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A MODEL FOR MENDELIAN POPULATIONS DEMOGENETICS ∗

Camille Coron1

Abstract. This proceeding introduces and studies a diffusion process that models the demogenetic
behavior of a diploid population with sexual Mendelian reproduction. This process is defined as the slow
limit of a slow-fast dynamics derived from the rescaling of a birth-and-death process with interactions.

Résumé. Cet acte de conférence introduit et étudie un processus de diffusion modélisant le com-
portement démo-génétique d’une population diploïde à reproduction sexuée. Ce processus est obtenu
comme la limite lente d’une dynamique stochastique lente-rapide obtenue par changement d’échelle
d’un processus de naissance et mort avec interactions.

1. Context

We are interested in modeling and studying the demogenetic dynamics of a diploid Mendelian population with
competition. Our motivation is more precisely to understand first, the interactions between population size and
population genetics dynamics, and second, the impact of sexual reproduction on population demogenetics. This
proceeding is based on the article Coron (2013) in which proofs of the presented results are detailed, though we
consider here a slightly more general model, taking into account breeding preferences.
Let us consider a population of diploid individuals that are characterized by their genotype at one locus for
which there exist 2 alleles, A and a (also denoted respectively 1 and 2). We study the genetic dynamics of the
population, i.e. the dynamics of the respective numbers of individuals with genotype AA, Aa, and aa. First,
let us recall some models of genetic or demogenetic dynamics of diploid and/or haploid populations.
The following well-known neutral Wright-Fisher diffusion models the dynamics of a bi-allelic locus in a haploid
population with constant size (Wright (1931)). In this model, each individual has genotype A or a, Xt is the
proportion of allele A at time t, Ne is the (constant) effective population size, s is the selective advantage of
allele A over allele a and (Bt)t≥0 is a standard Brownian motion.

dXt =

√
Xt(1−Xt)

Ne
dBt + sXt(1−Xt)dt. (1)

This diffusion is obtained by the rescaling of a discrete time population model with constant size and non
overlapping generations. For diploid populations, an analogous version of this model is presented notably in
Crow and Kimura (1970), p. 408. More precisely, the selective advantage of genotype AA (resp. Aa) over
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genotype aa is denoted by s (resp. hs, h is called the dominance coefficient) and the frequence (Xt)t≥0 of allele
A then satisfies

dXt =

√
Xt(1−Xt)

2Ne
dBt + s(h+ (1− 2h)Xt)Xt(1−Xt)dt. (2)

Wright-Fisher diffusions are therefore equivalent for haploid populations and for diploid populations with ad-
ditive selection (i.e. when h = 1/2), when changing the effective haploid population size Ne to 2Ne and the
haploid selection coefficient s to s/2. In other words, studying the genetic dynamics of a population of diploid
individuals with constant effective size and additive selection is equivalent to studying the set of alleles carried
by these individuals.
Now, Cattiaux and Méléard (2010) studied the following model of haploid population with one bi-allelic locus,
stochastically varying size, clonal reproduction, and interaction. In this model, each individual has genotype A
or a, and the process (Nh

t , X
h
t )t≥0 models simultaneously the dynamics of population size and of the proportion

of allele A in the population:

dNh
t =

√
2γNh

t dB̃
1
t +Nh

t

[
β − δ + sXh

t −Nh
t

(
c11(X

h
t )

2 + c22(1−Xh
t )

2 + (c12 + c21)X
h
t (1−Xh

t )
) ]
dt

dXh
t =

√
2γXh

t (1−Xh
t )

Nh
t

dB̃2
t +Xh

t (1−Xh
t )
[
s−Nh

t

(
c11X

h
t − c22(1−Xh

t ) + c12(1−Xh
t )− c21Xh

t

) ]
dt

(3)

