conditioned on the event

R(S, a). This configuration, denoted by ζ, comes equipped with the trace
of the STC created before time a, which are denoted by STC(ζ). Formally,
the law ν should be a law on the trace of the STC at time a, however, to
alleviate the text, we make a slight abuse of notation and we deal with ν
as if it was a law on the configurations. With this convention and using
the Markov property, we rewrite the previous inequalities as

P (R(S), Ta, Vb) ≤
∑

ζ,STC(ζ)

P
(
Vb | σn−1±,ξ

S,a |∆ = ζ, STC(ζ)
)
ν(ζ)P (R(S, a))

≤
∑

ζ,STC(ζ)

P

(
there is a vertical crossing between

times a and b in (σn−1±,ξ
∆,t , t ≥ 0)

∣∣∣ σ
n−1±,ξ
S,a |∆ = ζ

STC(ζ)

)
ν(ζ)

≤
∑

ζ

P

(
there exists a vertical crossing in

STCζ

(
σn−1±,ζ
∆,t , 0 ≤ t ≤ b− a

)
)

ν(ζ) .

We check next that the hypothesis on the initial law at rank n−1 is satisfied
by the law ν of ζ and that the hypothesis on the initial clusters is satisfied
by STC(ζ), the STC present in ζ.

Step 6: Check of the hypothesis on the initial STC at rank n− 1.

Let C belong to STCξ(σ
n±,ξ
S,t , 0 ≤ t ≤ a). Then C is the union of STC be-

longing to STC(σn±,ξ
S,t , 0 ≤ t ≤ a) and to STC(ξ). Since the event R(S, a)

occurs, any C in STC(σn±,ξ
S,t , 0 ≤ t ≤ a) has diameter at most ln lnβ. Thus

any path in C having diameter strictly larger than ln lnβ has to meet a STC

of STC(ξ). Suppose there exists C in STCξ(σ
n±,ξ
S,t , 0 ≤ t ≤ a) such that

diam∞ C ≥
1

4
lnβ .

By lemma 6.5, there would exist C′ ⊂ C and a′ ≤ a such that

C′ ∈ STCξ(σ
n±,ξ
S,t , 0 ≤ t ≤ a′) ,

1

4
lnβ ≤ diam∞ C′ ≤

1

2
lnβ .
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Let Q′ be an n–small box containing C′. The previous discussion implies
that C′ would meet at least 1

4 (ln β)/ ln lnβ elements of STC(ξ), thus we
would have

∑

C∈STC(ξ)
C∩Q′ 6=∅

diam∞ C ≥
lnβ

4 ln lnβ
> (d− n+ 1) ln lnβ ,

and this would contradict the hypothesis on the initial STC present in ξ.
Therefore any STC in STCξ(σ

n±,ξ
S,t , 0 ≤ t ≤ a) has a diameter less than 1

4 lnβ.
Let now Q be an (n− 1)–small parallelepiped included in ∆. Let Q′ be an
n–small parallelepiped containing Q and such that

d(S \Q′, Q) >
1

3
lnβ .

From the previous discussion, we see that a STC of STCξ(σ
n±,ξ
S,t , 0 ≤ t ≤ a)

which intersects the box Q does not meet the inner boundary of Q′. By
lemma 5.1, such a STC is also a STC of the process STCξ

(
σn±,ξ
Q′,t , 0 ≤ t ≤ a

)
.

It follows that
∑

C∈STC(ζ)
C∩Q6=∅

diam∞ C ≤ diam∞ STCξ

(
σn±,ξ
Q′,t , 0 ≤ t ≤ a

)
.

Since the eventR(S, a) occurs, any C in STC(σn±,ξ
S,t , 0 ≤ t ≤ a) has diameter

at most ln lnβ. From the hypothesis on the initial STC at rank n, we have

diam∞ STCξ(σ
n±,ξ
Q′,t , 0 ≤ t ≤ a) ≤

∑

C∈STC(ξ)

C∩Q′ 6=∅

diam∞ C + diam∞ STC

(
σn±,ξ
Q′,t , 0 ≤ t ≤ a

)

≤ (d− n+ 1) ln lnβ + ln lnβ = (d− n+ 2) ln lnβ .

and the hypothesis on the initial STC present in ζ is fulfilled.

Step 7: Check of the hypothesis on the initial law at rank n− 1.

Let (Qi, i ∈ I) be a family of (n − 1)–small parallelepipeds included in ∆
such that

∀i, j ∈ I , i 6= j ⇒ d(Qi, Qj) > 5(d− n+ 2) ln lnβ ,

and let (σi, i ∈ I) be a family of configurations in the parallelepipeds
(Qi, i ∈ I). For i ∈ I, let Ri be the box Qi enlarged by a distance 2 ln lnβ
along the first n axis. The boxes (Ri, i ∈ I) are n–small and satisfy

∀i, j ∈ I , i 6= j ⇒ d(Ri, Rj) > 5(d− n+ 1) ln lnβ .
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On the event R(S, a), we have by lemma 5.1

∀i ∈ I σn±,ξ
S,a |Qi

= σn±,ξ
Ri,a

|Qi
.

Therefore

ν
(
∀i ∈ I σ|Qi

= σi

)
= P

(
∀i ∈ I σn±,ξ

S,a |Qi
= σi

∣∣R(S, a)
)

= P
(
∀i ∈ I σn±,ξ

Ri,a
|Qi

= σi

∣∣R(S, a)
)
.

