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Throughout the talk:

@ p = prime number
o [ = "big" finite field of characteristic p (coefficient field)
e FT = totally real number field
e F = totally imag. quad. ext. of FT, any w|p in FT splits in F
G xp+ F=GL, (n>2)
G(F) =2 Uy(R) V w|oo
(in particular G(F}) = GL,(Fy), w|p)
o v|p = fixed place of F
@ w = mod p cyclo char. of Gal(Q/Q) or Gal(Q,/Qp).

e G/F™ = unitary group s. t. {

General aim:

Study certain smooth admissible representations of GL,(F,) over F
associated to automorphic (for G) mod p Galois representations.
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e 7: Gal(F/F) — GL,(F) continuous, absolutely irreducible.

We define:
S(UY,F) = {f:G(F")\G(AZ")/U" — T, loc. cst.}
S(UY,F)[mz] := Hecke eigenspace associated to 7.

G(F;f) acts on S(U",F) by right translation: (g,f)(g) := f(gg),
preserves S(UY,F)[mz] = smooth admissible repres. of G(F;").

We want to relate S(UY, F)[mz] (assumed #0) to 7V3:7|GaI(FV/Fv)'

S(UY,F)[mz] # 0= F(c-c) 2 7(-)'®@w*~" where (c) = Gal(F/FT).

. Breuil, F. Herzig, Y. Hu, S. Morra and B. Schraen
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{étale (¢, )—modules} = {fin. diml. repr. of Gal(Q,/Q,) over F}.

V := (covariant) composition of the two functors.

Theorem 1 (Colmez + Emerton + Chojecki-Sorensen)

Assume p > 3, n = 2, p splits completely in F. Assume:
@ weak technical assumptions on 7 and U"
e 7, absolutely irreducible for all w|p.
Then there is d > 1 such that V(S(UY,F)[m]) 27,99 @ w*.
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Quick review of the GL,(Q),)-case

Colmez: there is a contravariant exact functor:
{finite length repr. of GL2(Q,) over F} — {étale (¢,)—modules}.

Fontaine: there is a (contravariant) equivalence ofiategories:
{étale (¢, )—modules} = {fin. diml. repr. of Gal(Q,/Q,) over F}.

V := (covariant) composition of the two functors.

Theorem 1 (Colmez + Emerton + Chojecki-Sorensen)

Assume p > 3, n = 2, p splits completely in F. Assume:
@ weak technical assumptions on 7 and U"
e 7, absolutely irreducible for all w|p.
Then there is d > 1 such that V(S(UY,F)[m]) 27,99 @ w*.

Should hold as soon as n =2, F, = Q,. For H! of modular curves,
no need to assume 7, irreducible (Colmez + Emerton).
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e F[[X]][F] = non commutative ring defined by FX' = X'PF.
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A simple generalization of Colmez's functor

Let m = smooth representation of GL,(F,) over F. Set:

e N = upper unipotent in GL,(OF,)

@ /: No — OF, = sum of entries on first diagonal

o Ny = Ker(Ng - OF, °$ 7,)

o {(2) :=diag(z"1,z"2,...,1) € GL,(F,), z € Og,\{0}

e F[[X]][F] = non commutative ring defined by FX' = XPF.
Then F[[No/N1]] = F[[Z,]] = F[[X]] naturally acts on 7.

Extend it to an action of F[[X]][F] via:

F(v) = Z mé(p)v, venh,

neN1/E(p)N1&(p) 1

Finally, let Z; act on 7Nvia z-vi=€(2)v, z € Zy.
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For any [F-vector space W recall WV = F-linear dual of W.

Proposition 1 (Colmez, formulation due to Emerton)

Let M be a finite type F[[X]][F]-module such that M is torsion as
F[[X]]-module and satisfies dimp M[X]<oo. Then MV[1/X] is an
étale ¢-module over F((X)).
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Let M be a finite type F[[X]][F]-module such that M is torsion as
F[[X]]-module and satisfies dimp M[X]<oo. Then MV[1/X] is an
étale ¢-module over F((X)).