Here (B̃1
t , B̃

2
t )t≥0 is a standard bidimensional Brownian motion, β − δ (resp. β − δ + s) is the growth rate of

individuals with genotype a (resp. A), and cij is the competition rate of an individual with genotype j over an
individual with genotype i (we recall that alleles A and a can also be respectively denoted by 1 and 2).
In this work we introduce a diffusion model to study the demogenetic dynamics of a diploid population with
sexual reproduction. This diffusion (given in Equation (4)) is obtained as the slow limiting dynamics of a
rescaled birth-and-death process with competition and Mendelian reproduction. More precisely, the population
is initially modeled by a 3-type birth-and-death process denoted by νK = (νKt , t ≥ 0). Following an infinite pop-
ulation size approximation (as in Champagnat (2006) notably) we assume that the initial number of individuals
is of order K where K is a scale parameter that will go to infinity and we consider the sequence of stochastic
processes ZK = νK/K. At each time t and for all K, we define the deviation Y Kt of the population ZKt from
a so-called Hardy-Weinberg structure. Under a weak-selection regime, the sequence of stochastic processes
(ZK)K≥1 converges toward a slow-fast dynamics: the sequence of random variables (Y Kt )K∈{1,2,...} goes to 0 as
K goes to infinity, while the sequence of processes (NK

t , X
K
t )t≥0 giving respectively the population size and the

proportion of allele A converges in law toward the 2-dimensional diffusion process (Nt, Xt)t≥0 we are interested
in. This convergence toward Hardy-Weinberg structure was obtained for deterministic models in Norton (1928)
and for stochastic models with large constant population size in Nagylaki (1992) (Chap. 4.10) and therefore
remains true with stochastic population size dynamics. However, due to this stochasticity, the limiting diffusion
(Nt, Xt)t≥0 is not equivalent to the corresponding haploid one obtained from Cattiaux and Méléard (2010),
contrarily to what was shown previously for populations with constant population size (Equations (1) and (2)).
In Section 3, absorption behaviors of diploid and haploid populations are compared. Due to competition, these
populations get extinct almost surely in finite time and we therefore study the quasi-stationary behavior of the
diffusion process (Nt, Xt)t≥0 conditioned on the non extinction of the population. In particular, we present
numerical applications that show the long-time coexistence of the two alleles for three biologically relevant
cases: a pure competition neutral case, a case in which each genotype has its own ecological niche, and an
overdominance case. Notably, we show that a long-term coexistence of alleles is possible even in some full
competition cases, which is not true for haploid clonal reproduction (Cattiaux and Méléard, 2010).
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2. Model and slow-fast dynamics

2.1. Model

The population at any time t is represented by a 3-dimensional birth-and-death process giving the respective
numbers of individuals with genotype AA, Aa and aa. As in Champagnat and Méléard (2007); Fournier and
Méléard (2004) or Collet et al. (2013), we consider an infinite population size approximation. To this end we
index the population by a scaling parameter K ∈ {1, 2, ...} that will go to infinity. The initial numbers of
individuals of each type will be of order K and we then consider the rescaled stochastic processes(

ZKt
)
t≥0 =

(
Z1,K
t , Z2,K

t , Z3,K
t

)
t≥0

giving for each time t the respective numbers of individuals with genotypes AA, Aa, and aa divided by K. As in
Collet et al. (2013) or Coron (2014), the birth rates of (ZKt )t≥0 model Mendelian reproduction. More precisely,
if we set e1 = (1, 0, 0), e2 = (0, 1, 0) and e3 = (0, 0, 1), then for all i ∈ {1, 2, 3}, the rates λKi (Z) at which the

stochastic process ZK jumps from z = (z1, z2, z3) ∈
(

Z+

K

)3
to z + ei/K, as long as z1 + z2 + z3 = n 6= 0, are

given by:

λK1 (z) =
KbK1
n

[
rK11z

2
1 + rK12z1z2 + rK22

(z2
2

)2]
,

λK2 (z) =
2KbK2
n

[
rK12

z1z2
2

+ rK32
z3z2
2

+ rK22

(z2
2

)2
+ rK13z1z3

]
,

λK3 (z) =
KbK3
n

[
rK33z

2
3 + rK32z3z2 + rK22

(z2
2

)2]
.

