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Abstract

Let L : R × R → [0,+∞[∪{+∞} be a Borel function. We consider the
problem

minF (y) =

∫ 1

0
L(y(t), y′(t)) dt : y(0) = 0, y ∈ W 1,1([0, 1],R). (P)

We give an example of a real valued Lagrangian L for which the Lavrentiev
phenomenon occurs. We state a condition, involving only the behavior of L
on the graph of two functions, that ensures the non-occurrence of the phe-
nomenon. Our criterium weakens substantially the well-known condition,
that L is bounded on bounded sets.
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1 Introduction
Consider the basic problem of the Calculus of Variations that consists on mini-
mizing the autonomous integral functional

F (y) =

∫ 1

0

L(t, y(t), y′(t)) dt

among the absolutely continuous functions on [0, 1] that possibly satisfy some
end-point conditions. Here L : [0, 1] × Rn × Rn → [0,+∞[∪{+∞} is a Borel
function. We are concerned with the question of avoiding the Lavrentiev phe-
nomenon, namely the unpleasant fact that the infimum of F among the absolutely
continuous functions is strictly less than the one among the Lipschitz functions
that share the same end-point conditions. The occurrence of this phenomenon im-
plies the failure of classical numerical analysis methods, e.g., finite elements, if
one wishes to compute the infimum of F , and represents a discontinuity of F with
respect to strong convergence in W 1,1(I,R).

Lavrentiev’s phenomenon is considered among experts a matter of non-auto-
nomous Lagrangians, i.e., depending explicitly on the time variable. On one side,
a famous example by Manià exhibits the phenomenon when

L(t, y, v) = (y3 − t)2v6

among the functions y : [0, 1] → R that satisfy the end-point conditions y(0) =
0, y(1) = 1 (see [3, §4.3]). A more refined construction by Ball and Mizel [2]
shows that it may even occur when the Lagrangian is a polynomial in (t, y, v) that
satisfies Tonelli’s existence conditions (namely superlinearity and convexity in the
last variable). On the other side, a celebrated result by Alberti and Serra Cassano
[1, Theorem 2.4] asserts that non pathological autonomous Lagrangians do not
exhibit the phenomenon. More precisely, there is no Lavrentiev phenomenon if

∀K > 0 ∃rK > 0 L(y, v) is bounded on [−K,K]n × [−rK , rK ]n . (B)

Notice that Condition (B) forces L to be finite on the union
⋃∞
K [−K,K]n ×

[−rK , rK ]n and in particular on Rn × (0, . . . , 0).
Actually, it has now become clear that the phenomenon is also strictly related

to the presence and the number of end-point constraints. For instance, as shown in
[3], Manià’s example does not exhibit any more the phenomenon if one considers
just the end-point condition y(1) = 1. Moreover, it was pointed out in [5] that
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Condition (B) in [1, Theorem 2.4] is a sufficient condition for the non-occurrence
of the phenomenon when one considers just one end-point condition, but not any-
more in the case of two end-point conditions. In fact, Alberti provided an example
(see [5, Example 3.5]) showing an autonomous Lagrangian with values either 0
or +∞, satisfying (B) such that the functional F takes the value +∞ on every
Lipschitz function satisfying y(0) = 0, y(1) = 1.

Regarding the Lavrentiev phenomenon, the difference between one and two
end-point conditions was recently better understood (see [5]). So it seemed to us
of interest to study more thoroughly the conditions that provide the non-occurrence
of the phenomenon for problems with one end-point condition. As mentioned
above, Condition (B) of [1, Theorem 2.4] does not take into account the effective
domain Dom(L) of the Lagrangian (i.e., the set where it is finite). We wonder
how sharp condition (B) is. Can it be weakened to an assumption involving just
the subsets of the effective domain of L? The effort of finding such a condition
was carried out in [4] under an additional radial convexity hypothesis on the last
variable of the Lagrangian: it is enough in that case that for each K > 0, there is
rK > 0 such that L(y, v) is bounded on ([−K,K]n × [−rK , rK ]n) ∩Dom(L).