We condition next on the initial configurations in the boxes Ri, i ∈ I:

P
(
R(S, a), ∀i ∈ I σn±,ξ

Ri,a
|Qi

= σi

)

=
∑

ζi, i∈I

P
(
R(S, a), ∀i ∈ I σn±,ξ

Ri,a
|Qi

= σi, ξ|Ri
= ζi

)

≤
∑

ζi, i∈I

P
(
∀i ∈ I R(Ri, a), σn±,ξ

Ri,a
|Qi

= σi, ξ|Ri
= ζi

)

=
∑

ζi, i∈I

P
(
∀i ∈ I R(Ri, a), σn±,ξ

Ri,a
|Qi

= σi

∣∣ ∀i ∈ I ξ|Ri
= ζi

)

× P
(
∀i ∈ I ξ|Ri

= ζi
)
.

We next use the hypothesis on the law of ξ and the fact that, once the initial
configurations in the boxes Ri are fixed, the dynamics in these boxes with
n± boundary conditions are independent. We obtain:

P
(
R(S, a), ∀i ∈ I σn±,ξ

Ri,a
|Qi

= σi

)

≤
∑

ζi, i∈I

∏

i∈I

P
(
R(Ri, a), σ

n±,ξ
Ri,a

|Qi
= σi

∣∣∣ ξ|Ri
= ζi

)
φn(β) ρ

n±
Ri

(ζi) .

We recall that (σ̃n±,ξ
Ri,t

)t≥0 is the process conditioned to stay in Rn(Ri). On
the event R(Ri, a), the initial configuration ζi belongs to Rn(Ri) and

σn±,ξ
Ri,a

|Qi
= σ̃n±,ξ

Ri,a
|Qi

, ρn±Ri
(ζi) ≤ (mn + 1)|Ri|

mn µ̃n±
Ri

(ζi) .

77



Moreover |Ri| ≤ (n lnβ)d and P (R(S, a)) ≥ 1/2 for β large enough. Thus

ν
(
∀i ∈ I σ|Qi

= σi

)
≤

1

P (R(S, a))
P
(
R(S, a), ∀i ∈ I σn±,ξ

Ri,a
|Qi

= σi

)

≤ 2
∏

i∈I




∑

ζi∈Rn(Ri)

P
(
σ̃n±,ξ
Ri,a

|Qi
= σi

∣∣∣ ξ|Ri
= ζi

)
φn(β) ρ

n±
Ri

(ζi)




≤ 2
∏

i∈I

(
(mn + 1)(n lnβ)dmn φn(β) µ̃

n±
Ri

(
σ|Qi

= σi

))
.

Step 8: Comparison of µ̃n±
R |Q and ρn−1±

Q .

To conclude we need to prove that, if Q,R are two parallelepipeds which
are n–small and such that Q ⊂ R, then for any configuration η in Q,

µ̃n±
R

(
σ|Q = η

)
≤ φn−1(β) ρ

n−1±
Q (η) ,

where φn−1(β) is a function depending only upon β which is exp o(β). This
is the purpose of the next three lemmas.

Lemma 6.8 Let R be an n–small parallelepiped. There exists h0 > 0 such
that, for h ∈]0, h0[, the following result holds. If σ is a configuration in R
satisfying

|σ| ≤ mn , Hn±
R (σ) ≤ Γn−1

then |σ| ≤ mn−1.

Proof. Let σ be a configuration satisfying the hypothesis of the lemma
and let us set m = |σ|. By lemma 4.3, there exists an n dimensional
configuration ρ such that |ρ| = m and HZn(ρ) = Hn±

R (σ). We apply next
the simplified isoperimetric inequality stated in section 4.1:

HZn(ρ) = perimeter(ρ)− h|ρ|

≥ inf
{
perimeter(A) : A is the finite union of m unit cubes

}
− hm

≥ 2nm(n−1)/n − hm .

Therefore the number m of pluses in σ satisfies

m ≤ mn , 2nm(n−1)/n − hm ≤ Γn−1 .

Thus, for h ≤ 1,

m ≤
(
lc(n) + 1

)n
≤
(2(n− 1)

h
+ 1
)n

≤
(2n− 1

h

)n
,
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whence

2nm(n−1)/n − hm = m(n−1)/n
(
2n− hm1/n

)
≥ m(n−1)/n

and we conclude that
m(n−1)/n ≤ Γn−1 .

We have the following expansions as h → 0:

mn ∼

(
2(n− 1)

h

)n

, Γn ∼ 2

(
2(n− 1)

h

)n−1

.

Thus, for h small enough,

m(n−1)/n ≤ Γn−1 ≤ (2n)n−1h−(n−2) ,

whence

m ≤ (2n)nh
−

n(n−2)
n−1 ≤ mn−1 ,

the last inequality being valid for h small enough, since n(n−2) < (n−1)2

and mn−1 is of order h−(n−1) as h goes to 0. �

Lemma 6.9 Let Q ⊂ R be two n–small parallelepipeds. If η is a configu-
ration in R satisfying |η| ≤ mn−1 then

Hn±
R (η) ≥ Hn±

Q (η|Q) .

Proof. We will prove the following intermediate result. If π is a half–
space, then

Hn±
R (η) ≥ Hn±

R∩π(η ∩ π) .

Repeated applications of the above inequality will yield the result stated
in the lemma. We consider first the case where π is orthogonal to one of
the first n axis, say the n-th, and it has for equation

π =
{
x = (x1, . . . , xn, . . . , xd) : xn ≤ h+ 1/2

}

where h ∈ Z. We think of η as the union of d−1 dimensional configurations
which are obtained by intersecting η with the layers

Li =
{
x = (x1, . . . , xd) ∈ Zd : i−

1

2
≤ xn < i+

1

2

}
, i ∈ Z .