These birth rates are naturally set to 0 if n = 0, and the demographic parameters rKij = rKji ∈ R+ (resp. bKi )
model fertility and breeding preferences (resp. viability at birth) of individuals. Now individuals can die either
naturally or due to competition with other individuals. More precisely, for all i ∈ {1, 2, 3}, the rates µKi (z) at
which the stochastic process ZK jumps from z = (z1, z2, z3) ∈ (Z+)

3/K to z − ei/K for i ∈ {1, 2, 3} are given
by:

µK1 (z) = Kz1(d
K
1 +K(cK11z1 + cK12z2 + cK13z3)),

µK2 (z) = Kz2(d
K
2 +K(cK21z1 + cK22z2 + cK23z3)),

µK3 (z) = Kz3(d
K
3 +K(cK31z1 + cK32z2 + cK33z3)).

The demographic parameter dKi ∈ R+ (resp. cKij ) is called the intrinsic death rate of individuals of type i (resp.
the competition rate of individuals of type j over type i). From now on, we say that the stochastic process ZK
is neutral if its demographic parameters do not depend on individuals genotypes, i.e.

bKi = bK , rKij = 1, dKi = dK and cKij = cK ∀i, j ∈ {1, 2, 3}.

The pure jump process (ZKt )t≥0 is well defined for all t ∈ R+ and is a (Z+)3

K -valued pure jump Markov process
absorbed at (0, 0, 0), with trajectories in the space D(R+, (Z+)

3/K) of left-limited and right-continuous functions
from R+ to (Z+)

3/K, endowed with the Skorohod topology. The infinitesimal generator LK of ZK satisfies for
every bounded measurable function f from (Z+)

3/K to R and for every z ∈ (Z+)3

K :

LKf(z) =
∑

i∈{1,2,3}

[
λKi (z)

(
f
(
z +

ei
K

)
− f(z)

)
+ µKi (z)

(
f
(
z − ei

K

)
− f(z)

)]
.

To end with model description, let us introduce three quantities of interest. First, the rescaled population size
at time t and the proportion of allele A at time t are respectively denoted by
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NK
t = Z1,K

t + Z2,K
t + Z3,K

t ∈ Z+

K
and XK

t =
2Z1,K

t + Z2,K
t

2(Z1,K
t + Z2,K

t + Z3,K
t )

∈ [0, 1].

Next, let us define the stochastic processes (Y Kt , t ≥ 0) such that for every t ≥ 0, as long as NK
t > 0,

Y Kt =
4Z1,K

t Z3,K
t − (Z2,K

t )2

4NK
t

.

If NK
t = 0, we naturally set Y Kt = 0 as |Y Kt | ≤ NK

t for all t ≥ 0. This stochastic process will play a main role
afterwards; note first that

Y Kt = Z1,K
t − (2Z1,K

t + Z2,K
t )2

4NK
t

=
(
pAA,Kt − (XK

t )2
)
NK
t

if pAA,Kt is the proportion of genotype AA in the population at time t. Similarly,

Y Kt =
(
paa,Kt − (1−XK

t )2
)
NK
t =

(
2XK

t (1−XK
t )− pAa,Kt

)
NK
t .

Then if Y Kt = 0, the proportion of each genotype in the population is equal to the proportion of pairs of alleles
forming this genotype. If Y Kt = 0 the population ZKt is called to satisfy Hardy-Weinberg structure. We prove
easily that the triplet (NK

t , X
K
t , Y

K
t ) characterizes the population at time t and from now on, we will mostly

use this representation.

2.2. Slow-fast stochastic dynamics and limiting diffusion

In this section, we investigate a diffusive scaling under which both population size and proportion of allele a
evolve stochastically with time (in particular the population can get extinct and one of the two alleles can
eventually get fixed), while the population still converges rapidly toward Hardy-Weinberg structure.
We assume that individual birth and natural death rates are of order K, while ZK0 converges in law toward a
random vector Z0 as K →∞. More precisely, we set for γ > 0 and for a (R+)

3-valued random variable Z0:

bKi = γK + βi ∈ [0,∞[

rKij = 1 +
ρij
K
∈ [0,∞[

dKi = γK + δi ∈ [0,∞[

cKij =
αij
K
∈ R

ZK0 →
K→∞

Z0 in law.