In this paper, we consider the case where the Lagrangian L = L(y, v) is au-
tonomous, n = 1, with the initial condition y(0) = 0 and free end-point condition.
We first exhibit a finite, autonomous Lagrangian that violates (B), for which the
Lavrentiev phenomenon occurs with just one end-point condition. We introduce
the following Condition (R), weaker than (B), that ensures, with no need of any
other additional hypothesis, the non-occurrence of the phenomenon:

Condition (R). There exist two locally Lipschitz functions ρ−, ρ+ defined on R
such that:

∀z ∈ R ρ−(z) < 0 , ρ+(z) > 0 ,

and for every bounded interval J of R,

sup
z∈J

L
(
z, ρ−(z)

)
< +∞ , sup

z∈J
L
(
z, ρ+(z)

)
< +∞ .

The Condition (R) is fulfilled when (B) of [1, Theorem 2.4] holds. Condition (R)
has the advantage to require the boundedness of the Lagrangian just on some one-
dimensional subsets of its effective domain, without imposing, as (B) does, that
Dom(L) contains the union of two-dimensional rectangles.
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2 The functional, the gap and the phenomenon

2.1 The functional
We consider an autonomous Borel Lagrangian L : R × R → [0,+∞] with non–
negative values, possibly infinite. We denote by I the unit interval [0, 1] and we
define

∀y ∈ W 1,1(I,R) F (y) =

∫ 1

0

L(y(t), y′(t)) dt.

We consider the end–point condition y(0) = 0 and the problem (P):

minF (y) =

∫ 1

0

L(y(t), y′(t)) dt , y ∈ W 1,1(I,R) , y(0) = 0 . (P)

2.2 The Lavrentiev gap and phenomenon
Definition 2.1 (No gap). Let p ≥ 1. Let y ∈ W 1,p(I,R) be such that F (y) < +∞.
We say that the Lavrentiev gap does not occur at y for (P) if there exists a sequence
(yn)n∈N of functions satisfying:

1. for each n ∈ N, the function yn is Lipschitz and yn(0) = 0;

2. lim
n→+∞

F (yn) = F (y) (approximation in energy);

3. yn → y in W 1,p(I,R) (approximation in norm).

We denote by Lip(I,R) the space of the Lipschitz functions defined on I with
values in R.

Definition 2.2 (No phenomenon). We say that there is no Lavrentiev phenomenon
for (P) if

inf(P) = inf
{
F (y) : y ∈ Lip(I,R) , y(0) = 0

}
.

Clearly, the Lavrentiev phenomenon does not occur for (P) once there is no
Lavrentiev gap for every y ∈ W 1,p(I,R) such that F (y) < +∞.



Occurrence of gap 5

3 Occurrence of the Lavrentiev gap for (P)

The Lavrentiev phenomenon is often considered a pathology related to non-auto-
nomous Lagrangians. However, the phenomenon may also occur in the general
case: an example due to Alberti (see [5, Example 3.5]) exhibits an autonomous
Lagrangian L that takes the value +∞, satisfies (B), yet the Lavrentiev phe-
nomenon occurs for a problem with two end-point conditions. When Condition
(B) fails, the phenomenon may occur in the autonomous case, when one considers
just one end-point condition. Consider

L(y, v) =


(
v2 − 1

4y2

)2

v2 if y ̸= 0 ,

1 if y = 0 .

The Lagrangian L is a Borel non–negative map. Let y∗(s) =
√
s, s ∈ [0, 1].

Figure 1: The graph of L in Proposition 3.1.

Notice that (L, y∗) violates Condition (B) in [1]. Indeed if v ̸= 0, then

lim
y→0

L(y, v) = +∞ ,

and this implies that, for every r > 0, L is unbounded on y∗(I)× [−r, r].
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Proposition 3.1. The function y∗ is a minimizer for the problem (P) associated
to L and moreover F (y∗) = 0. The gap occurs at y∗: more precisely, for any
y ∈ Lip([0, 1],R) such that y(0) = 0 and F (y) < 1, we have F (y) = +∞.

