A stroll through some important tools of model theory illustrated by the example of the Mordell-Lang conjecture

Logic Colloquium 2017, Stockholm, August 2017

Elisabeth Bouscaren

C.N.R.S. - Université Paris-Sud, Orsay

In the background: the groundbreaking proof, in 1993, by Hrushovski of the Mordell-Lang conjecture, which remained, in Char. p the only known proof until 2013.

Elisabet Bouscaren (CNRS Paris-Sud)

A stroll through Model Theory

In the present: Talk partly inspired by a series of papers joint work with Franck Benoist and Anand Pillay on the model theory of semiabelian varieties although this won't be completley visible here. Aims : to find alternate Model theoretic proof of Mordell-Lang, avoiding Zariski geometries and the trichotomy principle.

WHY?

Success? Better undersatnding? Yes and no. Around 2013 /2014 both a geometric proof (Rossler) and a model theoretic proof (BBP) for the case of abelian varieties ; other geometric proofs since. Finally (BBP 2017) for semiabelian varieties.

- induced structure
- enriched structure
- orthogonality
- groups of finite Morley Rank
- Characterizing classical algebraic structures abstractly or reconstructing algebraic structures (groups, fields) from abstract or

combinatorial data .

In the spirit of the very old classical theorem in geometry which says that a Desarguesian projective geometry of dimension at least 3 is the projective geometry over a division ring.

– Zariski Geometries

Mordell-Lang?

Theorem Function field Mordell-Lang

 $k \subset K$ two algebraically closed fields, *G* semiabelian variety over *K* (= a divisible commutative algebraic group), *X* irreducible subvariety of *G* (= an irreducible zariski closed subset of *G*) and $\Gamma \subset G(K)$ finitely generated subgroup.

Then,

- either $X \cap \Gamma = a_1 + \Gamma_0 \cup \ldots \cup a_n + \Gamma_n$, where, for each *i*, Γ_i is a subgroup of Γ

- or $H = \overline{\Gamma}$ (the zariski closure of Γ in G) is isomorphic to a group defined over k.

Don't Panic!!!

(from "The Hitchhiker's Guide to Galaxy")

This is NOT how we begin

Use the case of algebraically closed fields to guide us through a brief and very biased history of some basic notions of model theory and algebra

Recall :

Definition A field K is algebraically closed if every polynomial P(X) in one variable in K[X], of degree ≥ 1 , has a solution in K Ex: \mathbb{C} the complex numbers, but not the reals \mathbb{R} .

K as a first-order model theory structure the language L_{ring} :

$$(K, +, ., -, 0, 1)$$

There is a theory T_{acf} (a set of sentences) such that a field is algebraically closed iff it is a model of T_{acf} :

- -K is a field and
- for every n > 1

$$\forall y_0 \ldots \forall y_{n-1} \exists x \left(x^n + \sum_{i=0}^{n-1} y_i . x^i \right) = 0.$$

- For p = 0 or p prime, the theory ACF_p of algebraic closed fields of characteristic p is complete.
- **Theorem**(Tarski, Chevalley) Algebraically closed fields admit quantifier elimination.
- **Theorem** (Macintyre, 1971) If an infinite field K has quantifier elimination, then K is algebraically closed.
- Modern model theory : Get algebraic information from abstract data.

A set $D \subset K^n$ is definable if there is a formula $\phi(x)$ such that $D = \{a \in K^n; K \models \phi(a)\}$. Then we write $D = \phi(K)$.

- Zariski closed sets: solutions of polynomial equations $\{a \in K^n; f_1(a) = \ldots = f_s(a) = 0\}$ for f_1, \ldots, f_s in $K[X_1, \ldots, X_n]$.

– quantifier free formulas \longrightarrow finite boolean combinations of closed sets = constructible sets

- Quantifier elimination \rightarrow definable = constructible

Recall a group (G, .) is definable in K if

- G is a definable subset of some K^n

- the multiplication and inverse maps are definable (ie their graphs are definable sets in $K^n \times K^n \times K^n$ and $K^n \times K^n$.)

Obvious definable groups in K: the additive group, the multiplicative group, the affine groups = closed subgroups of $GL_n(K)$ (definable in $K^n \times K^n$).