Therefore birth and natural death events are now happening faster and compensate each other, which will
introduce some stochasticity in the limiting process. A biological interpretation for the scaling of the interaction
coefficients cKij is that a constant quantity of resources is shared by small individuals whose biomass is equal to
1/K (as presented in Champagnat et al. (2006)); these coefficients will only step in limiting drift terms. Under
this scaling of demographic parameters, Y K will be a "fast" variable that converges directly toward the long
time equilibrium of Y (equal to 0, as studied in Ethier and Nagylaki (1980, 1988); Katzenberger (1991)), while
XK and NK will be "slow" variables, converging toward a non-deterministic process.
Population size stochasticity induces dificulties linked to both population extinction and population size control.
From now on, we assume the following initial 3-rd-order moments condition:
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there exists C <∞ such that sup
K

E((NK
0 )3)) ≤ C. (H1)

Lemma 1 of Champagnat (2006) and the proof of Theorem 5.3 of Fournier and Méléard (2004)), ensure the
propagation of population size 3-rd-order moments control, which is needed to prove convergence toward a
slow-fast dynamics. By domination, this result is generalized in Coron (2013) in a case where cooperation is
also possible but competition remains stronger. Then, the following proposition gives that (Y Kt , t ≥ 0) is a fast
variable that converges toward the deterministic value 0 as K goes to infinity.

Proposition 2.1. Under (H1), for all s, t > 0, sup
t≤u≤t+s

E((Y Ku )2)→ 0 as K goes to infinity.

The proof of this proposition relies on Kolmogorov-forward equation, and we now study the behavior of the
sequence of remaining stochastic processes ((NK

t , X
K
t )t≥0)K≥1.

Theorem 2.2. For any ε > 0 and T > 0, let TKε = inf{t ∈ [0, T ] : NK
t ≤ ε}. If the sequence of random

variables (NK
0 , X

K
0 ) ∈ [ε,+∞[×[0, 1] converges in law toward a random variable (N0, X0) ∈]ε,+∞[×[0, 1] as

K goes to infinity, then the sequence of stopped stochastic processes {(NK , XK).∧TKε }K≥1 converges in law in
D([0, T ], [ε,∞[×[0, 1]) as K goes to infinity, toward the stopped diffusion process (N,X).∧Tε (Tε = inf{t ∈ [0, T ] :
Nt = ε}), starting from (N0, X0) and satisfying the following diffusion equation:

dNt =
√
2γNtdB

1
t

+Nt

[
X2
t (β1 − δ1) + 2Xt(1−Xt)(β2 − δ2) + (1−Xt)

2(β3 − δ3)

+ γ
[
ρ11X

4
t + 4ρ12X

3
t (1−Xt) + 4ρ22X

2
t (1−Xt)

2 + 2ρ13X
2
t (1−Xt)

2 + 4ρ23Xt(1−Xt)
3 + ρ33(1−Xt)

4
]

−Nt
[
X2
t

(
α11X

2
t + α212Xt(1−Xt) + α31(1−Xt)

2
)

+ 2Xt(1−Xt)
(
α12X

2
t + α222Xt(1−Xt) + α32(1−Xt)

2
)

+ (1−Xt)
2
(
α13X

2
t + α232Xt(1−Xt) + α33(1−Xt)

2
) ]]

dt

dXt =

√
γXt(1−Xt)

Nt
dB2

t

+ (1−Xt)Xt

[
(β1 − δ1)Xt + (β2 − δ2)(1− 2Xt) + (β3 − δ3)(1−Xt)

+ γ
[
ρ11X

3
t + ρ12X

2
t (3− 4Xt) + 2ρ22Xt(1−Xt)(1− 2Xt) + ρ23(1−Xt)

2(1− 4Xt)

+ ρ13Xt(1−Xt)(1− 2Xt)− ρ33(1−Xt)
3
]

−Nt
[
X2
t (α11Xt + α12(1− 2Xt)− α13(1−Xt))

+ 2Xt(1−Xt)(α21Xt + α22(1− 2Xt)− α23(1−Xt))

+ (1−Xt)
2(α31Xt + α32(1− 2Xt)− α33(1−X))

]]
dt,

(4)
where (B1

t , B
2
t )t≥0 is a 2-dimensional standard Brownian motion.