Proof. We have

∀t > 0 y′∗(t) =
1

2
√
t
=

1

2y∗(t)

so that L(y∗(t), y′∗(t)) = 0 for t in ]0, 1]. Moreover, we have F (y) ≥ 0 for all
admissible trajectory y ∈ W 1,1([0, 1],R), therefore

F (y∗) = 0 = min (P) .

Next, let y ∈ Lip([0, 1],R) be such that F (y) < 1 and y(0) = 0. Notice that, since
F (0) = 1, then y is not identically equal to 0. The set {t ∈ [0, 1] : y(t) ̸= 0}
being open and non-empty, it is a countable or finite union of non-empty open
subintervals of [0, 1]. Hence, there are 0 ≤ a < b ≤ 1 such that

y(a) = 0, y(b) ̸= 0, ∀t ∈]a, b[ y(t) ̸= 0 .

Let c ∈]a, b[. We have

F (y) ≥
∫ b

c

L(y(t), y′(t)) dt

=

∫ b

c

(
y′(t)6 − 1

2

y′(t)4

y(t)2
+

1

16

y′(t)2

y(t)4

)
dt

≥ −1

2

∫ b

c

y′(t)4

y(t)2
dt+

1

16

∫ b

c

y′(t)2

y(t)4
dt

≥ −1

2
∥y′∥2∞

∫ b

c

y′(t)2

y(t)2
dt+

1

16

∫ b

c

y′(t)2

y(t)4
dt .

(3.1)

Since y(a) = 0 and y is continuous at a, then y(t) → 0 as t → a, so that there
exists d ∈]a, b[ such that

∀t ∈]a, d] 1

2
∥y′∥2∞

y′(t)2

y2(t)
≤ 1

32

y′(t)2

y(t)4
. (3.2)

Now, in (3.1), fix c ∈]a, d[. Integrating both terms of (3.2) over [c, d], we obtain

−1

2
∥y′∥2∞

∫ d

c

y′(t)2

y2(t)
dt +

1

16

∫ d

c

y′(t)2

y(t)4
dt ≥ 1

32

∫ d

c

y′(t)2

y(t)4
dt . (3.3)
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Inequalities (3.1) and (3.3) together yield

F (y) ≥ −1

2
∥y′∥2∞

∫ b

d

y′(t)2

y2(t)
dt+

1

16

∫ b

d

y′(t)2

y(t)4
dt +

1

32

∫ d

c

y′(t)2

y(t)4
dt . (3.4)

Notice that we use the lower bound (3.3) only for the integral over [c, d]. Jensen’s
inequality yields ∫ d

c

y′(t)2

y(t)4
dt ≥ 1

d− c

(∫ d

c

y′(t)

y(t)2
dt

)2

=
1

d− c

(
1

y(c)
− 1

y(d)

)2

.

(3.5)

Since y(a) = 0 and y is continuous at a, we deduce from (3.5) that

lim
c→a

∫ d

c

y′(t)2

y(t)4
dt = +∞ .

Keeping d fixed and taking the limit in (3.4) as c goes to a, we conclude that
F (y) = +∞.

Proposition 3.1 readily implies that the Lavrentiev phenomenon occurs for the
problem with one end-point condition given by

min

∫ 1

0

L(y(t), y′(t)) dt , y ∈ W 1,1(I,R) , y(0) = 0 .

The recent works [4, 5] have shown that the Lavrentiev phenomenon might be
very sensitive to the number of end-point conditions. In fact, the same argument
as above shows that the Lavrentiev phenomenon occurs for the problem with two
end-point conditions given by

min

∫ 1

0

L(y(t), y′(t)) dt , y ∈ W 1,1([0, 1],R) , y(0) = −1 , y(1) = 1 .

However, in the above example, if we keep only one of the two end-point condi-
tions, the Lavrentiev phenomenon disappears! To see this, we proceed as in [3,
§4.3].