We apply this to M C M of finite type over F[[X]][F] preserved by
Zj =T with dimpM[X] < oo ~ get MY[1/X] = étale (¢, T)-module.
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A simple generalization of Colmez's functor

For any [F-vector space W recall WV = F-linear dual of W.

Proposition 1 (Colmez, formulation due to Emerton)

Let M be a finite type F[[X]][F]-module such that M is torsion as
F[[X]]-module and satisfies dimp M[X]<oo. Then MV[1/X] is an
étale ¢-module over F((X)).

We apply this to M C M of finite type over F[[X]][F] preserved by
Zj =T with dimpM[X] < oo ~ get MY[1/X] = étale (¢, T)-module.

Define the covariant functor V to ind-representations of Gal(Q,/Qp):

m— V() = lim VY(MY[1/X])
M

where the limit is over Z-stable MC Nt as above (VV(MY[1/X]) is
the contravariant Gal(Q,/Q,)-representation associated to MY [1/X]).
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Statement of the conjecture

There is an integer d > 1 such that:

bd
V(S(UY, F)[ms]) = <|nd;‘§f@ﬁ (n ®F N2F, @+ ® /\glrv)> ® w*

where Indf_?vQ"::tensor induction from Gal(F,/F,) to Gal(Q,/Q,).
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Statement of the conjecture

Conjecture
There is an integer d > 1 such that:

bd
V(S(UY, F)[ms]) = <Ind;§’:@" (n ®F N2F, @+ ® /\glrv)> ® w*

where Indf_?v(@p::tensor induction from Gal(F,/F,) to Gal(Q,/Qp).

An étale (¢, )-module D has an operator 1. The conjecture can be
restated as: if £ : (S(UY,F)[mz]M)Y — D is a contin., M-equivariant,
F[[X]]-linear map sending F" to v, then f uniquely factors through
the (¢, )-module of the above tensor induction.
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° ?|Ga|(f/,__(%)) adequate and 7,, unramified if w inert in F
o weak gener. assumptions on 7, for w # v when 7, ramifies

Uy, max. hyperspecial if w is inert in F
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Some results for GLo

Hypothesis on F, G, 7, UY

Till the end of the talk: n =2, F,/Qp unramified of degree f > 1.

Need the following extra assumptions (some of them standard):

e F/F™ unramified, p inert in FT (the latter for simplicity)

G quasi-split at all finite places of FT

7| 6ai(F/F( ¢7)) adequate and 7y, unramified if w inert in F

weak gener. assumptions on 7, for w # v when 7, ramifies

Uy, max. hyperspecial if w is inert in F
U’ = J] Uy with { Uy, € GLa(Op;) if w is split in F with
wv Uy = GL2(OF=) if w split + 7y, unram.
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Some results for GLo

Hypothesis on 7,

Fix an embedding s — [ and let wr, wor := associated Serre’s
fundamental charac. of level f, 2f of inertia sgp /, C Gal(F,/F,).
Let ' := Max(2f,10).

C. Breuil, F. Herzig, Y. Hu, S. Morra and B. Schraen Modular representations of GL, and tensor products



Some results for GLo

Hypothesis on 7,

Fix an embedding s — [ and let wr, wor := associated Serre’s
fundamental charac. of level f, 2f of inertia sgp /, C Gal(F,/F,).
Let ' := Max(2f,10).

We assume that 7, is semi-simple and such that:

Modular representations of GL, and tensor products

C. Breuil, F. Herzig, Y. Hu, S. Morra and B. Schraen



Some results for GLo

Hypothesis on 7,

Fix an embedding s — [ and let wr, wor := associated Serre’s

fundamental charac. of level f, 2f of inertia sgp /, C Gal(F,/F,).

Let ' := Max(2f,10).