Let us define the hyperplanes

Pi =
{
x = (x1, . . . , xd) ∈ Zd : xn = i+

1

2

}
, i ∈ Z .
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We have

Hn±
R (η) =

∑

i

Hn−1±
Zd−1 (η ∩ Li) +

∑

i

area(∂η ∩ Pi) .

Yet, for any i > h, we have
∣∣η ∩ Li

∣∣ ≤ mn−1 whence

Hn−1±
Zd−1 (η ∩ Li) ≥ 0 .

Moreover ∑

i≥h

area(∂η ∩ Pi) ≥ |η ∩ Lh| .

This is because the boundary conditions are minus on the faces orthogonal
to the nth axis, hence there must be at least one unit interface above each
plus site of the layer Lh. We conclude that

Hn±
R (η) ≥

∑

i≤h

Hn−1±
Zd−1 (η ∩ Li) +

∑

i<h

area(∂η ∩ Pi) + |η ∩ Lh|

= Hn±
R∩π(η ∩ π)

as requested. The case where π is orthogonal to one of the last d− n axis
can be handled similarly. This case is even easier because the boundary
conditions become plus along π and contribute to lowering the energy. �

Lemma 6.10 Let Q,R be two parallelepipeds which are n–small and such
that Q ⊂ R. If η ∈ Rn−1(Q) then

µ̃n±
R

(
σ|Q = η

)
≤ (mn + 1)(n lnβ)dmn exp

(
− βHn−1±

Q (η)
)
.

If η 6∈ Rn−1(Q) then

µ̃n±
R

(
σ|Q = η

)
≤ (mn + 1)(n lnβ)dmn exp(−βΓn−1) .

Proof. For any configuration η in Q,

µ̃n±
R

(
σ|Q = η

)
≤

∑

ρ∈Rn(R)
ρ|Q=η

µ̃n±
R (ρ)

≤
∣∣Rn(R)

∣∣ max
{
µ̃n±
R (ρ) : ρ ∈ Rn(R), ρ|Q = η

}

≤ (mn+1)(n lnβ)dmn exp
(
−βmin

{
Hn±

R (ρ) : ρ ∈ Rn(R), ρ|Q = η
})

.

If the minimum in the exponential is larger than or equal to Γn−1, then
we have the desired inequality. Suppose that the minimum is less than
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Γn−1. Let ρ ∈ Rn(R) be such that Hn±
R (ρ) ≤ Γn−1 and ρ|Q = η. By

lemma 6.8, we have then also |ρ| ≤ mn−1. Let C(ρ) be the set of the
connected components of ρ. Since ρ ∈ Rn(R), we have

∀C ∈ C(ρ) Hn±
R (C) ≥ 0

hence
Hn±

R (ρ) ≥
∑

C∈C(ρ)
C∩Q6=∅

Hn±
R (C) .

Let C ∈ C(ρ) be such that C ∩Q 6= ∅. Since |ρ| ≤ mn−1, lemma 6.9 yields
that

Hn±
R (C) ≥ Hn±

Q (C ∩Q)

whence

Hn±
R (ρ) ≥

∑

C∈C(ρ)
C∩Q6=∅

Hn±
Q (C ∩Q)

= Hn±
Q (ρ ∩Q) = Hn±

Q (η) ≥ Hn−1±
Q (η) .

The last inequality is a consequence of the attractivity of the boundary
conditions. It follows thatHn−1±

Q (η) ≤ Γn−1 so that η belongs toRn−1(Q).
In addition, we conclude that

min
{
Hn±

R (ρ) : ρ ∈ Rn(R), ρ|Q = η
}

≥ Hn−1±
Q (η)

which yields the desired inequality. �

Step 9: Reduction to a box Φ of side length of order exp(βLn−1).

Thus the measure ν on the configurations in ∆ satisfies the initial hypoth-
esis at rank n− 1. Let us set τ ′β = b − a. We have then

lim sup
β→∞

1

β
ln τ ′β < κn − Ln = κn−1 .

We are in position to apply the induction hypothesis at rank n − 1. We
define the box

Φ0 =

{
Λ1(2 ln lnβ) × Λd−1(lnβ) if n = 1

Λn−1(2 exp(βLn−1))× Λd−n+1(lnβ) if n ≥ 2

Up to a SES event, there is no space–time cluster of diameter larger than
{
ln lnβ if n = 1

exp(βLn−1) if n ≥ 2
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in
STCζ(σ

n−1±,ζ
∆,t , 0 ≤ t ≤ τ ′β) .

It follows that any STC of the above process is included in a translate of the
box Φ0 and the vertical crossing of ∆ can only occur in such a set. Thus

∑

ζ

P

(
there is a vertical crossing in

STCζ(σ
n−1±,ζ
∆,t , 0 ≤ t ≤ τ ′β)

)
ν(ζ) ≤

∑

Φ

∑

ζ

P

(
there is a vertical crossing in

STCζ(σ
n−1±,ζ
Φ,t , 0 ≤ t ≤ τ ′β)

)
ν(ζ) + SES

where the sum over Φ runs over the translates of Φ0 included in ∆. We
estimate ∑

ζ

P

(
there is a vertical crossing in

STCζ(σ
n−1±,ζ
Φ,t , 0 ≤ t ≤ τ ′β)

)
ν(ζ)

for Φ = x+Φ0 a fixed translate of Φ0.

Step 10: Reduction to boxes Φi ⊂ Φ of vertical side length of

order lnβ/ ln lnβ.

We consider the following subsets of Φ. Let us set I = ln lnβ. If n = 1,
then we define for 1 ≤ i ≤ I

Φi = x+ Λ1(2 ln lnβ)×

[
i lnβ

2 ln lnβ
,
(i+ 1/2) lnβ

2 ln lnβ

]
× Λd−2(lnβ) .

