
A lower bound on the two–arms exponent for

critical percolation on the lattice

Raphaël Cerf
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Abstract

We consider the standard site percolation model on the d dimensional
lattice. A direct consequence of the proof of the uniqueness of the infi-
nite cluster of Aizenman, Kesten and Newman [1] is that the two–arms
exponent is larger than or equal to 1/2. We improve slightly this lower
bound in any dimension d ≥ 2. Next, starting only with the hypothesis
that θ(p) > 0, without using the slab technology, we derive a quantitative
estimate establishing long–range order in a finite box.

1 Introduction

We consider the site percolation model on Z
d. Each site is declared open with

probability p and closed with probability 1 − p, and the sites are independent.
Little is rigorously known on the percolation model at the critical point pc in
three dimensions. There exists one remarkable result, a rigorous lower bound
on the two–arms exponent, which says that, for any d ≥ 2,

∃κ > 0 ∀n ≥ 1 Ppc

(

two–arms(0, n)
)

≤ κ lnn√
n

.

The event ”two–arms(0, n)” is the event that two neighbours of 0 are connected
to the boundary of the box Λ(n) = [−n, n]d by two disjoint open clusters.
Although some percolationists are aware of this estimate (for instance, it is
explicitly used by Zhang in [11]), it does not seem to be fully written in the
literature. This estimate can be obtained as a byproduct of the proof of the
uniqueness of the infinite cluster of Aizenman, Kesten and Newman [1]. This
deep proof was originally written for a quite general percolation model. A sim-
plified and illuminating version has been worked out by Gandolfi, Grimmett
and Russo [2]. The two–arms estimate is obtained by taking ε = κ lnn/

√
n in

the proof of [2]. Nowadays the uniqueness of the infinite cluster in percolation
is proved with the help of the more robust Burton–Keane argument: see for
instance [3] or [5]. Yet the Burton–Keane argument relies on translation invari-
ance, and it does not yield any quantitative estimate, contrary to the argument
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of Aizenman, Kesten and Newman. The first main result of this paper is a
slightly improved lower bound on the two–arms exponent.

Theorem 1.1. Let d ≥ 2 and let pc be the critical probability of the site perco-

lation model in d dimensions. We have

lim sup
n→∞

1

lnn
lnPpc

(

two–arms(0, n)
)

≤ 2d2 + 3d− 3

4d2 + 5d− 5
.

In two dimensions, our two arms event correspond to a four arms event with
alternating colors. The corresponding exponent is rigorously known to be equal
to 5/4 for site percolation on the triangular lattice (see [10]), and our lower
bound is 11/21. In three dimensions, we obtain the following estimate:

∀γ <
12

23
∃ c > 0 ∀n ≥ 1 Ppc

(

two–arms(0, n)
)

≤ c

nγ
.

To prove theorem 1.1, we rework the proof of [2] in order to obtain an inequality
of the form

Ppc

(

two–arms(0, n)
)

≤ 2d lnn
√

∣

∣Λ(n)
∣

∣

E
(

√

|C|
)

+ negligible term ,

where C is the collection of the clusters joining Λ(n) to the boundary of Λ(2n).
From this inequality, we obtain the previously known estimate on the two–arms
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event by bounding the number of clusters in C by 2d(2n + 1)d−1. We next
try to enhance the control on the number of clusters. It turns out that the
expectation of this number can be bounded with the help of the probability of
the two–arms event. Our strategy consists in controlling the two–arms event
associated to a box. This is the purpose of our second main result. The event
”two–arms(Λ(n), nα)” is the event that two sites of the box Λ(n) = [−n, n]d are
connected to the boundary of the box Λ(n+nα) by two disjoint open clusters.

Theorem 1.2. Let d ≥ 2 and let pc be the critical probability of the site perco-

lation model in d dimensions. Let α be such that

α >
2d2 + 2d− 2

2d2 + 3d− 3
(4d2 + 5d− 5) .

We have

lim
n→∞

Ppc

(

two–arms(Λ(n), nα)
)

= 0 .

For d = 3, this gives

lim
n→∞

Ppc

(

two–arms(Λ(n), n43)
)

= 0 .

Next, we cover the boundary of the box Λ(n) = [−n, n]d by a collection of boxes
of side length nβ , with β small. Theorem 1.2 yields an estimate on the number
of small boxes joined to the boundary of Λ(2n) by at most one cluster, from

3



which we obtain an upper bound on the mean number of open clusters joining
Λ(n) to the boundary of Λ(2n). This gives an upper bound on E(|C|) in terms
of the two–arms event. This way we obtain an inequality of the form

P (two–arms(0, 3n)) ≤ c′ lnn√
n

(

1

kd−1
+ k2d

2+2d−2P
(

two–arms(0, n)
)

)1/2

.

Iterating this inequality with an adequate choice of k ≤ n, we progressively
improve the exponent 1/2. We obtain a sequence of exponents converging ge-
ometrically towards the limiting value presented in theorem 1.1. The final im-
provement is quite disappointing and the value is probably quite far from the
correct one.

Our third main result is a little minor step for the establishment of long–
range order in a finite box. This is a central question, which, if correctly an-
swered, should lead to a proof that θ(pc) = 0. For Λ a box and x, y in Λ, we
denote by { x ←→ y in Λ } the event that x, y are connected by an open path
inside Λ.

Theorem 1.3. Let d ≥ 2 and let p be such that θ(p) > 0. Let α be such that

α >
4d2 + 5d− 5

2d2 + 3d− 3
(3d− 1) .

We have

inf
n≥1

inf
{

Pp

(

x←→ y in Λ(nα)
)

: x, y ∈ Λ(n)
}

> 0 .

For d = 3, this gives the following estimate:

∃ ρ > 0 ∀n ≥ 1 ∀x, y ∈ Λ(n) Pp

(

x←→ y in Λ(n16)
)

≥ ρ .

One of the most important problems in percolation is to prove that, in three
dimensions, there is no infinite cluster at the critical point. The most promising
strategy so far seems to perform a renormalization argument [3, 9]. The missing
ingredient is a suitable construction helping to define a good block, starting
solely with the hypothesis that θ(p) > 0. For instance, it would be enough to
have the above estimate within a box of side length proportional to n. Moreover,
if the famous conjecture θ(pc) = 0 was true, such an estimate would indeed
hold. Here again, we are still far from the desired result. Our technique to
prove theorem 1.3 is to inject the hypothesis θ(p) > 0 inside the proof of the
two–arms estimate for a box. This allows to obtain a much better control on the
probability of a long connection, which is unfortunately still far from optimal.

