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Abstract

Consider a compact Kähler manifold X with a simple normal crossing
divisor D, and define Poincaré type metrics on X\D as Kähler metrics on
X\D with cusp singularities along D. We prove that the existence of a
constant scalar curvature (resp. an extremal) Poincaré type Kähler metric on
X\D implies the existence of a constant scalar curvature (resp. an extremal)
Kähler metric, possibly of Poincaré type, on every component of D. We also
show that when the divisor is smooth, the constant scalar curvature/extremal
metric on X\D is asymptotically a product near the divisor.

Introduction

In his search for canonical representants of Kähler classes on compact Käh-
ler manifolds, generalising the Kähler-Einstein problem, E. Calabi introduced ex-
tremal Kähler metrics, defined as the minimisers of the L2-norm of the Ricci tensor
among a fixed class [Cal82].

Extremal metrics turn out to satisfy rich geometric properties, e.g. maximality
of the group of isometric automorphisms among connected compact Lie groups
of automorphisms [Cal85]. Conversely though, these properties may be viewed
as obstructions to the existence of extremal metrics; see for instance the example
produced by M. Levine [Lev85] of a complex Kähler surface admitting no extremal
metric. The subsequent (counter)examples produced by D. Burns and P. de Bar-
tolomeis [BDB88] revealed moreover deeper links between the (non-)existence of
extremal metrics, and algebro-geometric conditions on the manifold.

∗This work was started during the author’s stay at the MPIM Bonn (EPDI post-doc, 2013),
and completed at his arrival at ENS Cachan.

1



Asymptotic properties of extremal Kähler metrics of Poincaré type

In this direction, the so-called Yau-Tian-Donaldson conjecture predicts that
in the algebraic case, the existence of extremal Kähler metrics is equivalent to
a stability condition, close to the Geometric Invariant Theory, on the polarised
manifold:

Conjecture 1 Let (X,L) be a compact polarised manifold. Then there exists an
extremal Kähler metric in c1(L) if and only if (X,L) is K-stable relatively to a
maximal torus of Aut0(X,L).

This conjecture, first designed for Kähler-Einstein metrics on Fano manifolds
[Yau93, Tia97], was reformulated [Don01] for constant scalar curvature Kähler
metrics (an important special case of extremal metrics), and finally adapted to
extremal Kähler metrics [Mab04, Szé07]. This problem is still widely open in the
“if” direction, except for the notable case of its specialisation to Kähler-Einstein
metrics on Fano manifolds, see [CDS12a,CDS12b,CDS13] and [Tia12].

Within the scope of finding necessary conditions for the existence of extremal
metrics, this article provides constraints to the existence of extremal Kähler met-
rics with cusp singularities along a divisor in a compact Kähler manifold. Cusp
singularities are compatible with the extremal condition, in the sense that such
singular canonical metrics have already been produced [Szé06]; they appear more
specifically along a continuity path between stable and unstable polarisations, when
following smooth extremal metrics. We believe in this respect that extremal Käh-
ler metrics with cusp singularities might be of crucial interest in the study of
Conjecture 1, as particular degenerations of smooth extremal metrics.

Following [Auv11,Auv13] for the definition of the class of metrics we are in-
vestigating, fix a simple normal crossing divisor D in a compact Kähler mani-
fold (X, J, ωX), dimCX = m, of X of polydiscs U of holomorphic coordinates
(z1, . . . , zm) of radius 1

2
, such that U ∩D = {z1 · · · zk = 0} for some k = k(U) ∈

{0, . . . ,m}.

Definition 2 Let ω be a smooth (1, 1)-form on X\D. We say that ω is a Poincaré
type Kähler metric if for all U and k as above, ω is quasi-isometric to the product∑k

j=1
idzj∧dzj

|zj |2 log2(|zj |) +
∑m

j=k+1 idz
j ∧ dzj, and has bounded derivatives at any order

with respect to this model on U\D.
We say moreover that ω has class [ωX ] if ω = ωX + ddcϕ, where ϕ is smooth

on X\D, ϕ = O
(
1 +

∑k
j=1 log[− log(|zj|)]

)
, and ϕ has bounded derivatives at any

positive order for the model metric, in the above charts.