Occurrence of gap 8

4 Non-Occurrence of the Lavrentiev Gap and phe-
nomenon for (P)

4.1 Non-occurrence of the gap
Let L : R×R → [0,+∞] be an autonomous Borel Lagrangian with non–negative
values, possibly infinite. Let p ≥ 1. For a given y ∈ W 1,p(I,R), we consider the
following condition.

Condition (Ry). There exist two Lipschitz functions ρ−, ρ+ defined on y(I) such
that

∀z ∈ y(I) ρ−(z) < 0 , ρ+(z) > 0 ,

sup
z∈y(I)

L
(
z, ρ−(z)

)
< +∞ , sup

z∈y(I)
L
(
z, ρ+(z)

)
< +∞ .

Theorem 4.1 (Non-occurrence of the Lavrentiev gap). Let y ∈ W 1,p([0, 1],R)
be such that F (y) < +∞. Assume that y satisfies Condition (Ry). Then there is
no Lavrentiev gap for (P) at y.

The strategy of the proof is the same as the proof of Alberti and Serra Cassano
[1]. Yet it differs at some specific points and it requires also a different construc-
tion for the approximating function. In order to facilitate the reading, we have
chosen to write the full proof. Another reason is that, as we work with real val-
ued functions, some arguments become simpler than in the n–dimensional case.
For convenience, we restate two general lemmas of integration theory that were
proved in [1].

Lemma 4.2. Let g : I → [0,+∞] be a Lebesgue measurable function and let Bh

be a sequence of measurable subsets of I such that |I \Bh| → 0 as h→ ∞. Then

lim
h→+∞

∫
Bh

g dt =

∫
I

g dt .

Lemma 4.3. Let ϕh : I → R be a sequence of Lipschitz functions such that
ϕ′
h ≥ 1 a.e. for every h and ϕh(t) → t as h → +∞ for every t ∈ I . Then, for

every f ∈ Lp(R), the functions f(ϕh) converge towards f in Lp(I).

We will use several times the fact that, since ρ+, ρ− are continuous functions on
I , there are positive constants ρmin > 0, ρmax > 0 such that

∀x ∈ I min{ρ+(x),−ρ−(x)} ≥ ρmin, max{ρ+(x),−ρ−(x)} ≤ ρmax .
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Proof. We assume that y is not constant, otherwise the conclusion is trivial. We
start by applying a classical result which is a consequence of Lusin’s theorem (see
for instance Theorem 3.10 in [6]). For every h ∈ N, there are a Lipschitz function
uh : I → R and an open subset Ah of I such that:

1. |Ah| ≤ 1/h,

2. uh = y, u′h = y′ in I \ Ah,

3. uh(0) = y(0), uh(1) = y(1),

4. uh is affine in each connected component of Ah,

5. Ah is a countable union of disjoint open intervals Ih,k, k ∈ Jh ⊂ N.

The set Ah is somehow the bad set where the function y might behave badly in
the sense that its derivative might be unbounded on Ah. We claim that it is not
restrictive to assume that u′h does not vanish on Ah. Indeed, each Ah is a union
of disjoint open intervals (Ih,k)k. We proceed as follows:

• We first remove from Ah the intervals where y is itself constant on which, as a
byproduct, y = uh;

• On every other subinterval Ih,k = (ah,k, bh,k), k ∈ J ′
h ⊂ Jk where uh is constant

but y is not, we choose ch,k ∈ Ih,k such that y(ch,k) ̸= y(ah,k). On Ih,k \
{ch,k} = (ah,k, ch,k)∪ (ch,k, bh,k) we define ũh to be affine in (ah,k, ch,k) joining
y(ah,k) to y(ch,k) and affine in (ch,k, bh,k) joining y(ch,k) to y(bh,k). We then set
Ãh = Ah \

⋃
k∈J ′

k
{ch,k}. Clearly |Ah| = |Ãh| and (Ãh, ũh) satisfy properties

1-5.