Less obvious but true : any algebraic group G is definable or rather the K-rational points of G (G(K)) form a definable group in K.

- The theory $T_{ACF_{\rho}}$ is \aleph_1 -categorical (= categorical in every uncountable cardinality, Morley, 65).
- More: The theory T_{ACF_p} is strongly minimal
- A definable subset D in K^n is strongly minimal if for any definable $E \in K^n$, $D \cap E$ is finite or its complement in D is finite .
- The algebraically closed field K itself is strongly minimal: any definable set in one variable = boolean combination of sets which are the solution set of a polynomial equation in one variable .

Examples of strongly minimal structures

1. Infinite set with no structure (only equality in the language)

2. An infinite vector spaces over a fixed division ring. It has the property that any definable subset is a (finite boolean combination of translates of subgroups

- 3. Algebraically closed fields
- or "avatars" of these.

- Conjecture proposed by Boris Zilber in the 1980's : every strongly minimal theory "is" of one of these forms.
- Disproved by Hrushovski in 90'S.
- But proved (Hrushovski-Zilber, 93) to hold for a class of strongly minimal sets with extra properties, the Zariski structures.

A Zariski structure is a strongly minimal set D where the atomic sets form the closed sets of a noetherian topology on each D^n , the definable sets are the constructible sets and the dimension (given by the noetherian topology) satisfies some particular "good" properties (the dimension theorem)

Then Dichotomy for groups :

G a strongly minimal group which is a zariski structure 1. D "is an abelian group" and the structure on *D* is of linear (vector space) type: for every *n* every definable $X \subset D^n$ is a Boolean combiantion of translates of definable subgroups of D^n . *D* is one-based, locally modular or

2. in D there is an algebraically closed field K which is definable in some D^n , and D is homeomorphic to a projective curve over K, or "nearly" so.

The function field Mordell Lang is also a dichotomy about certain algebraic groups BUT in K algebraically closed, no infinite definable group is one-based..... so not directly such a dichotomy.

Theorem Function field Mordell-Lang

 $k \subset K$ two algebraically closed fields, *G* semiabelian variety over *K*, *X* irreducible subvariety of *G* and $\Gamma \subset G(K)$ finitely generated subgroup.

Then,

- either $X \cap \Gamma = a_1 + \Gamma_0 \cup \ldots \cup a_n + \Gamma_n$, where, for each *i*, Γ_i is a subgroup of Γ

- or $H = \overline{\Gamma}$ (the zariski closure of Γ in G) is isomorphic to a group defined over k.

Mordell-Lang continued, the definable objects

- *G* is a semiabelian variety:
- Commutative algebraic groups (*definable*)
- divisible, finite *n*-torsion for all n, but torsion is infinite. Built from two extreme cases:
- 1. Abelian varieties: Complete connected algebraic group. Ex: Elliptic curves, Jacobians of curves, never affine No non trivial group homomorphism to any affine group. 2. (affine) tori $T = \mathbb{G}_m^n$ *G* is a semiabelian variety : $G \in Ext(A, T)$ i.e. $0 \rightarrow T \rightarrow G \rightarrow A \rightarrow 0$, with $T = \mathbb{G}_m^r$ torus and *A* abelian variety . Examples : $T \times A$, or semi-split (*G* isogenous to $T \times A$)
- But also non split complicated examples.

Remark: in char.p, exactly the divisible commutative algebraic

groups.

Elisabet Bouscaren (CNRS Paris-Sud)

Theorem Function field Mordell-Lang

 $k \subset K$ two algebraically closed fields, *G* semiabelian variety over *K*, *X* irreducible subvariety of *G* and $\Gamma \subset G(K)$ finitely generated subgroup.

Then,

- either $X \cap \Gamma = a_1 + \Gamma_0 \cup \ldots \cup a_n + \Gamma_n$, where, for each *i*, Γ_i is a subgroup of Γ

- or $H = \overline{\Gamma}$ (the zariski closure of Γ in G) is isomorphic to a group defined over k.

X irreducible subvariety of G?

G as an algebraic group has an induced topology, its Zariski topology. And X is a closed irreducible subset of G in this sense. In particular X is definable.

 $H = \overline{\Gamma}$ is a closed subgroup of G so also definable, so defined with parameters in K, but isomorphic to a group defined over k. Say that H descends to k

Γ is not definable or algebraic !

