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ABSTRACT. We prove that the threshold regime for bootstrap percolation in a
d-dimensional box of diameter L with parameters p and £, where 3 < £ < d, is
L ~ expU=D(Cp=1/(@=t+1)) where exp®~1) is the exponential iterated ¢ — 1
times and C' is bounded from above and from below by two positive constants
depending on d, ¢ only.

1. Introduction.

We consider the bootstrap percolation model, with initial occupation density p and
parameter /, in a finite set I' C Z?. More precisely, each site z of ' C Z% is initially
independently occupied with probability p and empty with probability 1 — p. After-
wards, we increase deterministically the set of occupied sites in I' with the help of the
following rule, until exhaustion: any site with at least ¢ occupied nearest neighbors
in I' is occupied. For a discussion on the physical relevance of this model, we refer
to [AL]; for a nice review paper on bootstrap percolation, see [Ad]; other related
references include the papers [AA], [ASA], [BDSQKGC], [CLR], [EAD2], [S1],
[S2], [V], [W]. The bootstrap percolation model is one of the simplest cellular au-
tomaton. The monotonicity of the mechanism allows to perform some mathematical
analysis, yet it already raises a lot of challenging problems. Furthermore the finite
volume version is a toy model to understand basic issues in metastability theory,
namely the problem of nucleation and growth of supercritical droplets [DS], [MO].
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We say that a set I' is internally spanned if all its sites are occupied in the final
configuration. The basic question we are interested in is whether or not AY(L) is
internally spanned, where A?(L) is the d-dimensional cubic box of diameter L.

Let us denote the probability of this event by

R(L,p,d,{) =P (the box A4(L) is internally spanned by the bootstrap )

percolation process in A%(L) with parameters p and ¢
We focus on the behavior of R(L,p,d, () when L goes to infinity and p goes to zero.
In the case ¢ > d we have that

(L7p)h_r>?oo70) R(L,p,d, ) =0.

Indeed, the presence of a small empty cubic region in the initial configuration pre-
cludes the complete filling of AY(L). More interesting is the case £ < d. Ob-
viously, for L fixed and p very small the initial configuration will be completely
empty with high probability, hence lim,o R(L,p,d,¢) = 0. On the other hand,
from the much less obvious results of van Enter [VE] and Schonmann [S3], we
know that for p fixed and ¢ < d, limyo R(L,p,d,l) = 1. Therefore, we see that
limyz, o0 limy—o R(L, p,d, () = 0, while lim,_o im0 R(L,p,d, () = 1.

These different limiting behaviors indicate the occurrence of an interesting phenom-
enon: if we send simultaneously . — oo and p — 0, the limit of R(L,p,d, () will
depend on the relative speeds of these convergences, i.e. if p goes extremely quickly
(respectively slowly) to 0 compared to the way L goes to oo, then R(L,p,d, () will
converge to 0 (respectively 1). A natural problem is to describe precisely each regime
and the threshold between them. In [AL], Aizenman and Lebowitz handled the case
{=2,d>2. The threshold regime is

L ~ exp <const p_lel> .

In [CeCi], Cerf and Cirillo analyzed the case d = ¢ = 3, for which the threshold

regime turned out to be
L ~ expexp (Const p_1> .

We deal here with the general case 2 < ¢ < d. While the proof of the upper bound
on L derives directly from an idea of [ADE] and the results of [S3], the proof of the
lower bound is obtained by using induction on the parameters (¢, d): by using the
technique introduced in [CeCi|, we reduce the estimate of the spanning probability
for the model (¢, d) to the spanning probability for the model (¢ —1,d—1). The base
of the induction is the Aizenman-Lebowitz case d > ¢ = 2.

A very challenging and interesting open problem is to decide whether a sharp constant
can be put in the exponentials to separate the two regimes. Similar interesting
questions can be raised in anisotropic models, as considered for instance in [M].
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2. Basic notation.