2 Basic notation

Two sites x, y of the lattice Z
d are said to be connected if they are nearest

neighbours, i.e., if |x− y| = 1. Let A be a subset of Zd. We define its internal
boundary ∂ inA and its external boundary ∂ outA by

∂ inA =
{

x ∈ A : ∃y ∈ Ac |x− y| = 1
}

,

4



∂ outA =
{

x ∈ Ac : ∃y ∈ A |x− y| = 1
}

.

For x ∈ Z
d, we denote by C(x) the open cluster containing x, i.e., the connected

component of the set of the open sites containing x. If x is closed, then C(x) is
empty. For n ∈ N, we denote by Λ(n) the cubic box

Λ(n) = [−n, n]d .

Let n, ℓ be two integers. We consider the open clusters of the percolation config-
uration restricted to Λ(n+ℓ). These open clusters are the connected components
of the graph having for vertices the sites of Λ(n + ℓ) which are open, endowed
with edges between nearest neighbours. We denote by C the collection of the
open clusters in Λ(n+ ℓ) which intersect both Λ(n) and ∂ inΛ(n+ ℓ), i.e.,

C =
{

C open cluster in Λ(n+ ℓ) : C ∩ Λ(n) 6= ∅, C ∩ ∂ inΛ(n+ ℓ) 6= ∅
}

.

3 The proof of Gandolfi, Grimmett and Russo

We reproduce here the initial step of the argument of Gandolfi, Grimmett and
Russo to prove the uniqueness of the infinite cluster [2]. This argument was
obtained from the more complex work of Aizenman, Kesten and Newman [1].
The only difference is that we introduce an additional parameter ℓ. We will use
specific values for ℓ later on. We define the following three subsets of Λ(n):

F =
⋃

C∈C

C ∩ Λ(n) , G =
⋃

C∈C

∂ outC ∩ Λ(n) ,

H =
⋃

C1,C2∈C

(

∂ outC1 ∩ ∂ outC2 ∩ Λ(n)
)

.

A site of Λ(n) belongs to F if it is connected to ∂ inΛ(n+ ℓ) by an open path. A
site of Λ(n) belongs to G if it is closed and it has a neighbour which is connected
to ∂ inΛ(n + ℓ) by an open path. A site of Λ(n) belongs to F ∪ G if it has a
neighbour which is connected to ∂ inΛ(n + ℓ) by an open path. Yet, for any
x ∈ Λ(n), the event

{

a neighbour of x is connected to ∂ inΛ(n+ ℓ) by an open path
}

is independent of the status of the site x itself, therefore

P
(

x ∈ F | x ∈ F ∪G
)

= P (x is open) = p ,

P
(

x ∈ G | x ∈ F ∪G
)

= P (x is closed) = 1− p .

5



Summing over x ∈ Λ(n), we obtain

E
(

|F |
)

= E
(

∑

x∈Λ(n)

1x∈F

)

=
∑

x∈Λ(n)

P (x ∈ F ) =
∑

x∈Λ(n)

P
(

x ∈ F | x ∈ F ∪G
)

P
(

x ∈ F ∪G
)

=
∑

x∈Λ(n)

pP
(

x ∈ F ∪G
)

= pE
(

|F ∪G|
)

.

Similarly, we have
E
(

|G|
)

= (1− p)E
(

|F ∪G|
)

.

We wish to estimate the cardinality of H. To this end, we write

|H| =
∣

∣

∣

∣

⋃

C1,C2∈C

(

∂ outC1 ∩ ∂ outC2 ∩ Λ(n)
)

∣

∣

∣

∣

≤
∑

C∈C

∣

∣

∣
∂ outC ∩ Λ(n)

∣

∣

∣
−

∣

∣

∣

∣

⋃

C∈C

∂ outC ∩ Λ(n)

∣

∣

∣

∣

≤
∑

C∈C

∣

∣

∣
∂ outC ∩ Λ(n)

∣

∣

∣
−
∣

∣G
∣

∣ .

Taking the expectation in this inequality, we obtain

E
(

|H|
)

≤ E

(

∑

C∈C

∣

∣

∣
∂ outC ∩ Λ(n)

∣

∣

∣

)

− E
(

∣

∣G
∣

∣

)

= E

(

∑

C∈C

∣

∣

∣
∂ outC ∩ Λ(n)

∣

∣

∣

)

− 1− p

p
E
(

∣

∣F
∣

∣

)

= (1− p)E

(

∑

C∈C

( 1

1− p

∣

∣∂ outC ∩ Λ(n)
∣

∣− 1

p

∣

∣C ∩ Λ(n)
∣

∣

)

)

.

For A a subset of Zd, we define

h(A) =
1

1− p

∣

∣

∣

{

x ∈ A : x is closed
}

∣

∣

∣
− 1

p

∣

∣

∣

{

x ∈ A : x is open
}

∣

∣

∣
.

For C an open cluster, we define

C = C ∪ ∂ outC .

With these definitions, we can rewrite the previous inequality as

E
(

|H|
)

≤ (1− p)E

(

∑

C∈C

h
(

C ∩ Λ(n)
)

)

.

Our next goal is to control the expectation on the right hand side. We first
notice that, for x in the box Λ(n), the expected value of h(C(x)∩Λ(n)) is zero.

6



Lemma 3.1. For any x ∈ Λ(n), we have E
(

h(C(x) ∩ Λ(n))
)

= 0.

Proof. Let x ∈ Λ(n). For any lattice animal A containing x and included in
Λ(n), we have

P
(

C(x) = A
)

= p|A|(1− p)|∂
outA∩Λ(n)| .

Summing over all such lattice animals A, we get

1 =
∑

A

p|A|(1− p)|∂
outA∩Λ(n)| .

Differentiating with respect to p, we obtain

0 =
∑

A

( |A|
p
− |∂

outA ∩ Λ(n)|
1− p

)

p|A|(1− p)|∂
outA∩Λ(n)|

and we notice that this last sum is equal to E
(

h(C(x) ∩ Λ(n))
)

.

It turns out that, for large clusters, the value h(C∩Λ(n)) is close to 0 with high
probability. This is quantified by the next proposition.