We assume that 7, is semi-simple and such that:
(ro+1)+-+p M (rra41) g

e 7, reducible: p|;, = | “f 0 1 ® wy

for some r; with f' —1<r<p—-2—f (= p>2f)
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Some results for GLo

Hypothesis on 7,

Fix an embedding s — [ and let wr, wor := associated Serre’s
fundamental charac. of level f, 2f of inertia sgp /, C Gal(F,/F,).
Let ' := Max(2f,10).

We assume that 7, is semi-simple and such that:

(ro+1)+-4p =2 (rr_1+1) 0

e 7, reducible: p|;, = f 0 1 ® wi
for some r; with f' —1<r<p—-2—f (= p>2f)
(ro+1)4-+p" " 1(rr_141) 0
e 7, irreducible: p|;, = < 2f pf(same> ® Wi
0 War

for ' <rnp<p—-1—-fand f/'=1<r<p-2—f"ifi>0.
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Some results for GLo

Hypothesis on 7,

Fix an embedding s — [ and let wr, wor := associated Serre’s
fundamental charac. of level f, 2f of inertia sgp /, C Gal(F,/F,).
Let ' := Max(2f,10).

We assume that 7, is semi-simple and such that:

(ro+1)+-4p =2 (rr_1+1) 0

e 7, reducible: p|;, = f 0 1 ® wi
for some r; with f' —1<r<p—-2—f (= p>2f)
(ro+1)4-+p" " 1(rr_141) 0
e 7, irreducible: p|;, = < 2f pf(same> ® Wi
0 War

for ' <rnp<p—-1—-fand f/'=1<r<p-2—f"ifi>0.

(May-be this strong genericity assumption on 7, can be improved.)
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Some results for GLo

Main result

Under the above assumptions Conjecture 1 holds, i.e. there is an
integer d > 1 such that:

V(S(UY,F)m7]) 2 (IndE %7, )0 w*.
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Main result

Under the above assumptions Conjecture 1 holds, i.e. there is an
integer d > 1 such that:

V(S(UY,F)m7]) 2 (IndE %7, )0 w*.

Although V/(S(UY,F)[m#]) only depends on 7,, we do not know if
the GL(F,)-representation S(UY,F)[m#] only depends on 7,.
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integer d > 1 such that:

V(S(UY,F)m7]) 2 (IndE %7, )0 w*.

Although V/(S(UY,F)[m#]) only depends on 7,, we do not know if
the GL(F,)-representation S(UY,F)[m#] only depends on 7,.

The proof of Theorem 2 is divided into two steps (we ignore ®w*):
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Main result

Under the above assumptions Conjecture 1 holds, i.e. there is an
integer d > 1 such that:

V(S(UY,F)m7]) 2 (IndE %7, )0 w*.

Remark

Although V/(S(UY,F)[m#]) only depends on 7,, we do not know if
the GL(F,)-representation S(UY,F)[m#] only depends on 7,.

The proof of Theorem 2 is divided into two steps (we ignore ®w*):

Step 1: There is an injection (Ind%v(@”?\,)@d — V(5(UY,F)[me]).
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Some results for GLo

Main result

Under the above assumptions Conjecture 1 holds, i.e. there is an
integer d > 1 such that:

V(S(UY,F)m7]) 2 (IndE %7, )0 w*.

Remark

Although V/(S(UY,F)[m#]) only depends on 7,, we do not know if
the GL(F,)-representation S(UY,F)[m#] only depends on 7,.

The proof of Theorem 2 is divided into two steps (we ignore ®w*):
Step 1: There is an injection (Ind%v(@”?\,)@d — V(5(UY,F)[me]).
Step 2: dimp V(S(UY,F)[mz]) is finite and bounded by 2/d.
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Some results for GLo

Proof of Theorem 2: Step 1

Let Z := F), K := GL2(OF,) and K(1) := 1+ pMy(OF,).
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Some results for GLo

Proof of Theorem 2: Step 1

Let Z := F), K := GL2(OF,) and K(1) := 1+ pMy(OF,).