Notice that this definition allows a rather loose behaviour near the divisor,
in the sense that one can easily produce Poincaré type metrics such that their
restrictions to directions parallel to the divisor does not converge near the divisor.
Our first main result states nonetheless that such a convergence does occur for
extremal Poincaré type Kähler metrics, when D ⊂ X is smooth:
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Asymptotic properties of extremal Kähler metrics of Poincaré type

Theorem 3 Assume that ω is an extremal Kähler Poincaré type metric of class
[ωX ] on the complement of a smooth divisor D =

∑N
j=1 Dj in a compact Kähler

manifold (X,ωX). Then for all j there exist aj > 0, δ > 0, and a metric ωj ∈
[ωX |Dj ] such that on any open subset U of coordinates (z1, z2 . . . , zm) such that

U ∩Dj = {z1 = 0}, then ω =
ajidz

1∧dz1
|z1|2 log2(|z1|) + p∗ωj +O

(∣∣ log(|z1|)
∣∣−δ) as z1 → 0.

Here p(z1, z2, . . . , zm) = (z2, . . . , zm) in U , and the O is understood at any
order with respect to idz1∧dz1

|z1|2 log2(|z1|) + p∗ωj.
One easily sees from this that the induced metrics ωj are extremal, and even

have constant scalar curvature if ω does; in particular, the existence of a canoni-
cal Poincaré type metric on X\D implies the existence of a canonical metric on
the components of D, canonical meaning either extremal or with constant scalar
curvature. This implication actually holds when D is no longer assumed smooth:

Theorem 4 Assume that there exists an extremal (resp. a constant scalar curva-
ture) Poincaré type Kähler metric ω of class [ωX ] on the complement of a simple
normal crossing divisor D =

∑N
j=1Dj in a compact Kähler manifold (X,ωX).

Then for all j, there exists an extremal (resp. a constant scalar curvature) Kähler
metric on Dj\

∑
6̀=j D` of class [ωX |Dj ], of Poincaré type if Dj ∩

∑
` 6=j D` 6= ∅.

Theorem 3 states that extremal Kähler metrics of Poincaré type are asymptot-
ically products near the divisor. Similar results for Kähler-Einstein metrics were
already known [Sch02,Wu06]; these previous approaches differ fundamentally to
ours though. Indeed, in that case, the Kähler-Einstein analogue of Theorem 4
follows from topological reasons and Tian-Yau’s extension [TY90] of Aubin-Yau
theorem. Hence, starting with a Poincaré type metric with asymptotically prod-
uct behaviour, inducing on the divisor the Kähler-Einstein metrics, and running
Tian-Yau’s continuity method towards the Kähler-Einstein metric on X\D, G.
Schumacher and D. Wu prove, roughly speaking, that the asymptotics of the met-
rics are preserved under the continuity path. In the wider extremal case, the
schematic implication “existence of a canonical metric on X\D ⇒ existence of a
canonical metric on D” must be proven by different means, as there is no such
construction as Tian-Yau’s for extremal metrics. This illustrates the interest of
Theorem 4; this also suggests why our proof of Theorem 3, based on a good under-
standing of a model (divisor)×(punctured unit disc in C), and a weighted analysis
of a Lichnerowicz fourth-order operator near the divisor, is essentially different
from Schumacher and Wu’s proofs. Let us specify also here that Theorem 3 is lim-
ited to the smooth divisor case so far, due to the weighted analysis not transposing
clearly to the normal crossing case.

One can interpret Theorems 3 and 4 as giving constraints on extremal Kähler
metrics of Poincaré type; in this way, a conjecture analogous to Conjecture 1 on
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Asymptotic properties of extremal Kähler metrics of Poincaré type

Poincaré type metrics should keep track of this heredity property in the stability
conditions; see nonetheless the conjecture in [Szé06, §3.2] in the constant scalar
curvature case. Still in this particular case, in view of Theorem 4, the topologi-
cal constraint obtained in [Auv13] propagates to higher codimensional crossings,
giving further obstructions to the existence of constant scalar curvature Kähler
metrics of Poincaré type. Finally, Theorem 3 provides sharp asymptotic analytic
properties of extremal Poincaré type metrics; besides indicating what is the “right”
class of “metrics with cusp singularities” in the extremal case, this analytic pre-
requisite leads one to try and transpose analytic constructions of extremal metrics
such as that of [APS11], crucial in the treatment of the “only if” direction of
Conjecture 1, to the Poincaré framework; this will be addressed in a future paper.