4 The large deviation estimate

The basic inequality leading to the control of the two–arms event relies on the
following large deviation estimate. This estimate is a variant of the one stated
in [1, 2]. We have introduced an additional parameter ℓ and we use Hoeffding’s
inequality.

Proposition 4.1. For any p in ]0, 1[, any n ≥ 1, ℓ ≥ 0, we have

∀x ∈ Λ(n+ ℓ) ∀k ≥ 1 ∀t ≥ 0

P
(

∣

∣h
(

C(x) ∩ Λ(n)
)∣

∣ ≥ t,
∣

∣C(x) ∩ Λ(n)
∣

∣ = k
)

≤ exp
(

− 2p2(1− p)2
t2

k

)

.

Proof. Let x ∈ Λ(n + ℓ). In order to estimate the above probability, we build
C(x) ∩ Λ(n) in two steps. First we explore all the sites of Λ(n + ℓ) \ Λ(n).
Second we use a standard growth algorithm in Λ(n) to find the sites belonging
to C(x) ∩ Λ(n). This algorithm is driven by a sequence of i.i.d. Bernoulli
random variables (Xm)m≥1 with parameter p. Let us describe precisely this
strategy. The first step amounts to condition on the percolation configuration
in Λ(n+ ℓ) \ Λ(n). We denote this configuration by ω|Λ(n+ℓ)\Λ(n) and we write

P
(

∣

∣h
(

C(x) ∩ Λ(n)
)∣

∣ ≥ t,
∣

∣C(x) ∩ Λ(n)
∣

∣ = k
)

=
∑

η

P
(

∣

∣h
(

C(x) ∩ Λ(n)
)∣

∣ ≥ t,
∣

∣C(x) ∩ Λ(n)
∣

∣ = k, ω|Λ(n+ℓ)\Λ(n) = η
)

=
∑

η

P
(

∣

∣h
(

C(x) ∩ Λ(n)
)∣

∣ ≥ t,
∣

∣C(x) ∩ Λ(n)
∣

∣ = k
∣

∣

∣
ω|Λ(n+ℓ)\Λ(n) = η

)

× P
(

ω|Λ(n+ℓ)\Λ(n) = η
)

.
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The summation runs over all the percolation configurations η in Λ(n+ ℓ) \ Λ(n).
Let us fix one such configuration η. The second step corresponds to the growth
algorithm. At each iteration, the algorithm updates three sets of sites:
• The set Ak: these are the active sites, which are to be explored.
• The set Ok: these are open sites, which belong to C(x) ∩ Λ(n).
• The set Ck: these are closed sites, which have been visited by the algorithm.
All the sites of the sets Ak, Ok, Ck are in Λ(n). Initially, we set O0 = C0 = ∅

and A0 is the set of the sites of Λ(n) which are connected to x by an open path
in η. Recall that a path is a sequence of sites such that each site is a neighbour
of its predecessor. Thus a site y belongs to A0 if and only if

∃ z0, . . . , zr ∈ Λ(n+ ℓ) \ Λ(n) z0, . . . , zr are open in η ,

z0 = x, z0, . . . , zr, y is a path .

Suppose that the sets Ak, Ok, Ck are built and let us explain how to build the
sets Ak+1, Ok+1, Ck+1. If Ak = ∅, the algorithm terminates and

C(x) ∩ Λ(n) = Ok ∪ Ck .

If Ak is not empty, we pick an element xk of Ak. The site xk has not been
explored previously, and its status will be decided by the random variable Xk.
We consider two cases, according to the value of Xk.

• Xk = 0. The site xk is declared closed, and we set

Ak+1 = Ak \ { xk } , Ok+1 = Ok , Ck+1 = Ck ∪ { xk } .

• Xk = 1. The site xk is declared open, and we set

Ok+1 = Ok ∪ { xk } , Ck+1 = Ck ,

Ak+1 = Ak ∪ Vk \
(

{ xk } ∪Ok ∪ Ck

)

,

where Vk is the set of the sites of Λ(n) which are neighbours of xk or which are
connected to xk by an open path in Λ(n+ ℓ) \ Λ(n). More precisely, a site y of
Λ(n) belongs to Vk if and only if it is a neighbour of xk or

∃ z1, . . . , zr ∈ Λ(n+ ℓ) \ Λ(n) z1, . . . , zr are open in η ,

xk, z1, . . . , zr, y is a path .

Since Ok∪Ck∪Ak is included in Λ(n) and the sequence of sets Ok∪Ck, k ≥ 0, is
increasing, necessarily Ak is empty after at most |Λ(n)| steps and the algorithm
terminates. Suppose

∣

∣C(x)∩Λ(n)
∣

∣ = k. This means that the growth algorithm
stops after having explored k sites in Λ(n). The status of these k sites is given
by the first k variables of the sequence (Xm)m≥1, so that

∣

∣C(x) ∩ Λ(n)
∣

∣ = X1 + · · ·+Xk ,
∣

∣∂ outC(x) ∩ Λ(n)
∣

∣ = k −
(

X1 + · · ·+Xk

)

8



and

h
(

C(x) ∩ Λ(n)
)

=
1

1− p

∣

∣∂ outC(x) ∩ Λ(n)
∣

∣− 1

p

∣

∣C(x) ∩ Λ(n)
∣

∣

=
1

1− p

(

k − (X1 + · · ·+Xk)
)

− 1

p

(

X1 + · · ·+Xk

)

=
pk − (X1 + · · ·+Xk)

p(1− p)
.

Therefore we can write

P
(

∣

∣h
(

C(x) ∩ Λ(n)
)∣

∣ ≥ t,
∣

∣C(x) ∩ Λ(n)
∣

∣ = k
∣

∣

∣
ω|Λ(n+ℓ)\Λ(n) = η

)

= P
(∣

∣

∣

pk − (X1 + · · ·+Xk)

p(1− p)

∣

∣

∣
≥ t,

∣

∣C(x) ∩ Λ(n)
∣

∣ = k
∣

∣

∣
ω|Λ(n+ℓ)\Λ(n) = η

)

≤ P
(∣

∣

∣

pk − (X1 + · · ·+Xk)

p(1− p)

∣

∣

∣
≥ t

∣

∣

∣
ω|Λ(n+ℓ)\Λ(n) = η

)

= P
(

∣

∣X1 + · · ·+Xk − pk
∣

∣ ≥ tp(1− p)
)

≤ 2 exp
(

− 2

k
t2p2(1− p)2

)

.