For t € R, n € N, we denote by exp®*(t) the exponential iterated n times of t:
we set exp®(1) := ¢ and exp®"t(1) := exp(exp®(t)). By A’(l) we denote the
d-dimensional hypercube with diameter [ centered at 0.

Let us give some definitions related to site percolation (see [G]). On a finite set
[' C Z let us consider a random configuration w € {0,1}' obtained by occupying
(namely, by setting w(z) = 1) the sites with the product probability measure P,
with density p. We denote by P (€) the probability of the event £ (€ is a set of
configurations in {0, 1}1).

We say that a configuration w is larger than a configuration w’ if the set of the
occupied sites in the former contains the set of the occupied sites in the latter.

An event &£ is called increasing if for any configuration w € &, all configurations
w' > w are in &.

Our main object of investigation is the following bootstrap process, defined as a
function of a site percolation configuration. On a finite set I' C Z%, let us consider a
random initial configuration obtained by occupying the sites with a product measure
with probability p. We update this initial configuration by using iteratively the
following deterministic rule:

1. we occupy every empty site with at least ¢ occupied nearest neighbors.
2. we leave all other sites unchanged.

Since I is finite, and the updating procedure cannot empty occupied sites, this pro-
cedure stops after a finite number of steps. We denote by Xlil’é the final configuration
of the d-dimensional bootstrap process in the set I". Thus Xlil’é is a random map
from I' to {0,1} and for x € T, Xlil’é(:zj) = 1 if = is occupied and 0 otherwise.

We will use the following basic facts:

a) The final configuration of the bootstrap process is a monotonic increasing
function of the initial configuration.

b) The updating procedure gives the same final configuration if applied to any
configuration larger than the initial configuration and lower than the final one.

In particular, b) implies that the updating order does not affect the final configura-
tion. We say that a finite set I' C Z? is internally spanned if Xlil’é(:zj) = 1 for any
x € I'. We focus our attention on the behavior of the following probability:

R(L,p,d, () :=P] <vx e AYL) Xj;f(L)(x) — 1>

We call I'-clusters the maximal connected sets of occupied sites in Xlil’é. Notice that
all clusters are internally spanned. We say that = is connected to y in I' if there exists

a ['-cluster C such that {z,y} C C C I'; we denote this event by {:1; ﬁ; y in F}.
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We will use the symbols ¢, C' and v for positive constants (possibly depending on
the parameters of the bootstrap percolation model).

3. Main result.

The following theorem describes the threshold regime of finite volume bootstrap
percolation for all values 3 < /7 < d.

Theorem 3.1. For 2 < ( <d, there exist 2 constants 0 < a_(d,l) < ay(d,l) < oo,
independent of p, such that if

L:I:(dvgvp) = eXpO(Z_l) <Oé:|: P d_i+1> ) (31)
then
&) R(Lpod,0) 5 1 if (p, 1) = (0,00) with L > Lo(d,,p)
b) R(L,p,d, () =0 if(p,L) = (0,00) with L < L_(d,{,p)
(We recall that R(L,p,d, () = P;(‘v’x € AYL) Xi’f(L)(:Jc) = 1))

Remark: The case 2 = ¢ < d is handled in [AL]. The result in the case { = d was
a conjecture proposed in [ADE]. The specific case { = d = 3 was solved in [CeCi].

It looks like the phenomenon hidden behind this behavior is linked with the notion
of 7critical droplet”. Indeed, the spanning probability has the same asymptotic
behavior as the probability of finding in the volume A?(L) a suitably large internally-
spanned cluster.

To prove this result, we use an inductive procedure. This is very natural for the
estimate of the lower bound a). Indeed, the problem of the filling of a face of
an hypercube once the hypercube is full is a bootstrap percolation problem with
parameters (d — 1,/ — 1). By far less immediate is to see how to use induction in
the proof of case b). We use there a natural generalization of the construction of
Cerf and Cirillo, relating in this way a bootstrap percolation model with parameters
(d,?,p) with a bootstrap percolation model with parameters (d — 1,/ —1,2p — p?).