Theorem 3 (Emerton-Gee-Savitt, Hu-Wang, Le-Morra-Schraen,

B.-H.-H.-M.-S., building on B.-Paskiinas + Buzzard-Diamond-Jarvis)

There is an integer d > 1 and an explicit representation Dy of KZ
over I only depending on 7, such that S(U",F)[m7]K(1) = D,
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Some results for GLo

Proof of Theorem 2: Step 1

Let Z := F), K := GL2(OF,) and K(1) := 1+ pMy(OF,).

Theorem 3 (Emerton-Gee-Savitt, Hu-Wang, Le-Morra-Schraen,

B.-H.-H.-M.-S., building on B.-Paskiinas + Buzzard-Diamond-Jarvis)

There is an integer d > 1 and an explicit representation Dy of KZ
over I only depending on 7, such that S(U",F)[m7]K(1) = D,

Let / C K:=lwahori, /(1) C /:= pro-p-lwahori, n:= (9 §)/Z=

normalizer of /(1).
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Some results for GLo

Proof of Theorem 2: Step 1

Let Z := F), K := GL2(OF,) and K(1) := 1+ pMy(OF,).

Theorem 3 (Emerton-Gee-Savitt, Hu-Wang, Le-Morra-Schraen,

B.-H.-H.-M.-S., building on B.-Paskiinas + Buzzard-Diamond-Jarvis)

There is an integer d > 1 and an explicit representation Dy of KZ
over I only depending on 7, such that S(U",F)[m7]K(1) = D,

Let / C K:=lwahori, /(1) C /:= pro-p-lwahori, n:= (9 §)/Z=

normalizer of /(1). Choose an action of n on Dé(l) inside Dp.
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Some results for GLo

Proof of Theorem 2: Step 1

Let Z := F), K := GL2(OF,) and K(1) := 1+ pMy(OF,).

Theorem 3 (Emerton-Gee-Savitt, Hu-Wang, Le-Morra-Schraen,

B.-H.-H.-M.-S., building on B.-Paskiinas + Buzzard-Diamond-Jarvis)

There is an integer d > 1 and an explicit representation Dy of KZ
over I only depending on 7, such that S(U",F)[m7]K(1) = D,

Let / C K:=lwahori, /(1) C /:= pro-p-lwahori, n:= (9 §)/Z=

normalizer of /(1). Choose an action of n on Dé(l) inside Dp.

Theorem 4

Let m be a smooth admissible representation of GL2(F,) over F such
that (/1) — 7K(1)) = (D(l)(l) — Do)®d (compatibly with n and
KZ). Then there is an injection (Ind%v(@”?vﬂ%d — V(7).
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Some results for GLo

Proof of Theorem 2: Step 1

Proof of Theorem 4: we compute an explicit F[[X]][F]-submodule
M(r) in 7 preserved by Z such that V(M(x))|;, = (Indi#7,)[P.
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Some results for GLo

Proof of Theorem 2: Step 1

Proof of Theorem 4: we compute an explicit F[[X]][F]-submodule
M(r) in 7 preserved by Z such that V(M(x))|;, = (Indi#7,)[P.
(Only need 2f instead of f’=Max(2f, 10) in the bounds on the r;.) [J
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Some results for GLo

Proof of Theorem 2: Step 1

Proof of Theorem 4: we compute an explicit F[[X]][F]-submodule
M(r) in 7 preserved by Z such that V(M(x))|;, = (Indi#7,)[P.
(Only need 2f instead of f’=Max(2f, 10) in the bounds on the r;.) [J

Theorem 5 (Dotto-Le + B.-H.-H.-M.-S.)

(i) There is an explicit action of n on Dé(l), only depending on 7,
such that there is an (n, KZ)-equivariant isomorphism:

(S(U",F)[mA'® — S(U*,F)[mrAKD) = (D™ s Dg)*“.
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Some results for GLo

Proof of Theorem 2: Step 1

Proof of Theorem 4: we compute an explicit F[[X]][F]-submodule
M(r) in 7 preserved by Z such that V(M(x))|;, = (Indi#7,)[P.
(Only need 2f instead of f’=Max(2f, 10) in the bounds on the r;.) [J

Theorem 5 (Dotto-Le + B.-H.-H.-M.-S.)