For the last step, we have applied Hoeffding’s inequality [7]. The above inequal-
ity is uniform with respect to the configuration η. Plugging this bound in the
initial summation, we obtain the desired estimate.

5 The central inequality

We will now put together the previous estimates in order to obtain an inequality
between the probability of the two–arms event and the number of clusters in
the collection C. Our goal is to bound the expectation

E

(

∑

C∈C

h
(

C ∩ Λ(n)
)

)

.

Let E be the event

E =
{

∀C ∈ C
∣

∣h
(

C ∩ Λ(n)
)∣

∣ < (lnn)
∣

∣C ∩ Λ(n)
∣

∣

1/2 }
.

On the event E , we bound the sum as follows:

∑

C∈C

∣

∣h
(

C ∩ Λ(n)
)∣

∣ ≤
∑

C∈C

(lnn)
∣

∣C ∩ Λ(n)
∣

∣

1/2

≤ (lnn)
√

|C|
(

∑

C∈C

∣

∣C ∩ Λ(n)
∣

∣

)1/2

.
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A site x belongs to at most 2d sets of the collection
{

C : C ∈ C
}

, therefore

∑

C∈C

∣

∣C ∩ Λ(n)
∣

∣ ≤ 2d
∣

∣Λ(n)
∣

∣ .

If E does not occur, then we use the inequality

∀C ∈ C
∣

∣h
(

C ∩ Λ(n)
)∣

∣ ≤ 1

p(1− p)

∣

∣C ∩ Λ(n)
∣

∣

and we bound the sum as follows:

∑

C∈C

∣

∣h
(

C ∩ Λ(n)
)∣

∣ ≤ 1

p(1− p)

∑

C∈C

∣

∣C ∩ Λ(n)
∣

∣ ≤ 2d

p(1− p)

∣

∣Λ(n)
∣

∣ .

We bound the probability of the complement of E with the help of proposi-
tion 4.1:

P (Ec) = P
(

∃C ∈ C
∣

∣h
(

C ∩ Λ(n)
)∣

∣ ≥ (lnn)
∣

∣C ∩ Λ(n)
∣

∣

1/2 )

≤ P
(

∃x ∈ Λ(n)
∣

∣h
(

C(x) ∩ Λ(n)
)∣

∣ ≥ (lnn)
∣

∣C(x) ∩ Λ(n)
∣

∣

1/2 ≥ 1
)

≤
∑

x∈Λ(n)

|Λ(n)|
∑

k=1

P
(

∣

∣C(x) ∩ Λ(n)
∣

∣ = k,

∣

∣h
(

C(x) ∩ Λ(n)
)∣

∣ ≥ (lnn)
∣

∣C(x) ∩ Λ(n)
∣

∣

1/2
)

≤
∣

∣Λ(n)
∣

∣

2
2 exp

(

− 2(lnn)2p2(1− p)2
)

.

Putting together the previous inequalities, we obtain

E
(

|H|
)

≤ 2d(lnn)
√

∣

∣Λ(n)
∣

∣E
(

√

|C|
)

+
4d

p(1− p)

∣

∣Λ(n)
∣

∣

3
exp

(

− 2(lnn)2p2(1− p)2
)

.

For x ∈ Z
d and n ≥ 1, we define the event two–arms(x, n) as follows:

two–arms(x, n) =







in the configuration restricted to x+ Λ(n)
two neighbours of x are connected to the boundary
of the box x+ Λ(n) by two disjoint open clusters







.

If x belongs to Λ(n) and the event two–arms(x, 2n+ ℓ) occurs, then x belongs
to H as well. Thus

|H| ≥
∑

x∈Λ(n)

1two–arms(x,2n+ℓ)

and taking expectation, we obtain the following central inequality.
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Lemma 5.1. For any p in ]0, 1[, any n ≥ 1, ℓ ≥ 0, we have the inequality

P (two–arms(0, 2n+ ℓ)) ≤ 2d lnn
√

∣

∣Λ(n)
∣

∣

E
(

√

|C|
)

+
4d

p(1− p)

∣

∣Λ(n)
∣

∣

2
exp

(

− 2(lnn)2p2(1− p)2
)

.

In order to obtain the initial estimate on the two–arms event stated in the
introduction, we remark that the cardinality of C is bounded by the cardinality
of ∂ inΛ(n), because different clusters of C intersect ∂ inΛ(n) at different sites.
Taking ℓ = 0 in the inequality, we have

P (two–arms(0, 2n)) ≤ 2d(lnn)

(

∣

∣∂ inΛ(n)
∣

∣

∣

∣Λ(n)
∣

∣

)1/2

+
4d

p(1− p)

∣

∣Λ(n)
∣

∣

2
exp

(

− 2(lnn)2p2(1− p)2
)

.

This inequality readily implies the initial estimate stated in the introduction.

Proposition 5.2. Let d ≥ 2 and let p ∈]0, 1[. There exists a constant κ de-

pending on d and p only such that

∀n ≥ 1 Pp

(

two–arms(0, n)
)

≤ κ lnn√
n

.

In order to improve this estimate on the two–arms exponent, we will try to
improve the estimate on the cardinality of C.

6 Lower bound for the connection probability

For x, y two sites belonging to a box Λ, we define the event

{

x←→ y in Λ
}

=

{

the sites x and y are joined by
an open path of sites inside Λ

}

.

The next lemma gives a polynomial lower bound for the probability of connec-
tion of two sites of Λ(n) if one allows the path to be in Λ(2n). At criticality,
the expected behavior is indeed a power of n, but with a different exponent. In
Lemma 1.1 of [8], Kozma and Nachmias derive a smaller lower bound, however
only paths staying inside Λ(n) are allowed.

Lemma 6.1. There exists a positive constant c which depends only on the

dimension d such that, for n ≥ 1,

∀x, y ∈ Λ(n) Ppc

(

x←→ y in Λ(2n)
)

≥ c

n2(d−1)d
.
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Proof. The basic ingredient to prove lemma 6.1 is the following lower bound.
For any box Λ centered at 0, we have

∑

x∈∂ inΛ

Ppc

(

0←→ x in Λ
)

≥ 1 .

This lower bound is proved in Lemma 3.1 of [8], or in the proof of theorem 5.3 of
[4]. The reason is that, by an argument due to Hammersley [6], if the converse
inequality holds, then this implies that the probability of long connections decays
exponentially fast with the distance, and the system would be in the subcritical
regime. Applying the above inequality to the box Λ(n), we conclude that there
exists x∗ in ∂ inΛ(n) such that

Ppc

(

0←→ x∗ in Λ(n)
)

≥ 1

|∂ inΛ(n)| ≥
1

(2d)(2n+ 1)d−1
.