If n = 2, then we define for 1 ≤ i ≤ I

Φi = x+ Λn−1(2 exp(βLn−1))×

[
i lnβ

2 ln lnβ
,
(i + 1/2) lnβ

2 ln lnβ

]
× Λd−n(lnβ) .

These sets are pairwise disjoint and satisfy, for β large enough,

∀i, j ≤ I , i 6= j ⇒ d(Φi,Φj) ≥
lnβ

4 ln lnβ
> 5(d− n+ 2) ln lnβ .

If the set Φ endowed with n− 1± boundary conditions is vertically crossed
before time τ ′β , so are the sets Φi, 1 ≤ i ≤ I. The vertical side of Φi is

lnβ

4 ln lnβ
> (d− n+ 3) ln ln β

hence the vertical crossing of Φi implies that a STC of diameter larger than
(d− n+ 3) ln lnβ has been created in Φi.

Step 11: Conclusion of the induction step.
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By lemma 6.5, there exists an (n − 1)–small box Qi included in Φi and a

STC C′
i in STCζ(σ

n−1±,ζ
Qi,t

, 0 ≤ t ≤ τ ′β) such that

diam∞ C′
i ≥ (d− n+ 3) ln lnβ .

Taking into account the hypothesis on the initial STC present in ζ,

diam∞ C′
i ≤ diam∞ STCζ(σ

n−1±,ζ
Qi,t

, 0 ≤ t ≤ τ ′β)

≤
∑

C∈STC(ζ)
C∩Qi 6=∅

diam∞ C + diam∞ STC(σn−1±,ζ
Qi,t

, 0 ≤ t ≤ τ ′β)

≤ (d− n+ 2) ln lnβ + diam∞ STC(σn−1±,ζ
Qi,t

, 0 ≤ t ≤ τ ′β) .

Therefore
diam∞ STC(σn−1±,ζ

Qi,t
, 0 ≤ t ≤ τ ′β) ≥ ln lnβ

and a large STC is formed in the process (σn−1±,ζ
Φi,t

, 0 ≤ t ≤ τ ′β). We have
thus

P

(
there is a vertical crossing in

STCζ(σ
n−1±,ζ
Φ,t , 0 ≤ t ≤ τ ′β)

)

≤ P

(
each set Φi is vertically crossed

in (σn−1±,ζ
Φ,t , 0 ≤ t ≤ τ ′β)

)

≤ P

(
for each i ∈ I, a large STC is formed

in the process (σn−1±,ζ
Φi,t

, 0 ≤ t ≤ τ ′β)

)

≤ P




for the process (σn−1±,ζ
Φ,t , 0 ≤ t ≤ τ ′β)

ln lnβ large STC are created in (n− 1)–small
parallelepipeds which are pairwise at

distance larger than 5(d− n+ 2) ln lnβ


 .

Since ν satisfies the hypothesis on the initial law at rank n − 1 and the
volume Φ and the time τ ′β satisfy

lim sup
β→∞

1

β
ln |Φ| ≤ (n− 1)Ln−1 , lim sup

β→∞

1

β
ln τ ′β < κn−1

we can apply proposition 6.2 to conclude that

∑

ζ

P

(
there is a vertical crossing in

STCζ(σ
n−1±,ζ
Φ,t , 0 ≤ t ≤ τ ′β)

)
ν(ζ)
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is SES. Coming back along the chain of inequalities, we see that

P (R(S), Ta, Vb)

is also SES, as well as

∑

i,j

∑

a,b

P (R(Si), Ta, Vb)

since the number of terms in the sums is of order exponential in β. Coming
back one more step, we obtain that

P
(
∃ C ∈ STCξ(0, τβ) with diam∞ C ≥ exp(βLn)

)

is also SES, as required.

6.5 Proof of the lower bound in theorem 1.2.

For technical convenience, we consider here boxes of sidelength c exp(βL).
The statement of theorem 1.2 corresponds to the special case where c = 1.
Let L, c > 0 and let Λβ = Λ(c exp(βL)) be a cubic box of side length
c exp(βL). Let κ be such that

κ < max(Γd − dL, κd)

and let τβ = exp(βκ). We have

P
(
σ−,−1

Λβ ,τβ
(0) = 1

)
= P

(
(0, τβ) belongs to a non void STC

of the process (σ−,−1

Λβ ,t
, 0 ≤ t ≤ τβ)

)
.

Let us denote by C∗ the STC of the process (σ−,−1

Λβ ,t
, 0 ≤ t ≤ τβ) containing

the space–time point (0, τβ). In case σ−,−1

Λβ ,τβ
(0) = −1, then C∗ = ∅. We

write then

P
(
σ−,−1

Λβ ,τβ
(0) = 1

)
=

P
(
C∗ 6= ∅, diam∞ C∗ < ln lnβ

)
+ P

(
diam∞ C∗ ≥ ln lnβ

)
.

By lemma 5.1, if diam∞ C∗ < ln lnβ, then C∗ is also a STC of the process
(σ−,−1

Λ(ln β),t, 0 ≤ t ≤ τβ). Thus

P
(
C∗ 6= ∅, diam∞ C∗ < ln lnβ

)
≤ P

(
σ−,−1

Λ(ln β),τβ
(0) = 1

)
.
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We use the processes (σd±,µ̃
Λ(ln β),t, t ≥ 0) and (σ̃d±,µ̃

Λ(ln β),t, t ≥ 0) to estimate the
last quantity:

P
(
σ−,−1

Λ(ln β),τβ
(0) = 1

)
≤ P

(
nucleation occurs before τβ

in the process (σ−,−1

Λ(ln β),t, t ≥ 0)

)

+ P

(
σ−,−1

Λ(ln β),τβ
(0) = 1, nucleation does not occur

before τβ in the process (σ−,−1

Λ(ln β),t, t ≥ 0)

)

≤ P

(
nucleation occurs before τβ

in the process (σd±,µ̃
Λ(ln β),t, t ≥ 0)

)
+ P

(
σ̃d±,µ̃
Λ(ln β),τβ

(0) = 1
)
.