Organisation of the article. — This paper is composed of four parts. In the first
three parts, we focus on the constant scalar curvature case, which already requires
most of the techniques used in proving Theorems 3 and 4. More specifically, we
analyse in Part 1 the model for Poincaré type Kähler metrics, i.e. S1-invariant
Kähler metrics on products (punctured unit disc)×(complement of a divisor), and
prove for such metrics, with constant scalar curvature, a splitting theorem (Theo-
rem 1.1).

In Part 2, we introduce the notion of a family of Kähler metrics of almost
constant scalar curvature on a compact manifold, and construct a parametrisation
in terms of automorphisms of the manifolds for such families (Proposition 2.2).

Coming back to the complement of a simple normal crossing divisor in Part 3,
we use the results of Parts 1 and 2 to prove the constant scalar curvature cases
of Theorems 3 and 4 (Theorems 3.1 and 3.2). For this we recall in Section 3.1
fibrations used in [Auv13]; the link with the model of Part 1 and the families of
almost constant scalar curvature is made in Section 3.2, where is proved Theorem
3.2, and the last three sections of Part 3 are devoted to the weighted analysis
needed for Theorem 3.1.

In Part 4 we generalise what precedes to extremal Kähler metrics, first on the
product model in Section 4.1 where is proven the splitting theorem 4.1, then on
the complement of a simple normal crossing divisor in Section 4.2.

1 Constant scalar curvature Kähler metrics of
Poincaré type: the model case

Set-up and splitting theorem. — As a model of Poincaré type metrics near a divi-
sor, we consider a compact Kähler manifold (Y, JY , ωY ) together with a (possibly
empty) simple normal crossing divisor E =

∑N
j=1Ej ⊂ Y , and take its product

with the punctured unit disc ∆∗ ⊂ C endowed with the standard complex struc-
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Asymptotic properties of extremal Kähler metrics of Poincaré type

ture JC. The product ∆∗ × (Y \E) inherits the natural holomorphic S1-action on
∆∗, if one merely declares that S1 acts trivially on Y \E.

We see ∆∗ with its hyperbolic geometry: the reference metric (or, more exactly,
Kähler form – we shall exchange them often without more specification when there
is no risk of confusion) is the Poincaré metric

ω∆∗ := −ddc log
(
− log(|z|2)

)
=

2idz ∧ dz̄
|z|2 log2(|z|2)

– notice that this equation makes it explicit that ω∆∗ is Einstein with negative
scalar curvature -2. It is convenient to describe ω∆∗ with help of “logarihtmic polar
coordinates” (t, ϑ) ∈ R × S1 defined via the writing z = exp

(
− 1

2
et − iϑ) ∈ ∆∗,

that is: ϑ is the opposite of the standard angular coordinate θ on S1, and

t := log
(
− log(|z|2)

)
.

This way JCdt = 2e−tdϑ, and thus ω∆∗ = −ddct = −d
(
2e−tdϑ

)
= dt ∧ 2e−tdϑ.

On the factor Y \E, we fix a Poincaré type Kähler metric ωY \E of class [ωY ]
according to Definition 2 – such an ωY \E always exists, take for instance ωY \E =

ωY − ddcuY , where uY =
∑N

j=1 log
(
− log(|σj|2j)

)
, with σj a section of O

(
[Ej]

)
canonically associated to Ej, and | · |j a well-chosen smooth hermitian metric on
[Ej] such that |σj|2j ≤ e−1 on Y ; see [Auv11, §1.1] for precisions.

We now endow ∆∗ × (Y \E) with ω0 := ω∆∗ + ωY \E, and consider the set of
S1-invariant potentials of Kähler metrics on ∆∗×(Y \E) quasi-isometric to ω0, and
whose derivatives at any order with respect to this model metric are bounded; we
restrict more specifically to those potentials uniformly dominated by 1 + uY (uY
extended constantly along ∆∗), with bounded derivatives of positive order for ω0.
In a nutshell, we look at the space:

K (ω0) :=
{
ϕ ∈ E0

(
∆∗×(Y \E)

)∣∣
C−1ω0 ≤ ωϕ := ω0 + ddcϕ ≤ Cω0 for some constant C > 0

}
,

with E0

(
∆∗ × (Y \E)

)
the set of S1-invariant – emphasised through the 0 index –

smooth functions v on ∆∗× (Y \E) such that |v| ≤ C(1+uY ) for some constant C,
and for all k, ` ≥ 0 such that k + ` ≥ 1, |∇k∂`tv|ω0 ≤ Ck,`, with ∇ the Levi-Civita
connexion of ωY \E, for some constant Ck,`.