Suppose for instance that x∗ belongs to {n }×Zd−1. Let us set e1 = (1, 0, . . . , 0).
By the FKG inequality and the symmetry of the model, we have

Ppc

(

0←→ 2ne1 in Λ(n) ∪
(

2ne1 + Λ(n)
))

≥

Ppc

(

0←→ x∗ in Λ(n) ∪
(

2ne1 + Λ(n)
)

, x∗ ←→ 2ne1 in Λ(n) ∪
(

2ne1 +Λ(n)
)

)

≥ Ppc

(

0←→ x∗ in Λ(n) ∪
(

2ne1 + Λ(n)
)

)

× Ppc

(

x∗ ←→ 2ne1 in Λ(n) ∪
(

2ne1 +Λ(n)
)

)

≥ Ppc

(

0←→ x∗ in Λ(n)
)

Ppc

(

x∗ ←→ 2ne1 in 2ne1 +Λ(n)
)

≥
(

1

(2d)(2n+ 1)d−1

)2

.

By symmetry, the same inequality holds for the other axis directions. Let now
x, y be two sites in Λ(n) with coordinates

x = (x1, . . . , xd) , y = (y1, . . . , yd) .

We suppose first that yi − xi is even, for 1 ≤ i ≤ d, and we set

z0 = x , z1 = (y1, x2, . . . , xd) , . . . , zd−1 = (y1, . . . , yd−1, xd) , zd = y .

Again by the FKG inequality, we have

Ppc

(

x←→ y in Λ(2n)
)

≥ Ppc

(

∀i ∈ { 0, . . . , d− 1 } zi ←→ zi+1 in Λ(2n)
)

≥
∏

0≤i≤d−1

Ppc

(

zi ←→ zi+1 in Λ(2n)
)

.

Let i ∈ { 0, . . . , d− 1 } and let ni = (yi − xi)/2. We have ni ≤ n and

(

zi + Λ(ni)
)

∪
(

zi+1 + Λ(ni)
)

⊂ Λ(2n) ,
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whence

Ppc

(

zi ←→ zi+1 in Λ(2n)
)

≥ Ppc

(

zi ←→ zi+1 in
(

zi+Λ(ni)
)

∪
(

zi+1+Λ(ni)
))

≥
(

1

(2d)(2ni + 1)d−1

)2

.

Coming back to the previous inequality, we obtain

Ppc

(

x←→ y in Λ(2n)
)

≥
∏

0≤i≤d−1

(

1

(2d)(2ni + 1)d−1

)2

≥ c

n2(d−1)d
,

where the last inequality holds for some positive constant c. In the general case,
if x 6= y, we can find z in Λ(n) such that |z − x| ≤ |y − x| and

∀i ∈ { 1, . . . , d } |zi − yi| ≤ 1 , zi − xi is even .

We then use the FKG inequality to write

Ppc

(

x←→ y in Λ(2n)
)

≥ Ppc

(

x←→ z in Λ(2n)
)

Ppc

(

z ←→ y in Λ(2n)
)

.

The probability of connection between x and z is controlled with the help of
the previous case, while the probability of connection between z and y is larger
than (pc)

d.

7 Two–arms for distant sites

We derive here an estimate for the two–arms event associated to two distant
sites. For n, ℓ ≥ 1 and two sites a, b belonging to Λ(n), we define the event
two–arms

(

Λ(n), a, b, ℓ
)

as follows:

two–arms
(

Λ(n), a, b, ℓ
)

=

{

the open clusters of a and b in Λ(n+ ℓ)
are disjoint and they intersect ∂ inΛ(n+ ℓ)

}

.

We will establish an inequality linking the two–arms event for distant sites to
the two–arms event for neighbouring sites.

Lemma 7.1. Let p ∈]0, 1[. For any n, ℓ ≥ 1 and any a, b ∈ Λ(n), we have

∀k ≤ ℓ P
(

two–arms
(

Λ(n), a, b, ℓ
))

≤ 34d

p
(n+k)2d

P
(

two–arms(0, ℓ− k)
)

P
(

a←→ b in Λ(n+ k)
) .

Proof. Let n, ℓ ≥ 1, let k ≤ ℓ and let a, b ∈ Λ(n). We denote by C(a) and C(b)
the open clusters of a and b in Λ(n+ ℓ). We write

P
(

two–arms
(

Λ(n), a, b, ℓ
))

=
∑

A,B

P
(

C(a) = A, C(b) = B
)
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×

×

×

×

×

Λ(n+ ℓ)

Λ(n+ k)

Λ(n)
O

u a b

z

v

w

open=

×

bc

closed=

bc bc

bc

bc bc

bcbc

bcbcbc

bcbc

bc

bc

bc

bc bc

bc bc

bc bc

bc

bc

bc

bc bc bc

bc
bc
bc
bc
bc bc bc bc bc bc bc bc

bc bc
bc
bc

××
×
×××

××
×

× ×
× ×

× × ×
×
×

× ×
×
×

×
×
× × ×

×
×
×
× ×

×××
×
×
××

××

where the sum runs over the pairs A,B of connected subsets of Λ(n + ℓ) such
that

A ∩B = ∅ , a ∈ A ,A ∩ ∂ inΛ(n+ ℓ) 6= ∅ , b ∈ B ,B ∩ ∂ inΛ(n+ ℓ) 6= ∅ .

For E a finite subset of Zd, we define

E = E ∪ ∂ outE , ∆E = ∂ in
(

(

E
)c
)

.

Equivalently, we have

∆E =
{

z 6∈ E ∪ ∂ outE : z is the neighbour of a point in ∂ outE
}

.

Let a, b ∈ Λ(n) and let A,B be two connected subsets of Λ(n + ℓ) as above.
Suppose that the open clusters of a and b in Λ(n+ ℓ) are exactly A and B, i.e.,
we have C(a) = A and C(b) = B. Suppose that ∂ outA ∩ ∂ outB ∩ Λ(n) 6= ∅.
Then the event two–arms(z, ℓ) occurs, where z is any point in the previous
intersection. Suppose next that

∂ outA ∩ ∂ outB ∩ Λ(n) = ∅ .

