
Note – Twisted Kähler-Einstein equations.

Hugues Auvray (MPIM Bonn)

In [CDS1], the following 2-parameter family of twisted Kähler-Einstein equa-
tions is considered (equation (3.5)):ωnφε(t,·) = e−tφε(t,·)−(β−t)ϕε+hω0

ωn0
(|S|2h + ε)1−β

,

φε(0, ·) = ψε,

(1)

with t ∈ [0, β] and ε ∈ (0, 1], for given smooth families (ϕε)ε∈(0,1] and (ψε)ε∈(0,1]
admitting uniform C0 bounds, and with, of course, the initial relation

ωnψε = e−βϕε+hω0
ωn0

(|S|2h + ε)1−β
.

In the particular setting of [CDS1], one also has the relation %(ωψε) ≥ βωϕε for all
ε ∈ (0, 1]. Theorem 1.2 in [CDS1] being trivial when β = 1, we assume in what
follows that β ∈ (0, 1).

Since the authors quote here a not-too-classical argument for the resolution of
these equations assuming some bound on the J-functional of the possible solutions
– in particular, Yau’s technique for the C0 estimate for the Calabi problem [Yau]
has to be modified –, and since some of the techniques involved might have their
own interest, we shall give here a quick overview of a possible proof.

The method of resolution for (1), inspired from the classical method of reso-
lution of the Calabi problem suggested by Calabi himself, consists in varying the
parameter t for any fixed ε. More formally, once ε is fixed, one considers the set
of those t up to which there exists a smooth family of solutions:

Sε :=
{
t ∈ [0, β]

∣∣ there exists a smooth family of solutions of (1)
indexed by s ∈ [0, t]

}
.

By definition, Sε non-empty, as it contains 0. We shall see that:

• Sε is open in [0, β], which amounts (up to the regularity of the solutions) to
the implicit functions theorem;
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• Sε is closed in [0, β], which involves less standard tools, such as Tian’s α-
invariant, defined in [Tian].

As an obvious consequence, Sε = [0, β], and one can then consider φε(β, ·).

Before starting, observe that any C2 solution φε(t, ·) of one of our equations is
automatically a Kähler potential, since ωnφε(t,·) is always a volume form, and at some
minimum of φε(t, ·), i∂∂φε(t, ·) ≥ 0, and therefore ωφε(t,·) = ω0 + i∂∂φε(t, ·) > 0.

The set Sε is open in [0, β]. Consider the operator

Fε : (t, φ, a) 7−→
(
ωnφ − ea−tφ−(β−t)ϕε+hω0

ωn0
(|S|2h + ε)1−β

, Iε(φ, t)
)
,

where (t, φ, a) lives in [0, β]× {Kähler potentials for ω0} × R, and

Iε(φ, t) =


−
∫
X

(φ− ϕε)ωnψε if t = 0,

1

t

( ∫
X

e−t(φ−ϕε)ωnψε −
∫
X

ωn0
)

if t ∈ (0, β]

(we use this complicated expression to unify the upcoming reasoning, and apply it
as well to case t0 > 0; indeed, at least informally, one sees in equations (1) that for
t > 0, the φε(t, ·) are automatically normalized, whereas for t = 0, one can add any
constant to ψε and still get a solution, which might be a source of trouble when
applying the implicit function theorem; somehow, the shape of Iε corresponds to
forcing the normalization as in the case of a smooth family of solutions – and from
now on we assume, without loss of generality, that

∫
X

(ψε − ϕε)ωnψε = 0).
One easily checks that Fε is smooth. Differentiate it at some solution of Fε = 0

denoted by (t0, φε(t0, ·), at0), with respect to its second variables (φ, a). From our
conventions, one actually always has at0 = 0; one thus gets (up to multiplication
by −1

2
ωnφε(t0,·) for the first half) the operator

(v, α) 7→
(

∆φε(t0,·)v − 2t0v + 2α,−
∫
X

ve−t0(φ(t0,·)−ϕε)ωnψε

)
(2)

(notice here the slight gap of notation with [CDS1], due to our use of the Rieman-
nian non-negative Laplacian). We need to work in Banach spaces to apply the
implicit function theorem, hence we restrict to (v, α) ∈ C4,γ×R for any γ ∈ (0, 1).