The diffusion equation (4) can be simplified in the neutral case:

Remark 2.3. If βi = β, ρij = 0, δi = δ and αij = α for all i, j, the diffusion process (Nt, Xt)t≥0 satisfies:

dNt =
√
2γNtdB

1
t +Nt(β − δ − αNt)dt

dXt =

√
γXt(1−Xt)

Nt
dB2

t .
(5)
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This diffusion can be seen as a Wright-Fisher diffusion (Equation (2)) associated to a population size evolving
stochastically with time. This diffusion will later be compared (Remark 2.5 and next section) to the model of
haploid population studied in Cattiaux and Méléard (2010) and recalled in Equation (3).

Elements of proof of Theorem 2.2. Stopping times TKε are meant to deal with the explosion of the diffusion

coefficient
√

γXt(1−Xt)
Nt

when Nt goes to 0. To avoid such complications, the convergence result is proved
initially for the sequence of processes ((2NK

t (1 − XK
t ), 2NK

t X
K
t )t≥0)K≥1 giving the respective quantities of

allele A and a, for which limiting diffusion coefficients are bounded near {Nt = 0}, and is next derived for the
sequence ((NK

t , X
K
t )t≥0)K≥1. The proof of the convergence for the sequence ((2NK

t (1−XK
t ), 2NK

t X
K
t )t≥0)K≥1,

using the Rebolledo-Aldous criterion (Theorem 2.3.2 Joffe and Métivier (1986)), consists in proving first the
tightness of this sequence of processes and second its convergence (using Proposition 2.1) toward the unique
continuous solution of the appropriate martingale problem. �

Remark 2.4. As noted in Depperschmidt et al. (2012) (Remark 2.1), diploid additive and haploid selection are
equivalent for populations with constant size. In our model, in an additive case for which β2−δ2 = (β1−δ1)−s,
β3 − δ3 = (β1 − δ1) − 2s, ρij = 0 and αij = α for all i, j, the limiting diffusion (N,X) given in Equation (4)
satisfies:

dNt =
√

2γNtdB
1
t +Nt(β1 − δ1 − αNt)dt+ 2sNtXtdt

dXt =

√
γXt(1−Xt)

Nt
dB2

t + sXt(1−Xt)dt.

In this case of diploid additive selection, the drift coefficient of the proportion Xt has indeed the same form
than the drift of a haploid Wright-Fisher diffusion with selection (Equation (1)). However, the following remark
shows that due to interactions between demography and genetics, our model of diploid population with additive
selection is different than the model of haploid population with stochastic population size of Equation (3).

Remark 2.5. Consider a neutral version of the haploid model given in Equation (3):

dNh
t =

√
2γNh

t dB̃
1
t + (β − δ − αNh

t )N
h
t dt

dXh
t =

√
2γXh

t (1−Xh
t )

Nh
t

dB̃2
t

(6)

The only difference between diploid and haploid neutral models is that the variation of proportion of allele A
is divided by

√
2 in the diploid population (Equations (5) and (6)). However, the respective numbers of alleles

A and a are directed by correlated Brownian motions in a diploid population which is not the case in a haploid
population. Indeed, setting NA,h

t = Nh
t (1−Xh

t ), N
a,h
t = Nh

t X
h
t , NA

t = Nt(1−Xt) and Na
t = NtXt, we obtain

dNA,h
t =

√
2γNA,h

t dB1,h
t + (β − δ − α(NA,h +Na,h))NA,hdt

dNa,h
t =

√
2γNa,h

t dB2,h
t + (β − δ − α(NA,h

t +Na,h
t ))Na,h

t dt,

where (B1,h
t , B2,h

t )t≥0 is a bidimensional standard Brownian motion, while

dNA
t =

√
4γ

NA
t +Na

t

NA
t dB

1
t +

√
2γ

NA
t N

a
t

NA
t +Na

t

dB2
t +NA

t

(
β − δ − αN

A
t +Na

t

2

)
dt

dNa
t =

√
4γ

NA
t +Na

t

Na
t dB

1
t −

√
2γ

NA
t N

a
t

NA
t +Na

t

dB2
t +Na

t

(
β − δ − αN

A
t +Na

t

2

)
dt,
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In particular, our model of neutral diploid population with stochastic size does not have the same law as a
neutral haploid population with sampling parameter γ replaced by γ/2.