4. Proof of case a)

This is the easiest part of the proof. The argument is nothing new. In fact the idea
of the argument is already present in [ADE]. To estimate from below the spanning
probability, we use iteratively Straley’s argument and the renormalization procedure
introduced in [AL].

First, we use the renormalization scheme introduced in [AL] and [S3] to prove that
if R(L*,p,d,0) > 1— (e?(2d —1))~" for some L*, then R(L,p,d,{) > 1 — Ce "/
for all L > L*. Assume (for simplicity’s sake) that L is an integer multiple of L*.
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We tile AY(L) with the translates of AY(L*). As initial condition for the bootstrap
percolation process on the renormalized lattice we use the indicator functions of the
events

{L*z 4+ AY(L*) is internally spanned}, =z € Z%.

It is clear that if the bootstrap process defined on the renormalized lattice spans the
volume, so does the process on the original lattice. Hence,

L
R(L,p,d,l) > R (F’R(L*W’ d,ﬁ),d,ﬁ) (4.1)

If a box is not spanned then in the initial condition there must exist a cluster of
empty sites that crosses the box. A standard site-percolation estimate, based on a
Peierls type argument, gives

2d  ((2d - 1)g)"""
20 —1 1—(2d—1)q

L= R(N,q,d, () < N7V " g'2d(2d — 1) = N*7!

=N

By (4.1) and by (4.2) with N = L/L* and ¢ =1 — R(L*,p,d, () < (e?(2d — 1))_1, we
get

(4.2)

R(L,p,d,0)>1—Ce /T, (4.3)
Next, we prove by induction on (d, f) the following lemma.

Lemma 4.1. There exists §1(d, () > 0 such that if we set

_ 1
g (d, £, p) = exp?=2) (B (d, Op” T )
then

L
VL >my(d,l,p)  R(L,p,d,l) >1—exp <—m> (4.4)

PROOF. For £ =1 and a4(d,1) =1, (4.4) is immediate, since a single occupied
site in the initial condition is sufficient to span the entire volume. In the case ¢ = 2,
(4.4) has been proven in [AL] (see (1.5) therein). We end our induction proof by
showing that if (4.4) holds for (d — 1,/ — 1) then R(L*,p,d,{) > (e(2d —1))~* for
Lx Z L+(d,€,p).

Let my = my(d,l,p) (we drop the dependency of my on d,¢,p to lighten the
notation). In the case 2 < ¢ < d, for 84(d,¢) > ay(d—1,{—1) and sufficiently small
p, we have that

my > Li(d—1,0—1,p). (4.5)

To estimate from below the probability that A%(L) is spanned, we consider the event
1) at time 0 there exists in AY(L) a box z my + A%(my) completely occupied and
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2) for every my < k < L the (d — 1)-dimensional bootstrap percolation models with
parameters (p,{ — 1) restricted to the faces of the boxes x my + A%(k) are internally
spanned.

The idea is that once a box x my + A%(k) is occupied, the sites on a face of the box
have an occupied neighbor in the box and therefore need only / — 1 neighbors in the
face to become occupied. This procedure can be iterated to fill the whole A%(L).!
Thus,

L \? L
R(L,p,d,l) > (1— (1—pmi><’"+> ) I RGkpd-10-1p">

k=m4+1

md d L
(1—€_p +<#> )exp — Z 2d e_<%> >

k=m4+1

(1 o <ﬁ>d> exp (—2dy /iy e=VT) (4.6)

The factor \/m7 in the above formula (4.6) comes from (4.5). The last term in (4.6)
clearly tends to one for m, — oo. By using (3.1) we see that also the first term
goes to 1 as p — 0 for any L > L, (d,/, p): Indeed, for sufficiently small p,

md

m+p_% < p‘cmi = exp <clnp‘1 <exp <dexp°(é_3) <ﬁ+(d, ﬁ)p_ﬁ>>>> (4.7)

For sufficiently large oy (d,?), r.h.s. of (4.7) tends to infinity slower than L, and
for L > L, r.h.s. of (4.6) can be bounded by 1 — (e?(2d — 1))~'. We can then use
the bound in (4.3) and get (4.4). O

The bound given in (4.4) readily implies the part a) of the main Theorem.