Thanks to lemma 6.1, the first term is exponentially small in β. The second
term is less than µ̃d±

Λ(ln β)(σ(0) = 1) which is also exponentially small in β.
It remains to estimate

P
(
diam∞ C∗ ≥ ln lnβ

)
.

We distinguish two cases.
• L > Ld. In this case, we write

P
(
diam∞ C∗ ≥ ln lnβ

)
=

P
(
ln lnβ ≤ diam∞ C∗ ≤ exp(βLd)

)
+ P

(
diam∞ C∗ > exp(βLd)

)
.

We estimate separately each term. First

P
(
diam∞ C∗ > exp(βLd)

)
≤

P

(
the process (σ−,−1

Λβ ,t
, 0 ≤ t ≤ τβ) creates

a STC of diameter larger than exp(βLd)

)

which is SES by theorem 6.4. Second, we have by lemma 5.1,

P
(
ln lnβ ≤ diam∞ C∗ ≤ exp(βLd)

)
≤

P

(
a large STC is created before time τβ in

the process (σ−,−1

Λ(3 exp(βLd)),t
, t ≥ 0)

)
.

We have reduced the problem to the second case, which we handle next.
• L ≤ Ld. In this case, we write, with the help of lemma 5.1,

P
(
diam∞ C∗ ≥ ln lnβ

)
≤ P

(
a large STC is created before τβ
in the process (σ−,−1

Λβ ,t
, t ≥ 0)

)

≤
∑

Q d–small
Q⊂Λβ

P

(
a large STC is created before τβ
in the process (σ−,−1

Q,t , t ≥ 0)

)
.
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This inequality holds because the first large STC has to be created in a
d–small box, by lemma 6.5. Finally, the term inside the summation is
estimated as follows:

P

(
a large STC is created before τβ
in the process (σ−,−1

Q,t , t ≥ 0)

)
≤

P

(
a large STC is created before nucleation

in the process (σ−,−1

Q,t , t ≥ 0)

)
+

P

(
nucleation occurs before τβ
in the process (σ−,−1

Q,t , t ≥ 0)

)
.

By theorem 5.7 applied with D = Rd(Q), the first term of the righthand
side is SES. By lemma 6.1, the second term is less than

4β(md + 2)2|Q|2md+2τβ exp(−βΓd) + SES ,

whence

P
(
diam∞ C∗ ≥ ln lnβ

)
≤
∣∣Λβ

∣∣4β(d lnβ)d(2md+4)τβ exp(−βΓd) + SES .

It follows that

lim sup
β→∞

1

β
lnP

(
diam∞ C∗ ≥ ln lnβ

)
≤ dL+ κ− Γd < 0 ,

and we are done!!

7 The relaxation regime.

In this section, we prove the upper bound on the relaxation time stated in
theorem 1.2. This part is considerably easier than the lower bound. The
argument relies on the construction of an infection process, as done by
Dehghanpour and Schonmann [DS97a] in dimension two, together with an
induction on the dimension and a simple computation involving the associ-
ated growth model [CM11]. Let us give a quick outline of the structure of
the proof. To each site of the lattice, we associate the box of side length lnβ
centered at x. A site becomes infected once all the spins in the associated
box are equal to +1. The site remains infected as long as the associated box
contains less than 2 ln lnβ minus spins (section 7.1). We give a lower bound
for the probability of a site becoming infected, this corresponds to a nu-
cleation event. We estimate the probability that a neighbor of an infected
site becomes infected, this corresponds to the spreading of the infection
(section 7.2). Finally, we define a simple scenario for the invation of a box
of sidelength exp(βL), starting from a single infected site (section 7.3). We
combine all these estimates and we obtain the required upper bound on
the relaxation time.
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7.1 The infection process.

Let Λ(exp(βL)) be a cubic box of side length exp(βL). Following the
strategy of Dehghanpour and Schonmann [DS97a], we define a renormalized
process (µt)t≥0 on Λ(exp(βL)) as follows. For x ∈ Λ(exp(βL)), we set

Λx = x+ Λd(lnβ)

and we define Tx to be the first time when all the spins of the sites of the
box Λx are equal to +1 in the process (σ−,−1

Λ(exp(βL)),t)t≥0:

Tx = inf
{
t ≥ 0 : ∀y ∈ Λx σ−,−1

Λ(exp(βL)),t(y) = +1
}
.

For Λ a box, we define the set E(Λ) to be the set of the configurations in
Λ having at most ln ln β minus spins:

E(Λ) =
{
η ∈ {−1,+1 }Λ :

∑

x∈Λ

η(x) ≥ |Λ| − 2 ln lnβ
}
.

We set finally

T ′
x = inf

{
t ≥ Tx : σ−,−1

Λ(exp(βL)),t|Λx
6∈ E(Λx)

}
.

The infection process (µt)t≥0 is given by

∀x ∈ Λ(exp(βL)) µt(x) =





0 if t < Tx

1 if Tx ≤ t < T ′
x

0 if t ≥ T ′
x

We first show that, once a site is infected, with very high probability, it
remains infected until time τβ .

Lemma 7.1 For any x in Λ(exp(βL)),

∀C > 0 P
(
T ′
x − Tx ≤ exp(βC)

)
= SES .