For ϕ ∈ K – from now on, the reference metric, fixed, is omitted –, we use as
above and along all this part the notation ωϕ = ω0 +ddcϕ; we refer to the resulting
metrics as Poincaré type Kähler metrics on ∆∗×(Y \E), by analogy with Poincaré
type Kähler metrics on complements of divisors in compact Kähler manifolds. The
main result of this part deals with those ωϕ with constant scalar curvature:

5



Asymptotic properties of extremal Kähler metrics of Poincaré type

Theorem 1.1 Assume that there exists ϕ ∈ K such that ωϕ has constant scalar
curvature. Then ϕ does not depend on t, and is a Poincaré type potential ψ for
ωY \E; therefore, ωϕ splits as a product ω∆∗ + ωψY , with ωψY := ωY \E + ddcY ψ a
constant scalar curvature metric, of Poincaré type if E 6= ∅, and of class [ωY ].

Recall that given any Kähler metric ω on an m-complex dimensional manifold,
its scalar curvature s(ω) is given by the formula

2m%(ω) ∧ ωm−1 = s(ω)ωm,

In the situation of Theorem 1.1, if m = dimC(Y ) + 1 and %ϕ is the Ricci form of
ωϕ, one thus has %ϕ ∧ ωm−1

ϕ = 1
2m

sωmϕ for some constant s.
Theorem 1.1 states a splitting principle for constant scalar curvature metrics

on products ∆∗ × (Y \E), with Poincaré behaviour in the ∆∗ direction, as well
as in the (Y \E) direction when E is non-trivial, and can thus be viewed in the
same scope as the main results of [AH12, Hua12]. Notice that no existence of
constant scalar curvature Kähler metrics (of Poincaré type) of class [ωY ] on Y \E
is a priori assumed in the statement; notice also that we make an implicit use of
the general equivalence “a product metric has constant scalar curvature if and only
if its components do”, automatic in Riemannian geometry.

Moreover, if one thinks to Y as some component, D1 say, of a simple normal
crossing divisor D =

∑N
j=1 Dj in a compact Kähler manifold X, and E as the

induced divisor E1 :=
∑N

j=2(Dj ∩ D1), then Poincaré type Kähler metrics on
∆∗ × (Y \E) are roughly speaking asymptotic models for Poincaré type Kähler
metrics on X\D near D1. Heuristically, constant scalar curvature Poincaré type
metrics on X\D are thus modelled on products near the Dj, which thus admit
constant scalar curvature metrics; as is seen in Part 3, the first property indeed
holds if D is smooth, and the second one holds in general (Theorems 3.1 and 3.2).

Our last comment concerns the class of potentials K ; we could have chosen,
in order to respect more closely the analogy with Definition 2, a similar definition
but with a C0-bound of type |ϕ| ≤ C(|t|+uY ). However, starting with an ωϕ with
constant scalar curvature s and using the same integral techniques as in [Auv13],
we would have ended up with |ϕ − at| ≤ C(|t| + uY ) for some a < 1, completely
determined by the data: 2

1−a = sY \E − s, with sY \E the mean scalar curvature
attached to Poincaré type Kähler metrics of class [ωY ] on Y \E. Up to a replacing
ω0 by 1

1−aω0, there is thus no loss of generality with our choice for K . In the
extremal case, one has to establish such a priori asymptotics for the potential,
which is thus taken in a larger space as sketched above, see Section 4.1.

The rest of this part is devoted to the proof of Theorem 1.1.

A fourth order equation on ∂tϕ. — The first step towards Theorem 1.1 is:
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Asymptotic properties of extremal Kähler metrics of Poincaré type

Lemma 1.2 For ϕ as in Theorem 1.1, denote by Lϕ the Lichnerowicz operator of
order 4 associated to ωϕ, and set vϕ = ϕ̇− 1. Then:

(1) Lϕ(vϕ) = 0.