(i) There is an explicit action of n on Dé(l), only depending on 7,
such that there is an (n, KZ)-equivariant isomorphism:

(S(U",F)[mA'® — S(U*,F)[mrAKD) = (D™ s Dg)*“.

(ii) For this action of n we actually have:

V(M(S(UY,F)[m7])) = (Indg%7,)“.
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Some results for GLo

Proof of Theorem 2: Step 2

Let:

e Z(1) := 1+ pOf, = pro-p-center

C. Breuil, F. Herzig, Y. Hu, S. Morra and B. Schraen Modular representations of GL, and tensor products



Some results for GLo

Proof of Theorem 2: Step 2

Let:

e Z(1) := 1+ pOf, = pro-p-center
e m; := maximal ideal of lwasawa algebra A, := F[[/(1)/Z(1)]].
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Some results for GLo

Proof of Theorem 2: Step 2

Let:
e Z(1) := 1+ pOf, = pro-p-center
e m; := maximal ideal of lwasawa algebra A, := F[[/(1)/Z(1)]].

If 7 is a smooth representation of GLy(F,) over F with a central
character, then 7/() = 7[m,] and 7 is admissible if and only if
dimp 71'[111[] < 00.
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Some results for GLo

Proof of Theorem 2: Step 2

Let:

e Z(1) := 1+ pOf, = pro-p-center

e m; := maximal ideal of lwasawa algebra A, := F[[/(1)/Z(1)]].
If 7 is a smooth representation of GLy(F,) over F with a central
character, then 7/() = 7[m,] and 7 is admissible if and only if
dimp 71'[111[] < 00.

Let 7 be a smooth admissible representation of GLo(F,) over F with a
central character such that for any x : | — F* appearing in 7[m,]:

[rlmy] : x] = [wm]] < x].

Then dimp V(7)) <dimp 7[m,], in particular V(7) is finite dimensional.
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Some results for GLo

Proof of Theorem 2: Step 2

Proof of Theorem 6:
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Some results for GLo

Proof of Theorem 2: Step 2

Proof of Theorem 6:

The Aj-module 7V is generated by at most r:=dimy m[m,] elements.
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Some results for GLo

Proof of Theorem 2: Step 2

Proof of Theorem 6:

The Aj-module 7V is generated by at most r:=dimy m[m,] elements.
— —p (1)

Xi 1= E/\G]F:, AP (o [1])

For0 <i<f—1set 10
Yi= Z/\G]prf)‘ P (p[/\ll

>€/\/.
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Some results for GLo

Proof of Theorem 2: Step 2

Proof of Theorem 6:
The Aj-module 7V is generated by at most r:=dimy m[m,] elements.
Xi = Z/\EF>; Aipl (é [i\])
P
, i 10
Yi = ZAG]FXf AP (p[)\] 1
p
Note that F[[No]] = F[[Xo, - .., Xr_1]]-

For0 <i<f—1set >€/\/.
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Some results for GLo

Proof of Theorem 2: Step 2

Proof of Theorem 6:
The Aj-module 7V is generated by at most r:=dimy m[m,] elements.
Xi =3 zerx AP ((1) [i])
P
, i 10
Yi = ZAG]FXf AP (p[)\] 1
p
Note that F[[No]] = F[[Xo, - .., Xr_1]]-

For0 <i<f—1set >€/\/.

Proposition 2

The hyp. on 7 in Thm. 6 implies that the action of gr,, A; on grmlwv
factors through the abelian quotient F[(X;, Y;)i]/(XiYi) of gry, A;.
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Some results for GLo

Proof of Theorem 2: Step 2

Proof of Theorem 6:

The Aj-module 7V is generated by at most r:=dimy m[m,] elements.
Xi 1= Z/\G]FX AP ((1) [i])
, - 0
Yi= Z/\G]FX AP (p[A] 1
Note that F[[No]] = F[[Xo, .. - ,Xf_]_]].