5. Proof of case b)

In order to prove part b) of the Theorem, we give a bound on the probability that
two points are in the same cluster for the bootstrap percolation process in a box
with diameter of the order of the critical droplet. Since we choose the box with
a sufficiently small diameter, the final configuration is "sub-critical” and looks like
subcritical site percolation. This is the content of our key estimate. Let us set

m(d,,p) = exp ) (5 (d, 0)p T ) (5.1)
where 3_(d, /) is a constant independent from p.

'We warn the reader that this argument is sligthly oversimplified since we are not considering
the edges. We refer to [S3] for the full construction.
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Lemma 5.1. Let d > 1 be fized.

Fort=1:
¥YmeN P! <:1; &%y in Ad(m)> —1-(1—p™ (5.2)
For d >0 =2: there exist f_(d,2) >0, C >0 and p(d,2) > 0 such that:
Vp < p(d,2) Ym<m_(d,2,p) VYr,y€ Alm)
de _ z—y||co
P! (2 &5y in A(m) ) < (Clla =yl p) (5.3)
For 3 <0 < d: there exist f_(d,l) >0, v(d,l) > 0, p(d,l) > 0 such that:
Vp < p(d,l) VYm <m_(d,l,p) Y,y Ai(m)
IF’Z <:1; &5 y in Ad(m)> < pllz=vlle (5.4)

Next, for a box of diameter [ to be internally spanned there must exist internally
spanned regions of all intermediate diameters [AL] (more precisely, for any k < [/2
there must exist an internally spanned region of diameter between k and 2k + 1).
We choose this intermediate diameter of the order of m_(d,?,p) to get the desired
bound.

Lemma 5.2. [AL] If T C Z? is internally spanned then for all k < (diamD’ — 1)/2
there exists I'y C I internally spanned with k < diaml'y < 2k + 1.

Sketch of proof. The proof can be found in [AL]. The idea is to realize the bootstrap
percolation by an iterative algorithm: at each time step, we select one empty site
having at least [ occupied nearest neighbours and we occupy it. The algorithm stops
when there is no more any such site. If the maximal diameter of the clusters present
in the configuration is k before one step of the algorithm, then right after occupying
one site, the new maximal diameter is between k and 2k+1. Looking at the evolution
of the maximal diameter of the occupied clusters, we derive the conclusion.

Remark: The Lemma does not tell anything on the shape of the region which is
internally spanned, in general it is not a parallelepiped.

We now finish the proof of the case b) of the Theorem with the help of the two
previous lemmata. Suppose I' is a region which is internally spanned. Let A? be a
box such that I' C A%, diam I' = diam A? and let =,y € ' be such that ||z — y||. =

diam I'. Then the event {z ﬂ; y in A%} occurs. Therefore, by lemma 5.2 we have,
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for any L,k such that 2« +1 < L
Idm k<m<26+4+1 FzeAYL) z+A(m)CA(L) )

R(L,p,d. () <P xae
dae,y € z+Am) ||t —yll=m, = yinz+ Adm)

d 2d d X4 d
<(k+ 1)L 2k +1) max max max P} <:1; F—yinz+ A (m)>
R<m<2R4+1 2eANL)  zyez+Ad(m)

z2+AY(m)CAYL) |lo=yllco=m

We distinguish two cases in order to bound R(L,p,d,0). If L < m_(d,(,p), where
m_(d,l,p) is defined in (5.1), then we choose £ = L/3 and we apply Lemma 5.1 in
the case { > 2 to get
R(L,p,d, () < L5,
If L>m_(d,l,p), we choose k = m_(d,{,p)/3 and we get
R(L,p,d, () < [PHH1prm=(dLp)/3,

From these inequalities, we see that there exists a_(d,f) > 0 such that if
L S eXpO(Z_l) <Oé_ p_ d—iz+1> ,

then R(L,p,d,?) goes to 0 in the limit where (L, p) — (o0, 0).