Proof. From the Markov property and the monotonicity with respect to
the boundary conditions, we have

P
(
T ′
x − Tx ≤ exp(βC)

)

≤ P
(
for the process (σ−,+1

Λx ,t
)t≥0 τ(E(Λx)) ≤ exp(βC)

)
.

We consider the dynamics in Λx starting from +1 and restricted to the set
E(Λx), with − boundary conditions on Λx. We denote by (σ̂−,+1

Λx,t
)t≥0 the
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corresponding process. The invariant measure of this process is the Gibbs
measure restricted to E(Λx), which we denote by µ̂Λx

:

∀σ ∈ E(Λx) µ̂Λx
(σ) =

µ−
Λx

(σ)

µ−
Λx

(E(Λx))
.

We use the graphical construction described in section 3.2 to couple the
processes

(σ−,+1

Λx,t
)t≥0 , (σ̂−,µ̂

Λx,t
)t≥0 .

We define

∂ inE(Λx) =
{
σ ∈ E(Λx) : ∃ y ∈ Λx σy 6∈ E(Λx)

}
.

Proceeding as in lemma 6.1, we obtain that

P
(
for the process (σ−,+1

Λx,t
)t≥0 τ(E(Λx)) ≤ exp(βC)

)

≤ P
(
∃ t ≤ exp(βC) σ̂−,µ̂

Λx,t
∈ ∂ inE(Λx)

)

≤ 4βλ µ̂−
Λx

(
∂ inE

)
+ exp(−βλ lnβ)

where λ = (lnβ)d exp(βC). Next, if η ∈ ∂ inE(Λx), then

∑

y∈Λx

η(y) ≤ |Λx| − 2 ln lnβ + 1 ,

and
H−

Λx
(η) − H−

Λx
(+1) ≥ h(ln lnβ − 1)

so that
µ̂−
Λx

(η) ≤ exp
(
− βh(ln lnβ − 1)

)
.

Thus

µ̂−
Λx

(
∂ inE

)
≤ |∂ inE|min { µ̂−

Λx
(η) : η ∈ ∂ inE(Λx)

}

≤
(
(lnβ)d

)ln ln β

exp
(
− β(h ln lnβ − 1)

)
.

This last quantity is SES and the lemma is proved. �

7.2 Spreading of the infection.

We show first that any configuration in E(Λx) can reach the configuration
+1 through a downhill path.
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Lemma 7.2 Let η belong to E(Λx). There exists a sequence of r ≤ ln lnβ
distinct sites x1, . . . , xr such that, if we set σ0 = η and

∀i ∈ { 1, . . . , r } σi = σxi

i−1 ,

then we have σr = +1 and for i ∈ { 1, . . . , r }, η(xi) = σi−1(xi) = −1 and
xi has at least d plus neighbors in σi−1.

Proof. We prove the result by induction over the dimension d. Suppose
first that d = 1. Let η be a configuration in E(Λ1(lnβ)). Let x0 ∈ Λ1(lnβ)
such that η(x0) = 1. We define then

x1 = max
{
y < x0 : η(y) = −1

}
,

. . .

xk = max
{
y < xk−1 : η(y) = −1

}
,

x′
1 = min

{
y > x0 : η(y) = −1

}
,

. . .

x′
l = min

{
y > x′

l−1 : η(y) = −1
}
.

The sequence of sites x1, . . . , xk, x
′
1, . . . , x

′
l answers the problem. Suppose

that the result has been proved at rank d− 1. Let η be a configuration in
E(Λd(lnβ)). We consider the hyperplanes

Pi = { x = (x1, . . . , xd) ∈ Zd : xd = i } , i ∈ Z

and we denote by ηi the restriction of η to Pi. The configuration ηi can
naturally be identified with a d− 1 dimensional configuration. Since there
is at most ln ln β minuses in the configuration η, there exists an index i∗

such that ηi∗ = +1. We apply next the induction result at rank d − 1 to
ηi∗+1. This way, we can fill Pi ∩ Λd(lnβ) with a sequence of positive spin
flips which never increase the d− 1 dimensional energy. Each site which is
flipped in ηi∗+1 has at least d− 1 plus neighbours in Pi∗+1, hence at least
d plus neighbours in Λd(lnβ). Thus no spin flip of this sequence increases
the d dimensional energy. We iterate the argument, filling successively the
sets Pi ∩ Λd(lnβ) above and below i∗ until the box Λd(lnβ) is completely
filled. �

This result leads directly to a lower bound on the time needed to reach the
configuration +1 starting from a configuration of E(Λd(ln β)).

Corollary 7.3 For any configuration η in E(Λx), we have

P
(
σ−,η
Λx,ln ln β = +1

)
≥ 7−|Λx| ln ln β .
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Proof. Let η ∈ E(Λx) and let x1, . . . , xr, r ≤ ln lnβ, be a sequence of sites
as given by lemma 7.2. We evaluate the probability that, starting from η,
the successive spin flips at x1, . . . , xr occur. For i ∈ { 1, . . . , r }, let Ei be
the event: during the time interval [i − 1, i], there is a time arrival for the
Poisson process associated to the site xi, and none for the other sites of
the box Λx. Let F be the event that there is no arrival for the Poisson
processes in the box Λx during [r, ln lnβ]. We have then

P (F ) ≥
(
1−

1

e

)|Λx| ln lnβ

,

∀i ∈ { 1, . . . , r } P (Ei) ≥
1

e

(
1−

1

e

)|Λx|

and
P
(
F ∩

⋂

1≤i≤r

Ei

)
= P (F )×

∏

i∈I

P (Ei) ≥ 7−|Λx| ln ln β .