We will transform the configuration in Λ(n) in order to create a two–arms event.
The idea is that, for k ≤ ℓ, the sets ∆A and ∆B are rather likely to be connected
by an open path inside

Λ(n+ k) \
(

A ∪ ∂ outA ∪B ∪ ∂ outB
)

.
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By modifying the status of one site in ∂ outB, we can then create a connection
between ∆A and ∂ inΛ(n + ℓ), which does not use the sites of A. Let us make
this strategy more precise. Any open path joining a to b in Λ(n+ k) has to go
through both ∆A and ∆B, thus

P
(

a←→ b in Λ(n+ k)
)

≤
P
(

∆A ∩ Λ(n+ k)←→ ∆B ∩ Λ(n+ k) in Λ(n+ k) \ (A ∪B)
)

.

The event
{

C(a) = A, C(b) = B
}

depends only on the sites in A∪B, hence it
is independent from the event above, therefore

P
(

C(a) = A, C(b) = B, ∆A∩Λ(n+k)←→ ∆B∩Λ(n+k) in Λ(n+k)\(A∪B)
)

≥ P
(

C(a) = A, C(b) = B
)

× P
(

a←→ b in Λ(n+ k)
)

.

Plugging this inequality in the initial sum, we get

∑

A,B

P
(

C(a) = A, C(b) = B
)

≤

∑

A,B

P

(

C(a) = A, C(b) = B

∆A ∩ Λ(n+ k)←→ ∆B ∩ Λ(n+ k) in Λ(n+ k) \ (A ∪B)

)

P
(

a←→ b in Λ(n+ k)
) ≤

P

(

C(a) ∩ ∂ inΛ(n+ ℓ) 6= ∅, C(b) ∩ ∂ inΛ(n+ ℓ) 6= ∅, C(a) ∩ C(b) = ∅

∆C(a) ∩ Λ(n+ k)←→ ∆C(b) ∩ Λ(n+ k) in Λ(n+ k) \ (C(a) ∪ C(b))

)

P
(

a←→ b in Λ(n+ k)
)

≤

P











C(a) ∩ ∂ inΛ(n+ ℓ) 6= ∅, C(b) ∩ ∂ inΛ(n+ ℓ) 6= ∅

C(a) ∩ C(b) = ∅

∃u ∈ ∆C(a) ∩ Λ(n+ k) ∃ v ∈ ∆C(b) ∩ Λ(n+ k)

u←→ v in Λ(n+ k) \ (C(a) ∪ C(b))











P
(

a←→ b in Λ(n+ k)
)

≤
∑

u,v∈Λ(n+k)

P

















C(a) ∩ ∂ inΛ(n+ ℓ) 6= ∅

C(b) ∩ ∂ inΛ(n+ ℓ) 6= ∅

C(a) ∩ C(b) = ∅

u ∈ ∆C(a), v ∈ ∆C(b)

u←→ v in Λ(n+ k) \ (C(a) ∪ C(b))

















P
(

a←→ b in Λ(n+ k)
) .

Let us consider the event inside the probability appearing on the numerator. Let
z (respectively w) be a neighbour of u (respectively v) belonging to ∂ outC(a)
(respectively ∂ outC(b)). Suppose that we change the status of w to open. The
site u is connected to v by an open path, and v is now connected to w and
C(b), hence to ∂ inΛ(n+ ℓ), and this connection does not use any site of C(a).
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Thus the site z, which is closed, will admit two neighbours which are connected
to ∂ inΛ(n + ℓ): the site u and another one belonging to C(a), and these two
neighbours do not belong to the same cluster in Λ(n + ℓ). Therefore the event
two–arms(z, ℓ− k) occurs, and we conclude that

P

(

C(a) ∩ ∂ inΛ(n+ ℓ) 6= ∅, C(b) ∩ ∂ inΛ(n+ ℓ) 6= ∅, C(a) ∩ C(b) = ∅

u ∈ ∆C(a), v ∈ ∆C(b), u←→ v in Λ(n+ k) \ (C(a) ∪ C(b))

)

≤ 4d2

p
P
(

two–arms(0, ℓ− k)
)

.

Plugging this inequality in the previous sum, we obtain

P
(

two–arms
(

Λ(n), a, b, ℓ
))

≤
∑

u,v∈Λ(n+k)

4d2

p

P
(

two–arms(0, ℓ− k)
)

P
(

a←→ b in Λ(n+ k)
)

≤
∣

∣Λ(n+ k)
∣

∣

2 4d2

p

P
(

two–arms(0, ℓ− k)
)

P
(

a←→ b in Λ(n+ k)
)

≤ 34d

p
(n+ k)2d

P
(

two–arms(0, ℓ− k)
)

P
(

a←→ b in Λ(n+ k)
) .

This is the inequality we wanted to prove.

We derive next an estimate for the two–arms event associated to a box. For
n, ℓ ≥ 1, we define the event two–arms

(

Λ(n), ℓ
)

as follows:

two–arms
(

Λ(n), ℓ
)

=

{

there exist two distinct open clusters
in Λ(n+ ℓ) joining Λ(n) to ∂ inΛ(n+ ℓ)

}

.

Corollary 7.2. For any n ≥ 1, ℓ ≥ n, we have

P
(

two–arms
(

Λ(n), ℓ
))

≤ 39d

p

n4d−2P
(

two–arms(0, ℓ− n)
)

inf
{

P
(

a←→ b in Λ(2n)
)

: a, b ∈ ∂ inΛ(n)
}

Proof. From the definition of the two–arms event, we have

two–arms
(

Λ(n), ℓ
)

=
⋃

a,b∈∂ inΛ(n)

two–arms
(

Λ(n), a, b, ℓ
)

.

Therefore, applying the inequality of lemma 7.1 with k = n, we obtain

P
(

two–arms
(

Λ(n), ℓ
))

≤
∑

a,b∈∂ inΛ(n)

P
(

two–arms
(

Λ(n), a, b, ℓ
))

≤
∑

a,b∈∂ inΛ(n)

34d

p

(2n)2dP
(

two–arms(0, ℓ− n)
)

P
(

a←→ b in Λ(2n)
)

≤ 34d

p

4d2(2n+ 1)2d−2(2n)2dP
(

two–arms(0, ℓ− n)
)

inf
{

P
(

a←→ b in Λ(2n)
)

: a, b ∈ ∂ inΛ(n)
} .

This yields the desired inequality.