Proof of Lemma 5.1. The result for £ = 1 is immediate, since a single occupied site
in the initial configuration is sufficient to span the entire volume.

For the case ¢ = 2, we use a procedure introduced by Aizenman and Lebowitz in
[AL]. We consider an integer

m < m_(d,2,p) = B_(d,2) p~ 7T,

and we set g := 2p — p.

Let € Z% be a d-dimensional vector; we denote by z its first d — 1 coordinates and
by T the last one. We write x = (z, 7).

By symmetry, we can suppose that (z,7) and (y,¥y) in Z? are such that y — 7 =
11(2,%) — (4, 7)o, namely that the distance along the d-th direction is larger than
or equal to the distance in the other directions. We consider the slices

Ti:={(z,7) € AY(m) ; T €{2i,2i +1}}, i € Z.

Suppose {x &4 y in A%(m)} occurs. Let C be the A?(m)-cluster that contains z
and y and let A and B the first and the last indices of the slices intersecting C. It
is immediate to see that in all the slices T; for i € [A, B] there exists at least one
occupied site (2/,7,) such that ||z — 2/||cc < |2 — yl|ee; the probability of this to
happen in one fixed slice is less than

1 — (1 _ q)(?||9L’—Z/||<>o‘|'1)d_1
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(notice that this estimate is similar to the [ = 1 estimate (5.2)). The slices being
independent, we get

: -1\ llz=ylleo /2
IF’Z <:1; &5 y in Ad(m)> <d <1 —-(1- q)(znw_y”(’o-l'l)d > ! i (5.5)

where the factor d comes from the possible directions where ||z — y||o is realized.
By using the fact that 1 — e’ < —¢ we bound the r.h.s. of (5.5) by

lle=ylloo /2

A (=@l = ylle + ) (1 - 0))

For ¢ small, In(1 — ¢) > —2¢ and hence we get bound (5.3).

For ¢ > 3, we use an induction on the dimension d and on the parameter /.
Following [CeCi], we define an auxiliary map Z%(z) on Z? in the following way.
In every slice T}, we increase the initial configuration by occupying a site (x,2i)
(resp (z,2:0 + 1)) if the corresponding site (x,2i + 1) (resp. (z,2i)) belonging to
the other hyper-plane in the same slice is occupied. We build a configuration
Y?((z,7)) by updating on each slice this initial configuration according to the boot-
strap percolation process in T; with the neighboring slices occupied; more precisely,
we occupy A4(m) \ T;, we run Xi’f(m) under this initial condition and we define

Yi(z,2i)) = Y¥z,2 + 1)) as the restriction to T; of this bootstrap percolation
process.

The monotonicity properties of bootstrap percolation with respect to the initial con-
figuration imply that Y((z,7)) > Xi’f(m)((g, 7)). The interesting point is that the

set {z € A" Y(m) ; Y((z,2i)) = 1} is equal to the (d — 1)-dimensional bootstrap
of the (d — 1)-dimensional configuration where the site z € A?"!(m) is occupied
if either (x,21) or (z,2: + 1) was initially occupied. Thus, Y¢((z,7)) is a stack of
(d — 1)-dimensional bootstraps with parameters / — 1 and ¢ = 2p — p*. We set

n = expelt=?) <¢(d7 g)p——d_hl) 7

finally define our process as Z%((z,7)) := Y¢((z,7)) if the slice containing (z,7) does
not contain any cluster of diameter larger than n; otherwise, we set Z%((z,7)) := 1
for all the sites (z,7) in the slice. For I' C A(m), z, y € A?=Y(m) and 4,5 two

for a suitable constant ¢(d, ) which will be chosen later on (see before (5.10)). We
)

indices, we denote by {(g, 2@')@(% 27) in F} the event
iC I, Cisconnected, {(z,2i), (g, 25)yccC, Vv (g’,y’) cC Zd((g’,y’)) = 1.