Now proving that the operator (2), with image in C2,γ ×R, is an isomorphism,
amounts to:
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• seeing that ∆ψε : C4,γ 7→ C2,γ is an isomorphism when restricting on both
sides to functions with zero mean for ωψε , which is perfectly standard, for
the case t0 = 0;

• seeing that ∆φε(t0,·) − 2t0 : C4,γ 7→ C2,γ is an isomorphism, which is true
thanks to equation (1) and the setting of [CDS1], telling us that %(ωφε(t0,·)) =
t0ωφε(t0,·) + (β − t0)ωψε + (1− β)χε for some positive χε, hence %(ωφε(t0,·)) >
t0ωφε(t0,·) (and the C4,γ regularity on φε(t0, ·) legitimates these computations),
for the case t0 ∈ (0, β].

We can now conclude that Sε contains a neighbourhood of t0, since we can extend
our family {φε(s, ·)}s∈[0,t0] thanks to the implicit function theorem. More precisely,
we can extend it by C4,γ solutions of (1) for s slightly bigger than t0, but then the
right-hand-side of the first line of this equation is (at least) C4,γ, making φε(t, ·)
a C6,γ solution by Yau’s solution of the Calabi problem [Yau] and so on, so that
finally the solutions are smooth.

Notice furthermore that the previous argument showed the uniqueness of a
germ of solutions near any φε(t0, ·), t0 ∈ [0, β]. Actually, this proves a bit more,
namely: given two smooth families of solutions {φε(s, ·)}s∈[0,t0] and {φ′ε(s, ·)}s∈[0,t]
(with common initial value ψε and) with t0 ≤ t, then φε(s, ·) = φ′ε(s, ·) for all s ≤ t0
1.

Let us come now to the slightly more difficult part of the argument:

The set Sε is closed in [0, β]. By our definition of Sε, the closedness of Sε amounts
to proving that for any t which is the limit of a strictly increasing sequence (tj) of
elements of Sε, then t ∈ Sε. In the classical treatment of the Calabi problem, this
part is done by deducing a priori estimates on the possible solutions of equation
(1) from the equation itself, in order to have some compactness statements on se-
quences of solutions. The first and most crucial step of those estimates consists in
a C0-estimate, which comes from a non-linear version of Moser iteration scheme.
Unfortunately, the e−tφε(t,·) in equation (1) impedes the transposition of this tech-
nique as such, which is why, in order to establish our C0-estimate, we need here two
extra ingredients, both due to Tian [Tian]: the α-invariant, for an upper bound
on the φε(t, ·), and a Moser iteration scheme with respect to the varying metric but
with fixed Sobolev constant for a lower bound. As we shall see, these work thanks
to the J-functional estimate. Before seeing how to proceed, let us specify that the

1Suppose indeed {s ∈ [0, t0]|φε(s, ·) 6= φ′ε(s, ·)} is non-empty, and call t its infimum. From
the uniqueness argument above, t > 0, and by continuity, t = t0 is absurd. By definition,
φε(s, ·) = φ′ε(s, ·) for all s ∈ [0, t), hence φε(t, ·) = φ′ε(t, ·) by continuity. But from the uniqueness
argument above again, φε(s, ·) = φ′ε(s, ·) for all s in a neighbourhood of t, contradicting its
definition.
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higher order estimates follow without much trouble from the C0-estimate, as in
the classical case, which is why we are not dealing with them.