Notice that, since uh is affine on every interval Ih,k and uh, y are equal at the
extremities of Ih,k, then∫

Ah

|u′h| dτ =
∑
k∈Jh

∫
Ih,k

|u′h| dτ =
∑
k∈Jh

∣∣∣∣∣
∫
Ih,k

u′h dτ

∣∣∣∣∣
=

∑
k∈Jh

∣∣∣∣∣
∫
Ih,k

y′ dτ

∣∣∣∣∣
≤

∑
k∈Jh

∫
Ih,k

|y′| dτ =

∫
Ah

|y′| dτ → 0 as h→ +∞.

(4.1)
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The first problem with the function uh is that we might have F (uh) = +∞,
indeed, the integral of L over the intervals Ih,k might very well be infinite. We
shall take advantage of the functions ρ−, ρ+ to replace the portions of the function
uh over Ah by a function vh having a finite energy on Ah, which in addition tends
to 0 as h → +∞. We define a function ρh which is continuous on the set Ah by
setting

∀τ ∈ Ah ρh(τ) =

{
ρ+(uh(τ)) if u′h(τ) > 0 ,

−ρ−(uh(τ)) if u′h(τ) < 0 .
(4.2)

In order to perform an adequate change of variable, we define next a function
φh ∈ W 1,1(I,R) by setting φh(0) = 0 and

φ′
h(τ) =

 1 if τ ∈ I \ Ah ,
|u′h(τ)|
ρh(τ)

if τ ∈ Ah .
(4.3)

Using inequality (4.1), we have

|φh(Ah)| =
∫
φh(Ah)

1 ds =

∫
Ah

φ′
h(τ) dτ =

∫
Ah

|u′h(τ)|
ρh(τ)

dτ

≤ 1

ρmin

∫
Ah

|u′h(τ)| dτ → 0 as h→ +∞ .

(4.4)

Next, we claim that the function φh converges uniformly towards the identity map
on I . Indeed, φh(0) = 0 and moreover, from (4.4) and the fact that |Ah| → 0,∫

I

|φ′
h − 1| dτ ≤

∫
Ah

(φ′
h(τ) + 1) dτ

= |φh(Ah)|+ |Ah| → 0 as h→ +∞ .

In particular, we have

|φh(I)| =
∫
I

φ′
h(τ) dτ = φh(1) → |I| = 1 as h→ +∞ .

Setting Th = φh(1), we thus have Th → 1 as h → +∞. However we don’t know
whether Th is smaller or larger than 1 and this will create some trouble later on.
The derivative φ′

h is strictly positive on I , therefore φh is strictly increasing and
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it is a one to one map from [0, 1] onto [0, Th]. Its inverse ψh : [0, Th] → [0, 1] is
continuous strictly increasing with derivative given by

∀t ∈ [0, Th] ψ′
h(t) =

1

φ′
h

(
ψh(t)

) .
Using the expression of φ′

h given in (4.3), we obtain

ψ′
h(t) =

 1 if t ∈ [0, Th] \ φh(Ah) ,
ρh(ψh(t))

|u′h(ψh(t))|
if t ∈ φh(Ah) .

(4.5)

The change of variable τ = ψh(t) gives

1 =|I| ≥ |ψh(I ∩ [0, Th])| =
∫
ψh(I∩[0,Th])

1 dτ =

∫
I∩[0,Th]

ψ′
h(t) dt

≥
∫
(I∩[0,Th])\φh(Ah)

1 dt ≥ min{1, Th} − |φh(Ah)| ,

so that
lim

h→+∞
|ψh(I ∩ [0, Th])| = 1 . (4.6)

We define a new function vh by setting

∀t ∈ [0, Th] vh(t) = uh(ψh(t)).

The function vh, being the composition of the Lipschitz function uh with the ab-
solutely continuous function ψh, is absolutely continuous with derivative given
by

∀t ∈ [0, Th] v′h(t) = u′h(ψh(t))ψ
′
h(t) .

For t ∈ [0, Th] \ φh(Ah), we have ψ′
h(t) = 1 and ψh(t) ̸∈ Ah, whence

u′h(ψh(t))ψ
′
h(t) = u′h(ψh(t)) = y′(ψh(t)) (4.7)

and thus
∀t ∈ [0, Th] \ φh(Ah) v′h(t) = y′(ψh(t)) .