We use here the notation ˙ for the t derivative; we use it again frequently, as well
as its twice iterated version ,̈ in what follows. Besides, (1) is of course equivalent
to Lϕ(ϕ̇) = 0, but the “vϕ-shape” is more convenient, as we shall see below.

Proof of Lemma 1.2. — For any φ ∈ E0, since ωϕ has constant scalar curvature,
the Lichnerowicz operator describes the variation of scalar curvature along a de-
formation of the metric in the ddcφ direction: for ε small, s

(
ωϕ + ddc(εφ)

)
=

s(ωϕ) + εLϕ(φ) +O(ε2), where s(ωϕ) = s is constant; more generally, if (ϕε) is a
path in K with ϕ0 = ϕ and φ = dϕε

dε

∣∣
ε=0

, then ds(ωϕε )

dε

∣∣
ε=0

= Lϕ(φ). Notice that
this holds locally if φ is only locally defined.

Recall the complex coordinate z = exp
(
− 1

2
et − iϑ

)
on ∆∗, and consider the

(locally defined) real holomorphic vector field

Z := Re
[
z(log z)

∂

∂z

]
;

then Z = Re(log z)Re
(
z ∂
∂z

)
− Im(log z)Im

(
z ∂
∂z

)
, Re(log z) = log |z| = −1

2
et,

Im(log z) = −ϑ up to 2π, and z ∂
∂z

= −e−t ∂
∂t

+ i
2
∂
∂ϑ
, thus:

Z =
1

2

∂

∂t
+

1

2
ϑ
∂

∂ϑ
up to π

∂

∂ϑ
.

In particular, Z · f makes global sense as 1
2
ḟ for any S1-invariant f . Now as

ωϕ = ωY \E + ddc(ϕ − t), LZωϕ = LZωY \E + ddc
(
Z · (ϕ − t)

)
= ddc

(
Z · (ϕ − t)

)
,

as Z is normal to Y . Moreover, (ϕ − t) is S1-invariant, and Z · (ϕ − t), globally
defined, equals 1

2
(ϕ̇− 1) = 1

2
vϕ. Therefore by the preliminary remark, denoting by

ΦZ
ε the flow of Z, one has, for ε small:

s̄ = (ΦZ
ε )∗s(ωϕ) = s

(
(ΦZ

ε )∗ωϕ
)

= s
(
ωϕ +

ε

2
ddcvϕ +O(ε2)

)
= s̄ +

ε

2
Lϕ(vϕ) +O(ε2),

and thus Lϕ(vϕ) vanishes identically. �

A useful holomorphic gradient. — Recall that the Lichnerowicz operator is self-
adjoint by construction, as it can be defined – independently of ωϕ having con-
stant scalar curvature – as D∗ϕDϕ, with Dϕ = (∇ϕ)−d, where (∇ϕ)− is the J-anti-
invariant part of the Levi-Civita connection of ωϕ, and D∗ϕ the formal adjoint of
Dϕ for ωϕ. On compact manifolds, L and D thus have the same kernel; this comes
at once from an integration by parts, and cannot therefore be applied directly
on ∆∗ × (Y \E) in general. Our aim is to prove, however, after Lemma 1.2, that
indeed, Dϕ(vϕ) = 0. An important intermediate step for this is:
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Asymptotic properties of extremal Kähler metrics of Poincaré type

Lemma 1.3 For ϕ ∈ K , set uϕ = e−t(ϕ̇− 1) = e−tvϕ. Then:

(2) Dϕ(uϕ) = 0;

in particular, Lϕ(uϕ) = 0, and Dϕ(vϕ) = 1
2

(
duϕ · det − dcuϕ · dcet

)
+ uϕDϕ(et).

In this statement and from now on, we adopt the convention that α·β = α⊗β+β⊗α
for any 1-forms α and β; α2 always means α⊗ α though.

Proof of Lemma 1.3. — When s(ωϕ) is constant, the equation Lϕ(uϕ) = 0 can be
obtained in the same way as the equation Lϕ(vϕ) = 0 of Lemma 1.2, using the real
holomorphic vector field Re

(
z ∂
∂z

)
instead of Re

(
z log(z) ∂

∂z

)
. Now in our context

Lϕ(uϕ) = 0 is not enough to deduce Dϕ(uϕ) = 0, as for instance uϕ a priori has
size e−t for t going to −∞, which brings up problematic boundary terms if one
tries and performs the usual integrations by parts. Equation (2) actually comes
from a more direct computation, and holds in general, i.e. independently of ωϕ
having constant scalar curvature.