To start with, consider t as above, and thus families {φjε(s, ·)}s∈[0,tj ]; from
our concluding remark in the previous part, those families match with one an-
other on common s-domains, so we can sum these data up into a single family
{φε(s, ·)}s∈[0,t). Define, for φ any Kähler potential with respect to ω0 (of class C2,
say), the quantity J(φ) =

∫
X
φ(ωn0 − ωnφ). It is easily seen to be nonnegative, and

vanishing if and only if φ is constant, since J(φ) = 1
2

∫
X
dφ ∧ dcφ ∧ (ωn−10 + · · · +

ωn−1φ ) ≥ 1
2n

∫
X
|dφ|2ω0

ωn0 .
Now from the special setting of [CDS1] and the computation p.12, one has

that s 7→ J
(
φε(s, ·)

)
is bounded independently of ε and t. We shall see first: there

exists C independent of ε and s such that: sups∈[0,t) supX φε(s, ·) ≤ C.
Here we introduce Tian’s α-invariant α(X, [ω0]) defined in [Tian] as

α(X, [ω0]) = sup
{
α > 0

∣∣∃C ≥ 0, ∀φ ∈ H0
ω0
,

∫
X

e−αφωn0 ≤ C
}
, (3)

where H0
ω0

is the space of ω0-Kähler potentials with supremum 0. The point in
that definition is that the set on which a supremum is taken is non-empty, and
thus α(X, [ω0]) > 0. Moreover, and although we are not using it, as the notation
suggests, this invariant only depends on the cohomology class of the metric with
respect to which it is computed.

Now fix α ∈
(
0, α(X, [ω0])

)
. Take s ∈ [0, t), and apply definition (3) to φ =

φε(s, ·)− supX φε(s, ·): there exists C independent of ε, s, such that:∫
X

e−α(φε(s,·)−supX φε(s,·))ωn0 ≤ C,

By convexity of the exponential and after rearranging the terms of the inequal-
ity, one has:

(n! Vol) sup
X
φε(s, ·) =

∫
X

sup
X
φε(s, ·)ωn0 ≤

∫
X

φε(s, ·)ωn0 +
logC

α
;

we are thus left with finding an upper bound on
∫
X
φε(s, ·)ωn0 . Since

∫
X
φε(s, ·)ωn0 =

J0
(
φε(s, ·)

)
+
∫
X
φε(s, ·)ωnφε(s,·), an upper bound on

∫
X
φε(s, ·)ωnφε(s,·) will do as well.

But from equation (1) with parameters 0 and s, we have:

ωnφε(s,·) = e−s(φε(s,·)−ϕε)ωnψε , i.e. ωnψε = es(φε(s,·)−ϕε)ωnφε(s,·).

Both members have integral (n! Vol) over X, so that:

n! Vol =

∫
X

ωnψε =

∫
X

es(φε(s,·)−ϕε)ωnφε(s,·) ≥
∫
X

(
1 + s(φε(s, ·)− ϕε)

)
ωnφε(s,·)

= n! Vol +s

∫
X

(φε(s, ·)− ϕε)ωnφε(s,·),
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and thus
∫
X
φε(s, ·)ωnφε(s,·) ≤

∫
X
ϕεω

n
φε(s,·). This latter integral is bounded above

independently of (t,) s and ε, since ϕε is, and
∫
X
ωnφε(s,·) = n! Vol, which finally

gives us the desired upper bound on supX φε(s, ·).

We see now how to get a uniform lower bound on our φε(s, ·), i.e. a constant C
depending only on t such that: sups∈[t/2,t)

(
− infX φε(s, ·)

)
≤ C. This we do using

a Moser’s iteration scheme, which is also used in Yau’s C0-estimate for the Calabi
problem. The difference here nonetheless lies in that we are applying our scheme
to some φ− = max{0,−φε(s, ·)}, and that the metric we use to apply Sobolev
embedding is the varying metric ωφε(s,·).

Let us settle this last point. We are looking for a uniform estimate (at least,
independent of s and ε); we hence want a constant S such that for all v in L2,1 (L2

functions with L2 differential),(∫
X

|v|
2n
n−1 ωnφε(s,·)

)n−1
n ≤ S

(∫
X

|dv|2ωφε(s,·)ω
n
φε(s,·) +

∫
X

v2 ωnφε(s,·)

)
(4)

We know however that the volume of X is the same for all the ωφε(s,·), and for all
s ∈ [t/2, t), as underlined before, %

(
ωφε(s,·)

)
≥ sωφε(s,·) ≥ t

2
ωφε(s,·). This way, using

results from Croke [Cro] and Li [Li] as Tian does [Tian, p.234], we can thus indeed
assert that inequality (4) holds for all s ∈ [t/2, t) with a constant S depending
only on t, and in particular independent of ε.