Let next t ∈ [0, Th] ∩ φh(Ah). In this case, we have

v′h(t) =
u′h(ψh(t))

φ′
h(ψh(t))

=
u′h(ψh(t))

|u′h(ψh(t))|
ρh(ψh(t))

= sgn(u′h(ψh(t))) ρh(ψh(t)) ,

(4.8)
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where sgn is the classical sign function given by

sgn(x) =

{
+1 if x > 0 ,

−1 if x < 0 .

Recalling the definition (4.2) of ρh, we see that

∀t ∈ [0, Th] ∩ φh(Ah) v′h(t) =

{
ρ+(uh(ψh(t))) if u′h(ψh(t)) > 0 ,

ρ−(uh(ψh(t))) if u′h(ψh(t)) < 0 .

This implies in particular that

∀t ∈ [0, Th] ∩ φh(Ah) |v′h(t)| ≤ ρmax . (4.9)

From formula (4.7), we see that v′h is also bounded on [0, Th] \ φh(Ah), since
the function uh is Lipschitz. We conclude that vh is Lipschitz on [0, Th]. We
finally define the Lipschitz function wh which approximates y in energy and in
the space W 1,1(I,R). Two cases may occur. If Th ≥ 1, then we define wh to be
the restriction of vh to [0, 1]. If Th < 1, then we shall extend vh from [0, Th] to
[0, 1] as we explain next. We define

α = min y(I) , β = max y(I) .

We consider the differential equation

z′(t) = ρ+(z(t))

and we denote by z+1 (t) the solution with initial condition z(τ0) = y0, where
τ0 = Th and y0 = wh(Th). Since ρ+ is defined on [α, β], this solution is well
defined until the time

τ1 = inf
{
t ≥ τ0 : z

+
1 (t) = β

}
.

If τ1 < 1, then we set wh(t) = z+1 (t) on [τ0, τ1]. We consider then the differential
equation

z′(t) = ρ−(z(t))

and we denote by z−2 (t) the solution with initial condition z(τ1) = z+1 (τ1) = β.
Since ρ− is defined on [α, β], this solution is well defined until the time

τ2 = inf
{
t ≥ τ1 : z

−
2 (t) = α

}
.
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Notice that, since −ρmax ≤ ρ−, the travelling speed to go from β to α is at most
ρmax and thus

τ2 − τ1 ≥
β − α

ρmax
.

If τ2 < 1, then we extend wh(t) on [τ1, τ2] by setting wh(t) = z−2 (t) on this
interval. We iterate this construction. Since at each stage i ≥ 1, we have

τi+1 − τi ≥
β − α

ρmax
,

then the process ends as soon as τm < 1 ≤ τm+1, after a number m of steps that
is bounded by a number depending only on β − α and 1− Th. In fact, we have

m ≤ ρmax
β − α

(1− Th) + 1 .

In the last step we extend wh(t) on [τm, 1] by restricting the solution of the differ-
ential equation to this interval. In what follows we set τm+1 = 1 for convenience.
To sum up, we have

∀t ∈ [0, 1] w′
h(t) =


v′h(t) if t ∈ [0, Th] ,

ρ+(wh(t)) if t ∈ [τi, τi+1] , i even ,
ρ−(wh(t)) if t ∈ [τi, τi+1] , i odd .

Notice that
∀t ∈ [Th, 1] |w′

h(t)| ≤ ρmax ,

hence the function wh is still Lipschitz. We show next that wh converges to y in
W 1,p(I,R). We decompose the integral as the sum of three terms

∥w′
h − y′∥pLp(I) =

∫
I

|w′
h(t)− y′(t)|p dt = P1,h + P2,h + P3,h ,

where, recalling that wh = vh on [0, Th],

P1,h =

∫
(I∩[0,Th])\φh(Ah)

|v′h(t)− y′(t)|p dt ,

P2,h =

∫
I∩[0,Th]∩φh(Ah)

|v′h(t)− y′(t)|p dt ,

P3,h =

∫
I∩[min{Th,1},1]

|w′
h(t)− y′(t)|p dt .
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We prove next that the three terms P1,h, P2,h, P3,h tend to 0 as h→ +∞. We have

P1,h =

∫
(I∩[0,Th])\φh(Ah)

|u′h(ψh(t))ψ′
h(t)− y′(t)|p dt .