For any (twice differentiable, say) function f , the equation Dϕ(f) = 0 is indeed
equivalent to ∇ϕf being a real holomorphic vector field, where ∇ϕf denotes the
gradient of f computed with respect to gϕ = ωϕ(·, J ·) – there should be no con-
fusion between our two different uses of ∇ϕ, as it refers to a gradient only when
used with functions, and as we always denote differentials by d. So if we check the
structural equation

(3) ∇ϕuϕ = e−t
∂

∂t
,

then we are done, since e−t ∂
∂t

= −Re
(
z ∂
∂z

)
, as seen in the previous proof.

According to the splitting J = JC ⊕ JY and the rule JCdt = 2e−tdϑ, and since
ϕ is S1-invariant, we have:

(4) ωϕ = (1 + ϕ̈− ϕ̇)dt ∧ 2e−tdϑ+ dt ∧ dcY ϕ̇+ dY ϕ̇ ∧ 2e−tdϑ+
(
ωY \E + ddcY ϕ

)
,

where dY , dcY and ddcY are respectively the operators d, dc and ddc acting on
functions on Y – or, for instance: (dY f)(t, ϑ, ·) = d

(
f(t, ϑ, ·)

)
, and so on.

Given any 1-form α and any function f , one has:

α(∇ϕf)
ωmϕ
m!

= 〈α, df〉gϕ
ωmϕ
m!

= α ∧ dcf ∧
ωm−1
ϕ

(m− 1)!
.

Now observe that if one takes f = e−t(ϕ̇− 1) =: uϕ, giving thus

dcuϕ =
∂uϕ
∂t

2e−tdϑ+ dcY uϕ = e−t
(
(1 + ϕ̈− ϕ̇)2e−tdϑ+ dcY ϕ̇

)
,
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one has, in view of (4) and using S1-invariance to set ωϕt = (ωY \E + ddcY ϕ)|t,ϑ:

dcuϕ ∧
ωm−1
ϕ

(m− 1)!
= e−t

[
(1 + ϕ̈− ϕ̇)2e−tdϑ ∧ dt ∧ dcY ϕ̇ ∧

(ωϕt )m−2

(m− 2)!

+ (1 + ϕ̈− ϕ̇)2e−tdϑ ∧ (ωϕt )m−1

(m− 1)!

+ dcY ϕ̇ ∧ (1 + ϕ̈− ϕ̇)dt ∧ 2e−tdϑ ∧ (ωϕt )m−2

(m− 2)!

+ dcY ϕ̇ ∧ dY ϕ̇ ∧ 2e−tdϑ ∧ (ωϕt )m−2

(m− 2)!

]
= e−t

[
(1 + ϕ̈− ϕ̇)2e−tdϑ ∧ (ωϕt )m−1

(m− 1)!

− 2e−tdϑ ∧ dY ϕ̇ ∧ dcY ϕ̇ ∧
(ωϕt )m−2

(m− 2)!

]
,

since the first and third lines of the right-hand side of the first equality cancel each
other. Therefore, for any 1-form α on ∆∗ × (Y \E) written as αtdt+ αϑdϑ+ αY ,

α(∇ϕuϕ)
ωmϕ
m!

= e−tαtdt ∧
[
(1 + ϕ̈− ϕ̇)2e−tdϑ ∧ (ωϕt )m−1

(m− 1)!

−2e−tdϑ ∧ dY ϕ̇ ∧ dcY ϕ̇ ∧
(ωϕt )m−2

(m− 2)!

]
.

On the other hand, a direct computation yields

ωmϕ
m!

= (1 + ϕ̈− ϕ̇)dt ∧ 2e−tdϑ ∧ (ωϕt )m−1

(m− 1)!
− dt ∧ 2e−tdϑ ∧ dY ϕ̇ ∧ dcY ϕ̇ ∧

(ωϕt )m−2

(m− 2)!
,

hence α(∇ϕuϕ) = e−tαt = α
(
e−t ∂

∂t

)
for any 1-form α: equation is (3) verified.