For0 <i<f—1set >€/\/.

Proposition 2

The hyp. on 7 in Thm. 6 implies that the action of gr,, A; on grmlwv
factors through the abelian quotient F[(X;, Y;)i]/(X;Yi) of gry, As

Hence (gry, m")[1/]] Xi] is generated by at most r elements over:

(FL(X5, Y2)il /(X Yi)) [1/T1X] = FI(X3)[L/TI X
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Some results for GLo

Proof of Theorem 2: Step 2

Endow 7V [1/]X/] = 7 @) FIINo]][1/T1Xi] with tensor product

I m-adic filtration on 7V
filtration for

(Xo, ..., Xr—1)-adic filtration on F[[No]][1/] [Xi]-
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Some results for GLo

Proof of Theorem 2: Step 2

Endow 7V [1/]X/] = 7 @) FIINo]][1/T1Xi] with tensor product

I m-adic filtration on 7V
filtration for

(Xo, ..., Xr—1)-adic filtration on F[[No]][1/] [Xi]-
Let (7V[1/]]Xi])" := corresponding completion.
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Some results for GLo

Proof of Theorem 2: Step 2

Endow 7V [1/]X/] = 7 @) FIINo]][1/T1Xi] with tensor product

I m-adic filtration on 7V
filtration for

(Xo, ..., Xr—1)-adic filtration on F[[No]][1/] [Xi]-

Let (7V[1/]]Xi])" := corresponding completion. It is generated by at
most r elements over (F[[No]][1/]]Xi])" (look at the graded modules).
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Some results for GLo

Proof of Theorem 2: Step 2

Endow 7V [1/]X/] = 7 @) FIINo]][1/T1Xi] with tensor product
fltration for m;-adic filtration on 7V
(Xo, ..., Xr—1)-adic filtration on F[[No]][1/] [Xi]-

Let (7V[1/]]Xi])" := corresponding completion. It is generated by at
most r elements over (F[[No]][1/]]Xi])" (look at the graded modules).

trace

Let J:=Ker(F[[No]] = F[[X]]), hence (=V[1/T]X:])"/J is generated
by at most r elements over (F[[No]][1/T1Xi])"/J = F((X)).

C. Breuil, F. Herzig, Y. Hu, S. Morra and B. Schraen
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Some results for GLo

Proof of Theorem 2: Step 2

Endow 7V [1/]X/] = 7 @) FIINo]][1/T1Xi] with tensor product

I m-adic filtration on 7V
filtration for

(Xo, ..., Xr—1)-adic filtration on F[[No]][1/] [Xi]-

Let (7V[1/]]Xi])" := corresponding completion. It is generated by at
most r elements over (F[[No]][1/]]Xi])" (look at the graded modules).

trace

Let J:=Ker(F[[No]] = F[[X]]), hence (=V[1/T]X:])"/J is generated
by at most r elements over (F[[No]][1/T1Xi])"/J = F((X)).

For any M C ©™ such that dimp M[X] < 0o, the morphism:
(N =7V ) — MY[1/X]

factors as a surjection (7V[1/T[X])"/J = MY[1/X].
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Some results for GLo

Proof of Theorem 2: Step 2

Endow 7V [1/]X/] = 7 @) FIINo]][1/T1Xi] with tensor product
fltration for m;-adic filtration on 7V
(Xo, ..., Xr—1)-adic filtration on F[[No]][1/] [Xi]-

Let (7V[1/]]Xi])" := corresponding completion. It is generated by at
most r elements over (F[[No]][1/]]Xi])" (look at the graded modules).

Let J:=Ker(F[[No]] “=5 F[[X]]), hence (x"[1/]]Xi])"/J is generated
by at most r elements over (F[[No]][1/T1Xi])"/J = F((X)).