In case 7 = 7 and I' is included in the slice T;, the event {(g, 2@')@(% 27) in F}
will be written simply {gég in F}.
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By construction, we get for all i € [A, B]

[F’d({xHy mT}ﬂ{‘v’yET 7%y —1}> <:L'Mym/\d_l(m)>.

Let {I;}r<v be the ordered set of indices, between A and B of the slices that are
completely full in Z¢ i.e. {k;Zd((g,Zlk)) =1Vae Ad_l(m)}. We set [y := A,
[U =B

d,e
We decompose our event {:1; & y in Ad(m)} according to the possible values of A,
B, U and {[j}r<r. We have

Pd<xﬂ>ym ><dz Z Z Z Pd<{xHy1nAd( )}ﬂ

a=1 b=y—T+a u=0 11< <1y

{A:a}m{B:b}m{U:u}m{h:z’l,...,Iu:z’u}> (5.6)

where the factor d comes from the possible choices of the direction where ||z — y||o
is realized. We get

Pﬁ({xﬂyimd(m)}m{A:a}m{B:b}m{U:u}m{h:@'1,...,Ju:@'u}>

[ u+1
< [IPi(va e A (m) 242, 21,) = HIF’ Eliyoy + 1,1, — 1)), (5.7)
v=1

where, for ¢ < j, £(1,j) is the event: 4
{[z N0{litico =0, Ja(0) € Ty, y(y) € 1) {x(@)éy(]) in U Th}}.
h=1

In words: £(7,7) is the event that in the configuration associated to the process 7¢,
none of the slices between T; and T is fully occupied and there exists an occupied
path between the slices T; and 7). whose starting point belongs to 7; and whose final
point belongs to Tj.

Let us introduce some further notation. An occupied path realizing the event £(7, 7)
has to visit all the slices T}, 1 < h < 5. We will keep track of the points where the
path travels from one slice to another. Suppose &(, j) occurs and let {(y,,2ix)}r<s
be a path realizing £(i, 7) and having minimal length. We set jo = i and successively

Ri=max{k:ipg=11=-=4r}, Ry=max{k>Ry:ip, =--=ip},...

until we hit the slice T}, say at index R, where 1p. = j. Necessarily r > 7 — ¢ and
Yp, = Yp 1 for k£ < r, because when the path goes from one slice to another the
—ig —ig

first d — 1 coordinates do not change. We then define

Jo =1,y =Y, JIZZR17£1:QR17"'7.]7,:ZRT7£T:£RT'
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figure 1: the sequence (z,, 255 )n<r
notice that z, and xg are not connected inside the slice T; 4

The sequence (z;,, 274 )r<, is such that

® jO = iv jr = jv

o Vh <r |lzpy —aylle <,

o Vh<r ghéghﬂ in T},

e Vi, h, Jx=gn, |h—Fkl>1 = {gkégh in Tj,} does not occur.

The second property comes from the fact that none of the slices between T; and T}
are full, hence the occupied clusters in each of these slices have diameter less than n.
The last property comes from the fact that we picked up a path of minimal length
to build the sequence (z,,2J5)r<,. Thus the event £(z,7) implies the existence of
a sequence (z,,275)r<, having the above properties. We will estimate [P;l (E(1,7))
with the help of the d-dimensional bootstrap percolation process with parameters
d—1,7—1 and 2p — p* by summing over all the possible choices for the sequence
(z1,,2Jn)h<r and by estimating the probability that the events corresponding to the
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sequence occur (third and fourth points above):

P! (E(i,))) <

.
r m™d Z . Z . c
E : E : 2 Pp(ﬂ {{ihH%H m Tjh} N ﬂ {%H%/ m Tjh} })
r>j—1i  Zg,...,T, S.t. h=1 h'ih<h! <r

||lh+1—lh||<x>§n st Jp=T
where the factor 2" comes from the number of choices for the sequence of r slices.