Now fix ε and s ∈ [t/2, t), set φ− = max{0,−φε(s, ·)}, and assume that the
following holds: for all p ≥ 2,∫

X

∣∣dφp/2− ∣∣2ωφε(s,·) ωnφε(s,·) ≤ np2

2(p− 1)

∫
X

φp−1− (ωnφε(s,·) − ω
n
0 ). (5)

Then for all p > 2, by (4) applied to φp/2− ,∥∥φ−∥∥pLpn/(n−1)
ωφε(s,·)

=
(∫

X

φ
pn
n−1
− ωnφε(s,·)

)n−1
n ≤ S

(∫
X

∣∣dφp/2− ∣∣2ωφε(s,·)ωnφε(s,·) +

∫
X

φp− ω
n
φε(s,·)

)
≤ S

( np2

2(p− 1)

∫
X

φp−1− ωnφε(s,·) +

∫
X

φp− ω
n
φε(s,·)

)
by (5)

= S
( np2

2(p− 1)

∥∥φ−∥∥p−1Lp−1
ωφε(s,·)

+
∥∥φ−∥∥pLpωφε(s,·)

)
,

and similarly,
∥∥φ−∥∥2L2n/(n−1)

ωφε(s,·)
≤ S

(
2n
∫
X
φ−(ωnφε(s,·)−ω

n
0 )) +

∫
X
φ2
− ω

n
φε(s,·)

)
. It is now

an easy exercise to prove that there exists C = C(S, n) such that

− inf
X
φε(s, ·) =

∥∥φ−∥∥L∞ = lim
p→∞

∥∥φ−∥∥Lpωφε(s,·) ≤ C
( ∫

X

φ−(ωnφε(s,·)−ω
n
0 )+

∫
X

φ2
− ω

n
φε(s,·)

)
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(control inductively Lpn/(n−1)ωφε(s,·) -norms with help of Lpωφε(s,·)-norms thanks to the re-
cursive formula above – notice that taking p-th roots largely counterbalance the
coefficient of order p in this formula).

Hence we are done if we can control
∫
X
φ−(ωnφε(s,·) − ω

n
0 ) and

∫
X
φ2
− ω

n
φε(s,·) in

terms of J
(
φε(s, ·)

)
and constants independent of ε, say. For the latter, apply

Poincaré inequality with respect to ωnφε(s,·) (and thus with a uniform constant C,
coming from the uniform positive Ricci lower bound):∫

X

φ2
− ω

n
φε(s,·) ≤ C

(∫
X

|dφ−|2ωφε(s,·) ω
n
φε(s,·) +

( ∫
X

φ− ω
n
φε(s,·)

)2)
≤ C

(
n

∫
X

φ−(ωnφε(s,·) − ω
n
0 ) +

( ∫
X

φ− ω
n
φε(s,·)

)2)
.

Let us control
∫
X
φ− ω

n
φε(s,·) as announced; it is nonnegative, so we seek an upper

bound. We have
∫
X
φ− ω

n
φε(s,·) = −

∫
X
φε(s, ·)ωnφε(s,·) +

∫
{φε(s,·)>0} φε(s, ·)ω

n
φε(s,·), and

on the one hand, −
∫
X
φε(s, ·)ωnφε(s,·) = J

(
φε(s, ·)

)
+
∫
X
φε(s, ·)ωn0 ≤ J

(
φε(s, ·)

)
+

(n! Vol) supX φε(s, ·), whereas on the other hand,
∫
{φε(s,·)>0} φε(s, ·)ω

n
φε(s,·) ≤ (n! Vol)

supX φε(s, ·), and we control supX φε(s, ·) in terms of the announced parameters.
To conclude, we hence need an upper bound on

∫
X
φ−(ωnφε(s,·)−ω

n
0 ). Now as we

shall see below,
∫
X
φ−(ωnφε(s,·) − ω

n
0 ) = 1

2

∫
{φε(s,·)≤0} dφε(s, ·) ∧ d

cφε(s, ·) ∧ (ωn−1φε(s,·) +

· · ·+ωn0 ), and since dφε(s, ·)∧ dcφε(s, ·)∧ (ωn−1φε(s,·) + · · ·+ωn0 ) is always nonnegative
on X, this is ≤ 1

2

∫
X
dφε(s, ·) ∧ dcφε(s, ·) ∧ (ωn−1φε(s,·) + · · ·+ ωn0 ) = J

(
φε(s, ·)

)
.