Knowing that Dϕ(uϕ) = 0, the assertion on Dϕ(vϕ) now directly comes from
the definitions of Dϕ = (∇ϕ)−d and vϕ = etuϕ, and Leibniz rule. �

Finiteness of a weighted L2 norm of Dϕ(vϕ). — For general φ ∈ K , we only know
that Dφ(φ̇) is bounded on ∆∗ × (Y \E); since et

ωmφ
m!

is mutually bounded with the

cylindrical volume form dt ∧ dϑ ∧
ωm−1
Y \E

(m−1)!
,
∫

∆∗×(Y \E)
et
∣∣Dφ(φ̇)

∣∣2
φ

ωmφ
m!

has no reason to
be finite – here | · |φ denotes the norm computed with gφ. Combining equalities (1)
and (2), we claim that this is indeed the case for ϕ such that s(ωϕ) is constant:

Lemma 1.4 For ϕ as in Theorem 1.1,∫
∆∗×(Y \E)

et
∣∣Dϕ(vϕ)

∣∣2
ϕ

volϕ <∞,
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where volϕ =
ωmϕ
m!

, and where we recall the notation: vϕ = ϕ̇− 1.

Proof of Lemma 1.4. — For s ≥ 0, set ∆s := {|t| ≤ s} ⊂ ∆∗. First we relate∫
∆s×(Y \E)

et
∣∣Dϕ(vϕ)

∣∣2
ϕ

volϕ to
∫

∆s×(Y \E)
etvϕLϕ(vϕ) volϕ, where volϕ =

ωmϕ
m!

; notice
though that the latter integral is always 0, by Lemma 1.2. Assume momentarily
that E is empty, so that we work on ∆s × Y . From (1) and as Lϕ = δϕδϕDϕ, one
has:

0 =

∫
∆s×Y

etvϕLϕ(vϕ) volϕ =

∫
∆s×Y

etvϕδ
ϕδϕDϕ(vϕ) volϕ

=

∫
∆s×Y

〈
d(etvϕ), δϕDϕ(vϕ)

〉
ϕ

volϕ

+

∫
{t=s}

esDϕ
s ∧ 2e−sdϑ−

∫
{t=−s}

e−sDϕ
−s ∧ 2esdϑ,

where

Dϕ
t := δϕDϕ(vϕ)(∂t)

(ωϕt )m−1

(m− 1)!
− δϕDϕ(vϕ)|Y ∧ dcY vϕ ∧

(ωϕt )m−2

(m− 2)!
,

with ωϕs = ωY \E + ddcY
(
ϕ(s, ·)

)
. Here we use Stokes’ theorem, and the Kähler

identities 〈α, β〉ω ω
m

m!
= α ∧ Jβ ∧ ωm−1

(m−1)!
and (δα)ω

m

m!
= −dcα ∧ ωm−1

(m−1)!
for 1-forms,

as well as ωϕ = ωϕ±s + dY ϕ̇ ∧ 2e∓sdϑ on slices {t = ±s}, to compute the boundary
integrals. Observe that the es and e−s cancel each other in these terms, and there-
fore the integrands are bounded – for the metric gY \E + dϑ2, say – independently
of s. Consequently the boundary integrals are O(1), that is:

(5) 0 =

∫
∆s×Y

etvϕLϕ(vϕ) volϕ =

∫
∆s×Y

〈
d(etvϕ), δϕDϕ(vϕ)

〉
ϕ

volϕ +O(1),

the O(1) being understood with respect to the variable s.
We proceed to a further integration by parts, using that by definition the δϕ

in the second integral of the right-hand side of (5) is the adjoint of the projection
of the Levi-Civita connexion ∇ϕ from 1-forms and to symmetric 2-forms:

(6) 0 =

∫
∆s×Y

etvϕLϕ(vϕ) volϕ =

∫
∆s×Y

〈
∇ϕd(etvϕ),Dϕ(vϕ)

〉
ϕ

volϕ +O(1);

here we have included the boundary in the O(1), since they are bounded indepen-
dently of s for the same reasons as for the first integration by parts above.