For any M C ©™ such that dimp M[X] < 0o, the morphism:
(N =7V ) — MY[1/X]

factors as a surjection (7V[1/T[X])"/J = MY[1/X].
In particular dimg V() < dimg((x)) ((xV[1/[IX])"/J) <r. O
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Some results for GLo

Proof of Theorem 2: Step 2

Theorem 7 (B.H.H.M.S., Spring 2020)

The representation S(UY, F)[m#] satisfies the hypothesis of Theorem 6.
(Only need 10 instead of f/ = Max(2f,10) in the bounds on the r;.)
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Some results for GLo

Proof of Theorem 2: Step 2

Theorem 7 (B.H.H.M.S., Spring 2020)

The representation S(UY, F)[m#] satisfies the hypothesis of Theorem 6.
(Only need 10 instead of f/ = Max(2f,10) in the bounds on the r;.)

Thus (S(U",IF‘)[mT]V[l/HX,-])A/J is finite dimensional over F((X)).
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Some results for GLo

Proof of Theorem 2: Step 2

Theorem 7 (B.H.H.M.S., Spring 2020)

The representation S(UY, F)[m#] satisfies the hypothesis of Theorem 6.
(Only need 10 instead of f/ = Max(2f,10) in the bounds on the r;.)

Thus (S(U",IF‘)[mT]V[l/HX,-])A/J is finite dimensional over F((X)).

Theorem 8
We have dim]F((X))((S(U",F)[m;]v[l/HX,-])/\/J) < 2fd.
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Some results for GLo

Proof of Theorem 2: Step 2

Theorem 7 (B.H.H.M.S., Spring 2020)

The representation S(UY, F)[m#] satisfies the hypothesis of Theorem 6.
(Only need 10 instead of f/ = Max(2f,10) in the bounds on the r;.)

Thus (S(U",IF‘)[mT]V[l/HX,-])A/J is finite dimensional over F((X)).

Theorem 8
We have dim]F((X))((S(U",F)[m;]v[l/HX,-])/\/J) < 2fd.

Proof: 3 an [-equiv. surjection 6?,2;"’1/\/()(;) — (sock S(UY,F)[mz])|/ -
A; projective = it lifts to f : @24 A (xi) — S(UY,F)[m7]|Y.
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Some results for GLo

Proof of Theorem 2: Step 2

Theorem 7 (B.H.H.M.S., Spring 2020)

The representation S(UY, F)[m#] satisfies the hypothesis of Theorem 6.
(Only need 10 instead of f/ = Max(2f,10) in the bounds on the r;.)

Thus (S(U",IF‘)[mT]V[l/HX,-])A/J is finite dimensional over F((X)).

Theorem 8
We have dim]F((X))((S(U",F)[m;]v[l/HX,-])/\/J) < 2fd.

. . . f v
Proof: 3 an [-equiv. surjection 6?,2:"’1/\/()(;) — (sock S(UY,F)[mz])|/ -
A; projective = it lifts to f : @24 A;(x;) — S(UY,F)[m7]|}. By an
explicit computation (Coker(f)[1/]]X])" = 0.
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Some results for GLo

Proof of Theorem 2: Step 2

Theorem 7 (B.H.H.M.S., Spring 2020)

The representation S(UY, F)[m#] satisfies the hypothesis of Theorem 6.
(Only need 10 instead of f/ = Max(2f,10) in the bounds on the r;.)

Thus (S(U",IF‘)[mT]V[l/HX,-])A/J is finite dimensional over F((X)).

Theorem 8
We have dim]F((X))((S(U",F)[m;]v[l/HX,-])/\/J) < 2fd.

Proof: 3 an /-equiv. surjection 69,2;"’1/\/()(;) — (sock S(UY,F)[mz])|/ -
A projective = it lifts to f : EB,?;dll\/(x,-) — S(UY,F)[mz]|). By an
explicit computation (Coker(f)[1/]]X:])" = 0. This implies we can

replace r = dimp S(UY, F)[m7]') by 27d in the proof of Thm. 6. [

C. Breuil, F. Herzig, Y. Hu, S. Morra and B. Schraen Modular representations of GL, and tensor products



	Introduction
	Statement of the main conjecture
	Some results for GL2