16



Corollary 7.3. We have

lim
n→∞

P
(

two–arms
(

Λ(n), n4d2+4d−3
))

= 0 .

Proof. We apply the inequality given in corollary 7.2. We use proposition 5.2
to control the probability of the two–arms event and lemma 6.1 to control from
below the connection probability. We obtain

P
(

two–arms
(

Λ(n), ℓ
))

≤ 39d

pc
n2d2+2d−2 κ ln(ℓ− n)√

ℓ− n
.

We take ℓ = n4d2+4d−3 in this inequality and we send n to ∞.

For d = 3, this yields the exponent 4d2 + 4d− 3 = 45.

8 Control on the number of arms

We try next to improve the previous estimates. The idea is the following. With
the help of corollary 7.3, we will improve slightly the control on the number of
clusters in the collection C (these are the clusters intersecting both Λ(n) and
∂ inΛ(n + ℓ)). Thanks to the central inequality stated in lemma 5.1, this will
permit to improve the bound on the two–arms event for a site, and subsequently
the bound on the two–arms event for a box. This leads to a better exponent in
corollary 7.3. We can then iterate this scheme to improve further the exponents.
Unfortunately, the sequence of exponents converges geometrically and the final
result is still quite weak.

Let n, ℓ, k be three integers, with k ≤ n ≤ ℓ. Let Λi, i ∈ I, be a collection of
boxes which are translates of Λ(k) = [−k, k]d, which are included in Λ(n) and
which covers the inner boundary ∂ inΛ(n). Such a covering can be realized with
disjoint boxes if 2n+1 is a multiple of 2k+1, otherwise we do not require that
the boxes are disjoint. In any case, there exists such a covering Λi, i ∈ I, whose
cardinality |I| satisfies

∣

∣I
∣

∣ ≤ 2d
(

2
n

k

)d−1

.

Let us fix such a covering. Given a percolation configuration in Λ(n+ ℓ), a box
Λi of the covering is said to be good if the event two–arms(Λi, ℓ) does not occur.
Let us compute the expected number of bad boxes:

E

(

number of bad boxes in

the collection Λi, i ∈ I

)

= E
(

∑

i∈I

1the box Λi is bad

)

=
∣

∣I
∣

∣P
(

two–arms(Λ(k), ℓ)
)

.

The clusters of the collection C intersect ∂ inΛ(n), hence they have to go into
one box of the collection Λi, i ∈ I. If two clusters of C intersect the same box Λi,
this box has to be bad, because these two clusters go all the way till ∂ inΛ(n+ℓ),
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hence they realize the event two–arms(Λi, ℓ). Thus a good box of the collection
Λi, i ∈ I, meets at most one cluster of C. Moreover, a bad box of the collection
Λi, i ∈ I, meets at most

∣

∣∂ inΛ(k)
∣

∣ clusters of C. We conclude that

|C| ≤
(

number of good boxes in
the collection Λi, i ∈ I

)

+
∣

∣∂ inΛ(k)
∣

∣×
(

number of bad boxes in
the collection Λi, i ∈ I

)

.

We bound the number of good boxes by |I| and we take the expectation in this
inequality. We obtain

E
(

|C|
)

≤
∣

∣I
∣

∣+
∣

∣∂ inΛ(k)
∣

∣×
∣

∣I
∣

∣× P
(

two–arms(Λ(k), ℓ)
)

≤ d2d
(n

k

)d−1(

1 + 2d(2k + 1)d−1P
(

two–arms(Λ(k), ℓ)
)

)

≤ c
(n

k

)d−1

+ cnd−1P
(

two–arms(Λ(k), ℓ)
)

,

where c is a constant depending on d and p. Plugging the inequality of corol-
lary 7.2 in the previous inequality, we get, with some larger constant c,

E
(

|C|
)

≤ c
(n

k

)d−1

+
cnd−1k4d−2P

(

two–arms(0, ℓ− k)
)

inf
{

P
(

a←→ b in Λ(2k)
)

: a, b ∈ ∂ inΛ(k)
} .

Noticing that E(
√

|C|) ≤ E(|C|)1/2, we deduce from the central inequality stated
in lemma 5.1 and the previous inequality that

P (two–arms(0, 2n+ ℓ)) ≤
2d lnn
√

∣

∣Λ(n)
∣

∣

(

c
(n

k

)d−1

+
cnd−1k4d−2P

(

two–arms(0, ℓ− k)
)

inf
{

P
(

a←→ b in Λ(2k)
)

: a, b ∈ ∂ inΛ(k)
}

)1/2

+
4d

p(1− p)

∣

∣Λ(n)
∣

∣

2
exp

(

− 2(lnn)2p2(1− p)2
)

.

We choose ℓ = n, and we conclude that, for some constant c, we have

P (two–arms(0, 3n)) ≤
c lnn√

n

(

1

kd−1
+

k4d−2P
(

two–arms(0, n− k)
)

inf
{

P
(

a←→ b in Λ(2k)
)

: a, b ∈ ∂ inΛ(k)
}

)1/2

.

We shall next iterate this inequality in order to enhance the lower bound on the
two–arms exponent.

9 Iterating at pc

In this section, we work at p = pc and we complete the proofs of theorems 1.1
and 1.2. Lemma 6.1 yields that

∀k ≥ 1 inf
{

P
(

a←→ b in Λ(2k)
)

: a, b ∈ ∂ inΛ(k)
}

≥ c

k2(d−1)d
,
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whence, for 1 ≤ k ≤ n, for some c > 0,

P (two–arms(0, 3n)) ≤ c lnn√
n

(

1

kd−1
+ k2d

2+2d−2P
(

two–arms(0, n− k)
)

)1/2

.

Suppose that for some positive constants c′, β, γ, with γ < 1, we have

∀n ≥ 2 P
(

two–arms(0, n)
)

≤ c′(lnn)β

nγ
.

Choosing k = nδ with

δ =
γ

2d2 + 3d− 3
,

we obtain that

∀n ≥ 2 P
(

two–arms(0, 3n)
)

≤ 2c
√
c′(lnn)β/2+1

nγ′
,

where

γ′ =
1

2
+

d− 1

4d2 + 6d− 6
γ .

By monotonicity,

∀n ≥ 3 P
(

two–arms(0, n)
)

≤ P
(

two–arms(0, ⌊n/3⌋)
)

,

therefore there exists also a constant c′′ such that

∀n ≥ 2 P
(

two–arms(0, n)
)

≤ c′′(lnn)β+1

nγ′
.

