Raphaël CERF

Bât. 425
Université Paris-Sud
91405 Orsay Cedex             French Version

Courrier électronique :
Use rcerf for the name followed by the
standard address of the maths department.
Bureau : 321, Téléphone : (+33) 1 69 15 77 29
[Ma photo] 

I am currently supervising the PhD thesis of Joseba Dalmau and Matthias Gorny.

I had the pleasure to supervise the following PhD thesis:

Olivier Couronné
Sur les grands clusters en percolation

Reda Messikh
Du modèle d'Ising 2D vers un problème de Mumford–Shah à deux couleurs

Alexandre Gaudillère (the true director is Enzo Olivieri)
Fuga dalla metastabilità per dinamiche stocastiche conservative

Marie Théret
Grandes déviations pour le flux maximal en percolation de premier passage

Pierre Petit
Sur la théorie de Cramér et sa généralisation aux champs asymptotiquement découplés

I have written papers with Laurent Alonso, Gérard Ben Arous, Stefano Bianchini, Olivier Catoni, Emilio Cirillo, Matthias Gorny, Richard Kenyon, Sana Louhichi, Francesco Manzo, Carlo Mariconda, Reda Messikh, Pierre Petit, Agoston Pisztora, Marie Théret.

I have written simulation programs for the Ising model and for bond and site percolation, in C++ under Linux, and I hope to port them to the Mac in a near future.


I have written four monographs:
Large deviations for three dimensional supercritical percolation, Astérisque 267, 177 pages, 2000
The Wulff crystal in Ising and Percolation models, Lecture notes in Mathematics 1878, 264 pages, 2006
On Cramér theory in infinite dimensions, Panoramas et Synthèses 23, 159 pages, 2007 (a small mistake)
Critical population and error threshold on the sharp peak landscape for a Moran model
, Memoirs of the American Mathematical Society, 91 pages, 2013 (to appear)

Here is the list of my papers, and the corresponding pdf files organized by topic.
I did my PhD thesis on genetic algorithms in Montpellier under the supervision of Alain Berlinet.

My research effort is mainly aimed at proving that there is no percolation at the critical point in dimension 3.