It follows from (4.5) that ψ′
h = 1 on (I ∩ [0, Th]) \ φh(Ah), therefore we can

rewrite P1,h as

P1,h =

∫
(I∩[0,Th])\φh(Ah)

|u′h(ψh(t))− y′(t)|pψ′
h(t) dt .

The change of variable τ = ψh(t) yields then

P1,h =

∫
ψh(I∩[0,Th])\Ah

|u′h(τ)− y′(φh(τ))|p dτ .

Using the fact that u′h = y′ on I \ Ah, we obtain

P1,h =

∫
ψh(I∩[0,Th])\Ah

∣∣y′(τ)− y′(φh(τ))
∣∣p dτ

≤
∫
I

∣∣y′(τ)− y′(φh(τ))
∣∣p dτ → 0 as h→ +∞,

in virtue of Lemma 4.3. Concerning P2,h, we notice that

P2,h ≤ 2p
(∫

I∩[0,Th]∩φh(Ah)

|v′h(t)|p dt+
∫
I∩[0,Th]∩φh(Ah)

|y′(t)|p dt
)
.

It follows from (4.9) and (4.4) that∫
I∩[0,Th]∩φh(Ah)

|v′h(t)|p dt ≤ (ρmax)
p |φh(Ah)| → 0 as h→ +∞,

and the integrability of |y′|p immediately gives, thanks to Lemma 4.2,∫
I∩[0,Th]∩φh(Ah)

|y′(t)|p dt→ 0 as h→ +∞,

so that P2,h → 0 as h→ +∞. Finally, we have

P3,h ≤ 2p
(∫

I∩[min{Th,1},1]
|w′

h(t)|p dt+
∫
I∩[min{Th,1},1]

|y′(t)|p dt
)
.
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As above, since Th → 1 as h→ +∞, we have, thanks to Lemma 4.2,∫
I∩[min{Th,1},1]

|y′(t)|p dt→ 0 as h→ +∞.

Moreover, |w′
h| ≤ ρmax on I ∩ [Th, 1], so that∫

I∩[min{Th,1},1]
|w′

h(t)|p dt ≤ (ρmax)
p(1−min{Th, 1}) → 0 as h→ +∞.

We show now that F (wh) converges to F (y) as h→ +∞. By definition, we have

F (wh) =

∫
I

L(wh, w
′
h) dt .

We decompose the integral as the sum of three terms

F (wh) = Q1,h +Q2,h +Q3,h ,

where, recalling that wh = vh on [0, Th],

Q1,h =

∫
(I∩[0,Th])\φh(Ah)

L(vh, v
′
h) dt ,

Q2,h =

∫
I∩[0,Th]∩φh(Ah)

L(vh, v
′
h) dt ,

Q3,h =

∫
I∩[min{Th,1},1]

L(wh, w
′
h) dt .

We prove next that Q1,h converges towards F (y) while Q2,h, Q3,h tend to 0 as
h→ +∞. From the definition of vh, we have

Q1,h =

∫
I∩[0,Th]\φh(Ah)

L
(
uh(ψh(s)), u

′
h(ψh(s))ψ

′
h(s)

)
ds .

It follows from (4.5) that ψ′
h = 1 on (I ∩ [0, Th]) \ φh(Ah), therefore we can

rewrite Q1,h as

Q1,h =

∫
(I∩[0,Th])\φh(Ah)

L
(
uh(ψh(s)), u

′
h(ψh(s))

)
ψ′
h(s) ds .
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The change of variable τ = ψh(s) yields then

Q1,h =

∫
ψh(I∩[0,Th])\Ah

L
(
uh(τ), u

′
h(τ)

)
dτ .