Our last task is proving formula (5); we prove actually for all p ≥ 2:∫
X

φp−2− dφ− ∧ dcφ− ∧ (ωn−1φε(s,·) + · · ·+ ωn0 ) =
2

p− 1

∫
X

φp−1− (ωnφε(s,·) − ω
n
0 ).

This is done by taking a smooth cut-off function χ, equal to 1 on (−∞, 0] and
vanishing on [1,+∞). For k > 0 and p > 2 (this is similar for p = 2), if one sets
χk = χ

(
kφε(s, ·)

)
,∫

X

d
(
χk|φε(s, ·)|p−1dcφε(s, ·) ∧ (ωn−1φε(s,·) + · · ·+ ωn0 )

)
= 0.

Now the integrand can be rewritten as

(p− 1)χk|φε(s, ·)|p−3φε(s, ·)dφε(s, ·) ∧ dcφε(s, ·) ∧ (ωn−1φε(s,·) + · · ·+ ωn0 )

+ χk|φε(s, ·)|p−1ddcφε(s, ·) ∧ (ωn−1φε(s,·) + · · ·+ ωn0 )

+ χ′
(
kφε(s, ·)

)
k|φε(s, ·)|p−1dφε(s, ·) ∧ dcφε(s, ·) ∧ (ωn−1φε(s,·) + · · ·+ ωn0 )

)
.
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So we can conclude after noticing that ddcφε(s, ·)∧(ωn−1φε(s,·)+ · · ·+ωn0 ) = 2(ωnφε(s,·)−
ωn0 ), that χk is uniformly bounded by supR χ and χ′(kφε(s, ·))k|φε(s, ·)| by sup[0,1] |χ′|
(since whenever |kφε(s, ·)| ≥ 1, χ′(kφε(s, ·)) = 0), that χk converges pointwise to
1 on {φε(s, ·) ≤ 0} and to 0 on {φε(s, ·) > 0}, and χ′(kφε(s, ·))t|φε(s, ·)| to 0
pointwise on X, which legitimates an easy use of dominated convergence.

We now conclude with the closedness of Sε. Take γ ∈ (0, 1); our C0-bound on
the φε(s, ·) turns into a C4,γ-bound by Yau’s techniques. One can thus consider a
subsequence converging in C4,γ/2, with C4,γ limit we call φε(t, ·). As before, this
limit is in fact smooth. We can once more apply implicit functions theorem to
Fε at (t, φε(t, ·), 0); this gives us more specifically (after the bootstrap argument)
a smooth family of solutions {φ′ε(s, ·)}s∈(t1,t] with φ′ε(t·) = φε(t, ·), and such that
moreover φ′ε(s, ·) = φε(s, ·) for those s indexing our converging subsequence and
close enough to t. Again by unique continuation, this equality holds for all s ∈
(t′, t), so that at last, {φε(s, ·)}s∈[0,t] is a smooth family of solutions, or in other
words, t ∈ Sε.

Let us conclude by the following remark. We insisted that the upper bound
on the φε(s, ·) is independent of s and ε, and that the lower bound might depend
on the range of s, and more precisely on a positive lower bound for s, and is also
independent of ε. We can thus draw from what precedes a constant C such that
for all ε ∈ (0, 1], supX |φε(β, ·)| ≤ C. With other techniques form [CDS1], this
gives enough control to show that {ωφε(β,·)}ε∈(0,1], the Ricci tensor of which is at
least β, converge in the Gromov-Hausdorff sense to the singular Kähler-Einstein
metric ωϕβ .
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