 Γ is just a finitely generated subgroup of G(K). Even if Γ is generated by one element g_0 , $x \in \Gamma$ iff

$$x = g_0 \lor x = g_0 + g_0 \lor x = g_0 + g_0 + g_0 \dots$$

The dichotomy :

in the first case: note that the conclusion talks about the topology induced on Γ by the topology of G, it is induced by the closed subgroups only:

the closed subsets of Γ are the sets of the form $X \cap \Gamma$ for X closed in G, and it says they are just given by translates of subgroups. OR :

 Γ descends to k.

Adding Γ to the language?

Then ML becomes indeed:

Either Γ is a one-based group or $\overline{\Gamma}$ descends to k. But

- not easier than the original statement

-k is not definable

MUST do it differently

Add more definable sets by adding a derivation on the field K, a map δ from K to K such that

$$- \delta(x + y) = \delta(x) + \delta(y)$$

- $\delta(x.y) = x.\delta(y) + y.\delta(y)$

in characteristic 0.

A little more complicated in Char. p, must add a family of strange derivations (Hasse derivations).

Can do this so that k becomes the field of constants of δ so definable as $\{a \in K; \delta(a) = 0\}$. we can suppose that K is differentially closed (=existentially closed) and k is the field of constants in K.

The theory of differentially closed fields of char. 0, DCF_0 is richer than ACF_0 but still good from model theoretic point of view. It is ω -stable : Every definable set has Morley Rank We know a lot about definable groups, and *the strongly minimal subsets are Zariski structures !* Replace Γ by : G^{\sharp} which is the smallest definable subgroup of G which is zariski dense in G or also the smallest δ -definable subgroup containing the torsion of G. (Infinitely definable in characteristic p) G^{\sharp} is nice, it is a group with finite Morley rank, but it is not strongly minimal.

Orthogonality :

Definition Let $D, E \subset K^n$ be δ -definable. They are orthogonal $(D \perp E)$ if any infinite δ -definable subset $Y \subset D^r \times E^m$ is a rectangle : $Y = Y_D \times Y_E$, $Y_D \subset D^r$, $Y_E \subset E^m$ both δ -definable.

In K as a pure algebraically closed field, by \aleph_1 -categoricity, any two definable subsets are non orthogonal.

In DCF_0 : Then for any $H \delta$ -definable group in K, strongly minimal, the Zariski structure Dichotomy says:

Either H is one based or H is non orthogonal to k, the field of constants

and then H descends to k.

But G^{\sharp} is not always strongly minimal?

Any abelian variety A is a sum of simple abelian varieties pairwise not homomorphic, it follows that $A^{\sharp} = J_1 + \ldots + J_n$ a sum of (almost)strongly minimal groups which are pairwise orthogonal.

And the Torus $T = \mathbb{G}_m^n$ is already defined over k. so for $G = T \times A$, $G^{\sharp} = T^{\sharp} \times A^{\sharp} = T^{\sharp} + J_1 + \ldots + J_n$, we manage. But what about the general case ? $0 \rightarrow T \rightarrow G \rightarrow A \rightarrow 0$ when it is not split?

Have examples where the induced sequence $0 \to T^{\sharp} \to G^{\sharp} \to A^{\sharp} \to 0$ is not exact.

So one cannot deduce good properties for G^{\sharp} from the same properties for A^{\sharp} and T^{\sharp} .

G is no longer a sum of "simple" subgroups .

But model theory of finite rank groups shows that there is a maximal δ -definable subgroup of G^{\sharp} , its socle, $S(G^{\sharp})$ which is a finite sum of pairwise orthogonal strongly minimal groups

The Socle theorem: for any X definable irreducible zariski closed in $\overline{G^{\sharp}}$, then a translate of X is contained in $\overline{S(G^{\sharp})}$.

So can replace G^{\sharp} by its socle, sum of pairwise orthogonal strongly minimal groups

and reduce the question to the good cases, when G = TxA. The reduction uses the socle but not zariski geometries . So Mordell-Lang for abelian varieties implies Mordell Lang for semiabelian varieties, via the theorem of the socle. New "algebraic object ? the zariski closure of the socle of G^{\sharp}

THANK YOU !