Yet the event E1 ∩· · · ∩Er ∩F implies that, at time r, the process starting
from η has reached the configuration +1 and that it does not move until
time ln lnβ. �

For x ∈ Λ(exp(βL)), we define the enlarged neighborhood Λ′
x of Λx as

Λ′
x =

⋃

y:|y−x|=1

Λy .

Proposition 7.4 Let n ∈ { 1, . . . , d }. Let η be a configuration in Λ′
x such

that there exist d−n neighbors y1, . . . , yd−n of x in d−n distinct directions
for which the restriction η|Λyi

is in E(Λyi
) for i ∈ { 1, . . . , d−n }. We have

the following estimates:
Nucleation: For any κ such that Γn−1 < κ < Γn and ε > 0, we have for
β large enough

P

(
in the process (σ−,η

Λ′
x,t

)t≥0, the site x

becomes infected before time exp(βκ)

)
≥ exp

(
β(κ− Γn − ε)

)
.

Spreading: For any κ such that κ > Γn, we have

P

(
in the process (σ−,η

Λ′
x,t

)t≥0, the site x has

not become infected by time exp(βκ)

)
= SES .

Proof. We consider the process (σ−,η
Λ′

x,t
)t≥0 and we set

τ+1 = τ({+1|Λ′
x
}c) = inf

{
t ≥ 0 : ∀y ∈ Λ′

x σ−,η
Λ′

x,t
(y) = +1

}
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the hitting time of the configuration equal to +1 everywhere in Λ′
x. Let

I = exp(βκ)− exp(βΓn−1)

and let θ be the time of the last visit to −1|Λx
before reaching +1|Λ′

x
:

θ = sup
{
t ≤ τ+1 : ∀y ∈ Λx σ−,η

Λ′
x,t

(y) = −1
}
.

In case the process does not visit −1|Λx
before τ+1, we set θ = 0. Let α

be the configuration in Λ′
x such that

∀y ∈ Λ′
x α(y) =

{
+1 if y ∈

⋃
1≤i≤d−nΛyi

−1 if y ∈ Λx

We write, using the Markov property,

P
(
τ+1 < exp(βκ)

)
≥

∑

0≤i≤I

P
(
σ−,η
Λ′

x,i
= α, i ≤ θ < i+ 1, τ+1 < i+ exp(βΓn−1)

)

≥
( ∑

0≤i≤I

P
(
σ−,η
Λ′

x,i
= α, τ+1 > i

))
P

(
for the process (σ−,α

Λ′
x ,t

)t≥0

0 ≤ θ < 1, τ+1 < exp(βΓn−1)

)
.

By proposition 4.2, the maximal depth in the reference cycle path in the
box Λx with n± boundary conditions is strictly less than Γn−1, so that we
have for ε > 0 and β large enough

P

(
for the process (σ−,α

Λ′
x,t

)t≥0

0 ≤ θ < 1, τ+1 < exp(βΓn−1)

)
≥ exp

(
− β(Γn + ε)

)
.

This estimate is a continuous–time analog of theorem 5.2 and proposi-
tion 10.9 of [CC95]. It relies on a continuous–time formula giving the
expected exit time given the exit point, which is the analog of lemma 10.2
of [CC95]. Let Cα

n be the largest cycle included in {−1,+1 }Λ
′

x containing
α and not +1. For i ≤ I, we have

P
(
σ−,η
Λ′

x,i
= α, τ+1 > i

)
≥ P

(
σ−,η
Λ′

x,i
= α, τ(Cα

n ) > i
)

≥ P
(
for the process (σ−,α

Λ′
x,t

)t≥0, τ(Cα
n ) > I

)
P
(
σ−,α
Λ′

x,i
= α | τ(Cα

n ) > i
)
.

Since κ < Γn, then

lim
β→∞

P
(
for the process (σ−,α

Λ′
x,t

)t≥0, τ(Cα
n ) > I

)
= 1 .

This follows from the continuous–time analog of corollary 10.8 of [CC95].
We compare next the process starting from α with the process starting
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from µ̃Cα
n
, the Gibbs measure restricted to the metastable cycle Cα

n . We
have

µ̃Cα
n
(α) =

∑

η∈Cα
n

µ̃Cα
n
(η)P

(
σ−,η
Λ′

x,i
= α

∣∣ τ(Cα
n ) > i

)

≤ µ̃Cα
n
(α)P

(
σ−,α
Λ′

x,i
= α

∣∣ τ(Cα
n ) > i

)
+

∑

η∈Cα
n ,η 6=α

µ̃Cα
n
(η) .

The configuration α is the bottom of the cycle Cα
n , thus there exists δ > 0

such that

∀η ∈ Cα
n , η 6= α =⇒ µ̃Cα

n
(η) ≤ µ̃Cα

n
(α) exp(−βδ) .

For β large enough, we have also |Cα
n

∣∣ ≤ exp(βδ/2). We conclude that

P
(
σ−,α
Λ′

x,i
= α

∣∣ τ(Cα
n ) > i

)
≥

1

1− exp(−βδ/2)
.

Combining these estimates, we conclude that for β large enough,

P
(
τ+1 < exp(βκ)

)
≥ I exp

(
− β(Γn + ε)

)
.

Sending successively β to ∞ and ε to 0, we obtain the desired lower bound.
The second estimate stated in the proposition is a standard consequence
of the first. �

7.3 Invasion.

We denote by e1, . . . , ed the canonical orthonormal basis of Rd. We will
prove the following result by induction over n.

Proposition 7.5 Let n ∈ { 0, . . . , d } and let L ≥ 0. Let Λn
β be the paral-

lelepiped
Λn
β = Λn(exp(βL))× Λd−n(1) .