3. Behavior of the model

In this section we study the long-time behavior of the diffusion process (Nt, Xt)t≥0 introduced in Theorem 2.2.
For any process U , we denote by PUx the law of U starting from a point x, and EUx the associated expectation.

3.1. Extinction and fixation times

Let T0 = inf{t ≥ 0 : Nt = 0} and TX{0,1} = inf{t ≥ 0 : Xt ∈ {0, 1}} be respectively the extinction time of the
population and the fixation time of one of the two alleles A and a. First of all, from Lemma 4.1 of Etheridge
(2004) and domination arguments, the population gets extinct almost surely in finite time, i.e.P(N,X)

(n,x) (T0 <

+∞) = 1. The long-time behavior of the diffusion process (Nt, Xt)t≥0 is therefore trivial, and we study allele
fixation before extinction (next proposition) and conditioned on non-extinction (Section 3.3).

Proposition 3.1. For all n > 0, P(N,X)
(n,x) (TX{0,1} < T0) = 1.

Remark 3.2. The proof of the previous proposition in the neutral case (Equation (5)) relies on the following
time change representation: if we define the time change τ such that

∫ τ(t)
0

1
Ns
ds = t for all t ≥ 0 and set X̂t =

Xτ(t) then (X̂t)t≥0 is a diploid Wright-Fisher diffusion with effective size 1/2γ. Similarly, (X̂h
t )t≥0 = (Xh

τ(t))t≥0
is a haploid Wright-Fisher diffusion with effective size 1/2γ. In particular this representation implies from
Equations (1) and (2) that alleles fixation time in a neutral haploid population with demographic parameters
γ, β, δ and α is stochastically dominated by alleles fixation time in a neutral diploid population with same
demographic parameters.

3.2. New change of variables

We now study the long-time behavior of the diffusion process (Nt, Xt)t≥0 conditioned on non-extinction, i.e.
conditioned on not reaching the absorbing state (0, 0). In particular, we are interested in studying the possibility
of a long-time coexistence of the two alleles A and a in the population conditioned on non-extinction. Catti-
aux et al. (2009) and Cattiaux and Méléard (2010) studied the quasi-stationary behavior of multi-dimensional
Kolmogorov diffusions (i.e. diffusion processes with unit diffusion coefficient and gradient drift). We there-
fore change variables to obtain a 2-dimensional Kolmogorov diffusion (under conditions on the interactions
parameters that will be discussed later). Let us define (St, t ≥ 0) = ((S1

t , S
2
t ), t ≥ 0), with

S1
t =

√
2Nt
γ

cos

(
arccos(2Xt − 1)√

2

)

S2
t =

√
2Nt
γ

sin

(
arccos(2Xt − 1)√

2

)
.

To begin with, simple calculations give the following proposition, illustrated in Figure 1.

Proposition 3.3. For all t ≥ 0, one has S2
t ≥ 0 and S2

t ≥ uS1
t , with u = tan

(
π√
2

)
< 0.

Remark 3.4. Let us define for all (s1, s2) ∈ R2, the sets A = {s2 = 0, s1 > 0}, a = {s2 = us1, s2 > 0} and
0 = {s1 = s2 = 0}. The events {St ∈ A}, {St ∈ a}, and {St ∈ 0} are respectively equal to the events {Xt = 1}
(fixation of allele A), {Xt = 0} (fixation of allele a) and {Nt = 0} (extinction of the population).
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Figure 1. Set D of the possible values of St, for t ≥ 0.