Using the fact that uh = y and u′h = y′ on I \ Ah, we obtain

Q1,h =

∫
ψh(I∩[0,Th])\Ah

L
(
y(τ), y′(τ)

)
dτ .

Lemma 4.2 and the estimate (4.6) allow to conclude that

Q1,h →
∫
I

L
(
y(τ), y′(τ)

)
dτ as h→ +∞ .

Thus we are done with Q1,h. We deal next with Q2,h. The expression of the
derivative of v′h on I ∩ [0, Th] ∩ φh(Ah) was computed in (4.8), so we have

Q2,h =

∫
I∩[0,Th]∩φh(Ah)

L
(
uh(ψh(t)), sgn(u

′
h(ψh(t))) ρh(ψh(t))

)
dt .

The change of variable τ = ψh(t) gives, with the help of the expression of ψ′
h

computed in (4.5),

Q2,h =

∫
ψh(I∩[0,Th])∩Ah

L
(
uh(τ), sgn(u

′
h(τ)) ρh(τ)

) |u′h(τ)|
ρh(τ)

dτ

≤ 1

ρmin

∫
Ah

L
(
uh(τ), sgn(u

′
h(τ)) ρh(τ)

)
|u′h(τ)| dτ .

We thus obtain

Q2,h ≤ 1

ρmin

(
sup
z∈y(I)

L
(
z, ρ−(z)

)
dz + sup

z∈y(I)
L
(
z, ρ+(z)

)
dz

)∫
Ah

|u′h| dτ

so that (4.1) yields that Q2,h → 0 as h→ +∞.
It remains to prove that Q3,h → 0 as h → +∞. If Th ≥ 1, then Q3,h = 0. Let us
examine the case where Th < 1. From the construction of the extension wh of vh
on [Th, 1], we have

Q3,h =
∑

0≤i≤m
i even

∫ τi+1

τi

L
(
wh(t), ρ

+(wh(t))
)
dt

+
∑

0≤i≤m
i odd

∫ τi+1

τi

L
(
wh(t), ρ

−(wh(t))
)
dt
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so that

Q3,h ≤
(

sup
z∈y(I)

L
(
z, ρ−(z)

)
dz + sup

z∈y(I)
L
(
z, ρ+(z)

)
dz

)
(1− Th).

Since Th → 1 as h → +∞, we conclude that Q3,h → 0 as h → +∞. The proof
that F (yh) → F (y) as h→ +∞ is now complete.

Inspecting the proof of Theorem 4.1, we see that we could replace the Lipschitz
continuity assumption on the functions ρ+, ρ− by the assumption that

sup
z∈y(I)

L
(
z, 0

)
< +∞.

Indeed, in the case where Th < 1, we could extend vh on [Th, 1] with the help of
a constant function on [Th, 1].

4.2 Non-occurrence of the phenomenon
Condition (R). There exist two locally Lipschitz functions ρ−, ρ+ defined on R
such that:

∀z ∈ R ρ−(z) < 0 , ρ+(z) > 0 ,

and for every bounded interval J of R,

sup
z∈J

L
(
z, ρ−(z)

)
< +∞ , sup

z∈J
L
(
z, ρ+(z)

)
< +∞ .

Corollary 4.4 (Non-occurrence of the Lavrentiev phenomenon). Let L : R ×
R → [0,+∞] be an autonomous Borel Lagrangian with non–negative values,
possibly infinite. Suppose that L satisfies Condition (R). Then the Lavrentiev
phenomenon does not occur for (P).

Proof. Let (yk)k be a minimizing sequence for (P) satisfying, for all k ∈ N:

• yk ∈ W 1,1(I,R), yk(0) = 0;

• F (yk) ≤ inf (P) +
1

k + 1
.

Fix k ∈ N. The condition (R) implies that the condition (Ryk) holds as well. By
Theorem 4.1, there exists zk ∈ Lip([0, 1],R) such that zk(0) = 0 and

F (zk) ≤ F (yk) +
1

k + 1
.

Therefore (zk)k is a minimizing sequence of Lipschitz functions for (P), thus prov-
ing the claim.
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