For any s ≥ 0 and any κ > max
(
Γn − nL, κn

)
, we have

P



all the sites of Λn

β are

infected at time
s+ exp(βκ)

∣∣∣∣
all the sites of

en+1 + Λn
β , . . . , ed + Λn

β

are infected at time s


 = 1− SES .

Proof. Thanks to the Markovian character of the process, we need only
to consider the case where s = 0. Let us consider first the case n = 0. We
have then κ0 = Γ0 = 0. The box Λ0

β is reduced to the singleton { 0 }. The
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result is an immediate consequence of proposition 7.4. We suppose now
that n ≥ 1 and that the result has been proved at rank n− 1. Let L > 0,
let Λn

β be a parallelepiped as in the statement of the proposition, and let
κ > max(Γn − nL, κn). We define the nucleation time τnucleation in Λn

β as

τnucleation = inf
{
t ≥ 0 : ∃x ∈ Λn

β µt(x) = 1
}
.

Let c > max(Γn − nL,Γn−1). Let (xi)i∈I be a family of sites of Λn
β which

are pairwise at distance larger than 4 lnβ and such that

|I| ≥
exp(βLn)

(6 lnβ)n
.

We can for instance consider the sites of the sublattice (5 lnβ)Zn×Λd−n(1)
which are included in Λn

β. For i ∈ I, let ηi be the initial configuration
restricted to the box Λ′

xi
. We write

P
(
τnucleation > exp(βc)

)
≤ P

(
no site x in Λn

β has become

infected by time exp(βc)

)

≤ P



for any i in I, the site xi has not
become infected by time exp(βc)

in the process (σ−,ηi

Λ′
xi

,t)t≥0




≤
∏

i∈I

P

(
the site xi has not become infected by

time exp(βc) in the process (σ−,ηi

Λ′
xi

,t)t≥0

)
.

Since all the sites of en+1 + Λn
β, . . . , ed + Λn

β are initially infected, by propo-
sition 7.4 we have for any ε > 0

P
(
τnucleation > exp(βc)

)
≤
(
1− exp

(
β(c− Γn − ε)

)) exp(βLn)
(6 ln β)n

.

Therefore, up to a SES event, the first infected site in the box Λn
β appears

before time exp(βc). For i ≥ 1, we define the first time τ i when there is
a n dimensional parallelepiped of infected sites of diameter larger than or
equal to i in Λn

β , i.e.,

τ i = inf



 t ≥ 0 :

there is a n dimensional parallelepiped
of infected sites included in Λn

β whose

d∞ diameter is larger than or equal to i





The face of an n dimensional parallelepiped is an n − 1 dimensional par-
allelepiped. The sites of a face of an infected parallelepiped in Λn

β have
already d− n+ 1 infected neighbours. From the induction hypothesis, up
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to a SES event, an n − 1 dimensional box of sidelength exp(βK) whose
sites have already d− n+ 1 infected neighbours is fully infected at a time

exp
(
β
(
max(Γn−1 − (n− 1)K,κn−1) + ε

))
.

This implies that, up to a SES event, the box Λn
β is fully occupied at time

τexp(βL) ≤ τnucleation +
∑

1≤i<exp(βL)

(τ i+1 − τ i)

≤ exp(βc) +
∑

1≤i<exp(βL)

2n exp
(
β
(
max(Γn−1 −

n− 1

β
ln i, κn−1) + ε

))

We consider two cases.
• First case: L ≤ Ln−1. Notice that L0 = 0, hence this case can happen
only whenever n ≥ 2. In this case, we have

∀i < exp(βL) κn−1 ≤ Γn−1 −
n− 1

β
ln i

and

∑

1≤i<exp(βL)

exp
(
βmax(Γn−1 −

n− 1

β
ln i, κn−1)

)

≤ exp(βΓn−1)
∑

1≤i<exp(βL)

1

in−1

≤ exp(βΓn−1)
∑

1≤i<exp(βL)

1

i
≤ βL exp(βΓn−1) .

• Second case: L > Ln−1. We have then

∑

exp(βLn−1)≤i<exp(βL)

exp
(
βmax(Γn−1 −

n− 1

β
ln i, κn−1)

)

≤
(
exp(βL)− exp(βLn−1)

)
exp(βκn−1)

≤ exp
(
β(L + κn−1)

)
.

We conclude that, in both cases, for any ε > 0, up to a SES event, the box
Λn
β is fully occupied at time

2nβL exp(βε)
(
exp

(
β(Γn − nL)

)
+ exp(βΓn−1) + exp

(
β(L + κn−1)

))
.
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Therefore, for any κ such that

κ > max
(
Γn − nL,Γn−1, L+ κn−1

)

the probability that the box Λn
β is not fully occupied at time exp(βκ) is

SES. If L ≤ Ln then

max
(
Γn − nL,Γn−1, L+ κn−1

)
= Γn − nL

and we have the desired estimate. Suppose next that L > Ln. By the
previous result applied with L = Ln, we know that, for any κ > κn, up
to a SES event, a box of sidelength exp(βLn) is fully occupied at time
exp(βκ). We cover Λn

β by boxes of sidelength exp(βLn). Such a cover
contains at most exp(βnL) boxes, thus

P
(
Λn
β is not fully occupied at time τβ

)

≤ P

(
there exists a box included in Λn

β of sidelength

exp(βLn) which is not fully occupied at time τβ

)

≤ exp(βnL)P

(
the box Λn(exp(βLn)) is not
fully occupied at time τβ

)
.

The last probability being SES, we are done. �

Proposition 7.5 with n = d readily yields the upper bound of the relaxation
time stated in theorem 1.2.
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