Now,

r

Pz( ﬂ { {ihéihﬁ—l n T]h} N ﬂ {&hégh/ n T]‘h}c }) S

h=1 hle(h,r]
s.t. In=Jdpt

PZ <{§1£>§2 in le} o {gzég in Tj2} 0---0 {gr_lég in T, +1}> ,
(5.8)

where the symbol o denotes the disjoint occurrence of the events (see [G] §2.3 p.
37 for the definition of disjoint events in percolation). Roughly speaking, given two
increasing events £, &', we define their disjoint occurrence € o £ as the set of all
configurations w which contain two disjoint sets of occupied sites such that the first
set implies £ and the second set implies £’.

Notice that the events we are considering are increasing events. We can use the van
den Berg-Kesten inequality to bound r.h.s. of (5.8) by

r—1

d—1 X! d—1
HIF’q <§h+1 >z, in A (n)> .
h=0

Reporting in the previous inequality, we get

[F’d Z Z 2" ﬁ[?’;l_l <§h+1 pulans x, in Ad_l(n)> . (5.9)
h=1

r>j—t Tgyer sy S0
||£h+1—£h||<x>§n

Let py := ||z, — 2),_1||- be the distance between consecutive points in the path.

Once chosen the point x,_, on the slice 7, . there are

AT 2pn + D \NAT (200 — 1) = (200 + 1) — (20, — 1) < Cpi7?

ways to choose the point z; at a distance py from z;_;.

In the case ¢ = 3, we use (5.3) and bound r.h.s. of (5.9) by

P (G 7) <m Y (Z 2092 ( >§)

r>j—t
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where the factor m?=! comes frome the number of choices for zy. For ¢ = 3 we have

1
= p(d,0)p” 7-2. We estimate the inner sum of the above term:

ZQCﬂd 2( %’ ZQCﬂd 2 ( d—2q>§ _I_ZQde—z (Clpd—2q>§
p=9

P

S 208d_2 <018d 2 ) ‘|‘20nd 19121;2; <Clpd 2 )2

L
Let f(p) := (C1p?~2q)2. For ¢(d, () small enough f(p) is decreasing on [9,n], whence

ZQClodz )

d—1
2082 (C18° ) 4+ 20 <gp(d,z)p‘ﬁ> (C19%-2¢)

£
2

<

for some C'y depending on ¢(d, (). For p small enough so that Cy,/q < %,

P (E(, ) < 2 (Con/2p) T <), (5.10)

In the case ¢ > 3. we can use the inductive hypothesis. For sufficiently small p, r.h.s
of (5.9) can be bounded by

d 1 Z Z 9" H de zpw)h _md 1 Z (zn: C/,Od_zpw)> (511)
r>i—1 P14, <N r>j—t p=1

Since, for sufficiently small p, p?=2p?” is decreasing with p we can get the bound:

n

Z C/pd—zpw < C/pw (1 _I_/ (/0 T 1)d—2pwdp> < pm, (5‘12)
0

p=1

where 77 is a positive constant smaller than v. By putting (5.12) into (5.11), we get

Py (E(i, ) <m®™ Y pn7 <mdtpn U,

r>j—t

formally, the same bound given by (5.10) for the case ¢ = 3.
For ¢ > 3, coming back to (5.7), we get

[P;j({xﬁymAd(m)}m{U:k}m{h:@'1,... ,Jk:@'k}> <

<md—1p’)/2n>k <mk(d—1)pwl(b—a)> _ <m2(d—1)p72n>kpm(b—a)
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where, in the last inequality we used the definitions of n and m and where 73 is a
positive constant. Finally, by plugging this inequality in (5.6), we get for p small

]P)z <$ ﬂ y ln Ad(m)> S dm2 Z mk <m2(d_1)p’y2n>kp’71(b—a) < p’y”l’_yHoo
k=0

which is the desired estimate.
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