The initial estimate stated in proposition 5.2 yields that

∀n ≥ 2 P
(

two–arms(0, n)
)

≤ κ lnn√
n

.

We define a sequence of exponents (γi)i≥0 by setting γ0 = 1/2 and

∀i ≥ 0 γi+1 =
1

2
+

d− 1

4d2 + 6d− 6
γi .

Iterating the previous argument, we conclude that, for any i ≥ 1, there exists a
constant αi such that

∀n ≥ 2 P
(

two–arms(0, n)
)

≤ αi(lnn)
i+1

nγi

.

It follows that

∀i ≥ 0 lim sup
n→∞

1

lnn
lnP

(

two–arms(0, n)
)

≤ γi .
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The sequence (γi)i≥0 converges geometrically towards

γ∞ =
2d2 + 3d− 3

4d2 + 5d− 5
.

Letting i go to ∞ in the previous inequality, we obtain the result stated in
theorem 1.1. Theorem 1.1 and the inequality of corollary 7.2 readily imply the-
orem 1.2. To prove theorem 1.2, we proceed as in the proof of corollary 7.3, but
instead of the initial estimate of proposition 5.2, we use the enhanced estimate
provided by theorem 1.1.

10 Proof of theorem 1.3

Throughout this section, we work with a parameter p such that θ(p) > 0. We
will use the hypothesis θ(p) > 0 to improve the lower bound for the probability
of a connection inside a finite box.

Lemma 10.1. Let n, ℓ ≥ 2. For any x, y ∈ Λ(n), we have

P
(

x←→ y in Λ(n+ ℓ)
)

≥ θ(p)2 − P
(

two–arms(Λ(n), x, y, ℓ)
)

.

Proof. We write

P
(

x←→ y in Λ(n+ ℓ)
)

≥ P







x←→ ∂ inΛ(n+ ℓ)

y ←→ ∂ inΛ(n+ ℓ)

x←→ y in Λ(n+ ℓ)







≥ P

(

x←→ ∂ inΛ(n+ ℓ)

y ←→ ∂ inΛ(n+ ℓ)

)

− P







x←→ ∂ inΛ(n+ ℓ)

y ←→ ∂ inΛ(n+ ℓ)

x 6←→ y in Λ(n+ ℓ)






.

By the FKG inequality, we have

P

(

x←→ ∂ inΛ(n+ ℓ)
y ←→ ∂ inΛ(n+ ℓ)

)

≥ P

(

x←→∞
y ←→∞

)

≥ θ(p)2 .

Moreover

P





x←→ ∂ inΛ(n+ ℓ)
y ←→ ∂ inΛ(n+ ℓ)
x 6←→ y in Λ(n+ ℓ)



 ≤ P
(

two–arms(Λ(n), x, y, ℓ)
)

.

The last two inequalities imply the inequality stated in the lemma.

Since

θ(p) ≤ P
(

0←→ ∂ inΛ(n)
)

≤
∑

x∈∂ inΛ(n)

P
(

0←→ x in Λ(n)
)

,
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then there exists xn in ∂ inΛ(n) such that

P
(

0←→ xn in Λ(n)
)

≥ θ(p)
∣

∣∂ inΛ(n)
∣

∣

≥ θ(p)

2d(2n+ 1)d−1
.

We apply the inequality of lemma 7.1 to 0 and xn with k = 0:

P
(

two–arms
(

Λ(n), 0, xn, ℓ
))

≤ 34d

p
n2d P

(

two–arms(0, ℓ)
)

P
(

0←→ xn in Λ(n)
) .

Combining the two previous inequalities, we conclude that

P
(

two–arms
(

Λ(n), 0, xn, ℓ
))

≤ 37d

pθ(p)
n3d−1P

(

two–arms(0, ℓ)
)

.

We apply the inequality of lemma 10.1 to 0 and xn, and, together with the
previous inequality, we obtain

P
(

0←→ xn in Λ(n+ ℓ)
)

≥ θ(p)2 − 37d

pθ(p)
n3d−1P

(

two–arms(0, ℓ)
)

.

Let α be such that

α >
4d2 + 5d− 5

2d2 + 3d− 3
(3d− 1) .

We take ℓ = nα. By theorem 1.1, for n large enough,

P
(

0←→ xn in Λ(n+ nα)
)

≥ 1

2
θ(p)2 .

Suppose for instance that xn belongs to {n }×Z
d−1. Let e1 = (1, 0, . . . , 0). By

symmetry and the FKG inequality, for n large enough,

P
(

0←→ 2ne1 in Λ(4n+ nα)
)

≥

P

(

0←→ xn in Λ(n+ nα)

xn ←→ 2ne1 in 2ne1 +Λ(n+ nα)

)

≥

P
(

0←→ xn in Λ(n+ nα)
)

P
(

xn ←→ 2ne1 in 2ne1 + Λ(n+ nα)
)

≥ P
(

0←→ xn in Λ(n+ nα)
)2 ≥ 1

4
θ(p)4 .

Thus there exists N ≥ 1 such that

∀n ≥ N P
(

0←→ 2ne1 in Λ(4n+ nα)
)

≥ 1

4
θ(p)4 .

Let n ≥ N and let k ∈ {N, . . . , n }. We have

P
(

0←→ 2ke1 in Λ(4n+ nα)
)

≥ P
(

0←→ 2ke1 in Λ(4k + kα)
)

≥ 1

4
θ(p)4 .
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This implies further that

∀k ∈ { 2N, . . . , 2n } P
(

0←→ ke1 in Λ(4n+ nα)
)

≥ p

4
θ(p)4 .

Since N is independent of n, we conclude that there exists ρ > 0 such that

∀n ≥ N ∀k ∈ { 0, . . . , 2n } P
(

0←→ ke1 in Λ(4n+ nα)
)

≥ ρ .

Since N is fixed, this lower bound can be extended to every n ≥ 1 by taking
a smaller value of ρ. By symmetry, we have the same lower bounds for the
probabilities of connections along the other axis directions. Using the FKG
inequality, we conclude that

∀n ≥ 1 ∀x ∈ Λ(2n) P
(

0←→ x in Λ(6n+ nα)
)

≥ ρd .

This completes the proof of theorem 1.3.

Acknowledgement. I thank Jeffrey Steif for telling me that quantitative es-
timates can be derived from the arguments of [1] or [2].
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