We denote by D = R ×R+ ∩ {(s1, s2) : s2 ≥ us1} the set of values taken by St for t ≥ 0, ∂D = A ∪ a ∪ 0 its
boundary in R2, and TD the hitting time of D by (St)t≥0 for any D ⊂ D. 0, A∪0 and a∪0 are absorbing sets
and are reached almost surely in finite time by (St)t≥0.
We define the following symmetry hypothesis for competition parameters:

αij = αji, ∀i, j ∈ {1, 2, 3}. (H2)

From Itô’s formula, under (H2) the diffusion process (St, t ≥ 0) satisfies the following diffusion equation:

dSt = dWt −∇Q(St)dt,

where the potential Q satisfies in the neutral case and for all s = (s1, s2) ∈ D,

Q(s) =



ln((s1)
2+(s2)

2)
2 + 1

2 ln
(
sin
(√

2 arctan
(
s2
s1

)))
− (β − δ − αγ

4 ((s1)
2 + (s2)

2)) (s1)
2+(s2)

2

4 if s1 ≥ 0

ln((s1)
2+(s2)

2)
2 + 1

2 ln
(
sin
(√

2
(
arctan

(
s2
s1

)
+ π

)))
− (β − δ − αγ

4 ((s1)
2 + (s2)

2)) (s1)
2+(s2)

2)
4 if s1 ≤ 0.

The corresponding potential Q in the non-neutral case is given in Coron (2013).

3.3. Quasi-stationary behavior

From Cattiaux and Méléard (2010) and since some additional properties of the potential Q are proved in
Proposition 8 of Coron (2013), the law of St conditioned on St /∈ 0 converges.

Theorem 3.5. There exists a unique probability measure ν0 on D \ 0 such that for all s ∈ D \ ∂D and for all
E ⊂ D \ 0,

lim
t→∞

PSs (St ∈ E|T0 > t) = ν0(E).

The quasi-stationary behavior of the diffusion process ((Nt, Xt), t ≥ 0) conditioned on non extinction is then
obtained easily since the variables (Nt, Xt) are obtained from (S1

t , S
2
t ) by a change of variables (Figure 1). Let

us remind that we are interested in studying the possibility of a long-time coexistence of the two alleles A and a
in the population conditioned on non-extinction. This means that we want to approximate the quasi-stationary
distribution νX such that

νX(.) := lim
t→∞

PN,X(n,x)(Xt ∈ .|Nt > 0) (7)
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and we are see whether νX(]0, 1[) = 0 or not. Indeed, if νX(]0, 1[) 6= 0 then we can observe a long-time
coexistence of the two alleles in the population conditioned on non-extinction whereas if νX(]0, 1[) = 0, no such
coexistence is possible.

4. Numerical results

Numerical simulations of νX are obtained following the Fleming-Viot algorithm introduced in Burdzy et al.
(1996) and studied in Villemonais (2011, 2013). This approach consists in approximating the conditioned
distribution PN,X(n,x)((Nt, Xt) ∈ .|T0 > t) by the empirical distribution of an interacting particle system. Here we
present three biologically relevant examples. For each case, we plot the empirical distribution of proportion of
allele a, at a large time T . First, we consider a neutral competitive case (Equation (5)). Here, our simulation of
the quasi-stationary distribution νX of the proportionX is a sum of two Dirac functions in 0 and 1 (Figure 2), i.e.
alleles A and a do not coexist in a long time limit. Second (Figure 3), we show a case in which individuals only

Figure 2. Approximation of the quasi-stationary distribution νX of the proportion X of allele
a (Equation (7)), in a neutral competitive case. In this figure, βi = 1, ρij = 0, δi = 0, and
αij = 0.1 for all i, j, and T = 40.

compete with individuals with same genotype; this can happen if different genotypes feed differently and/or
have different predators. In this case, we can observe either a coexistence of the two alleles A and a or an
elimination of one of the alleles, since the distribution νX charges both {0} ∪ {1} and ]0, 1[. Third (Figure 4),
we show an overdominance case: every individual competes equally with every other ones but heterozygotes
(individuals with genotype Aa) are favored compared to homozygotes (individuals with genotype AA or aa),
as their reproduction rate is higher. In this case, our simulation of the quasi-stationary distribution νX charges
only points of ]0, 1[, i.e. alleles A and a coexist with probability 1 or close to 1. This behavior is specific to the
Mendelian reproduction: in Cattiaux and Méléard (2010), the authors proved that no coexistence of alleles is
possible in a haploid population with clonal reproduction, if every individual is in competition with every other
one.

Acknowledgement: I would like to thank Chi Tran for inviting me to give a talk to this conference and Sylvie
Méléard for guiding me during this research.
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