As Dϕ(vϕ) is J-anti-invariant by construction, ∇ϕd(etvϕ) can be replaced by is
J-anti-invariant part Dϕ(etvϕ) in the inner product in the right-hand side of (6):

(7) 0 =

∫
∆s×Y

etvϕLϕ(vϕ) volϕ =

∫
∆s×Y

〈
Dϕ(etvϕ),Dϕ(vϕ)

〉
ϕ

volϕ +O(1);

10



Asymptotic properties of extremal Kähler metrics of Poincaré type

Expand nowDϕ(etvϕ) with Leibniz rule, using that vϕ = etuϕ and thatDϕ(uϕ) = 0:

Dϕ(etvϕ) = Dϕ(e2tuϕ) = 2e2t(dt · duϕ)− + uϕDϕ(e2t);

here and further on, h− denotes the J-anti-invariant part of any symmetric 2-
form h. Moreover, Dϕ(e2t) = 2e2t(dt2)− + 2etDϕ(et), and Dϕ(vϕ) = Dϕ(etuϕ) =
et(dt · duϕ)− + uϕDϕ(et) by Lemma 1.3, hence:

Dϕ(etvϕ) = 2etDϕ(vϕ) + 2vϕ(dt2)−.

From this and (7) we thus infer:

(8)
∫

∆s×Y
et|Dϕ(vϕ)|2ϕ volϕ = −1

2

∫
∆s×Y

vϕe
t
〈
(dt2)−,Dϕ(vϕ)

〉
ϕ

volϕ +O(1)

We shall make explicit the computations involved in the right-hand side of this
estimate, replacing the Dϕ(vϕ) there by its expansion given in Lemma 1.3, that is:
(det · duϕ)− + uϕDϕ(et). We also replace (dt2)− by dt2 in the inner product.

First,
〈
dt2, (det · duϕ)−

〉
ϕ
is merely equal to et

2
dt(∇ϕt)duϕ(∇ϕt) · 2 = |dt|2ϕ,

as duϕ(∇ϕt) = dt(∇ϕuϕ) = e−t, and dct(∇ϕt) = dcuϕ(∇ϕt) = 0; to see these
vanishings, write for example dct(∇ϕt)

ωmϕ
m!

= 〈dt, dct〉ϕ
ωmϕ
m!

= dt ∧ (−dt) ∧ ωm−1
ϕ

(m−1)!
for

the first one, and dcuϕ(∇ϕt) = dct(∇ϕuϕ) = 2e−tdϑ
(
e−t ∂

∂t

)
= 0 for the second one.

Now Dϕ(et) = et(dt2)− + etDϕ(t), thus〈
dt2,Dϕ(et)

〉
ϕ

=
et

2

(
dt(∇ϕt)2 + dct(∇ϕt)2

)
+ etDϕ(t)(∇ϕt,∇ϕt)

=
et

2
|dt|4ϕ + etDϕ(t)(∇ϕt,∇ϕt);

we are left with the computation ofDϕ(t)(∇ϕt,∇ϕt), hence those of
(
∇ϕ
∇ϕtdt

)
(∇ϕt)

and
(
∇ϕ
J∇ϕtdt

)
(J∇ϕt).

Lemma 1.5 One has:
(
∇ϕ
∇ϕtdt

)
(∇ϕt) = 1

2
(∇ϕt) · |dt|2ϕ, and:

(
∇ϕ
J∇ϕtdt

)
(J∇ϕt) =

−|dt|4ϕ − 1
2
(∇ϕt) · |dt|2ϕ.

Proof of Lemma 1.5. — Rewrite the first quantity to compute as
〈
∇ϕ
∇ϕtdt, dt

〉
ϕ
,

to see that it is indeed nothing but 1
2
(∇ϕt) · |dt|2ϕ. For the second quantity we

proceed as follows:
(
∇ϕ
J∇ϕtdt

)
(J∇ϕt) = (J∇ϕt)·

(
dt(J∇ϕt)

)
−dt

(
∇ϕ
J∇ϕt(J∇ϕt)

)
=

−
〈
∇ϕt,∇ϕ

J∇ϕt(J∇ϕt)
〉
ϕ
, since dt(J∇ϕt) ≡ 0. Now by Koszul formula,

2
〈
∇ϕt,∇ϕ

J∇ϕt(J∇
ϕt)
〉
ϕ

=2(J∇ϕt) · 〈∇ϕt, J∇ϕt〉ϕ − (∇ϕt) · |J∇ϕt|2ϕ
+
〈
[J∇ϕt, J∇ϕt],∇ϕt

〉
ϕ

+ 2
〈
[∇ϕt, J∇ϕt], J∇ϕt

〉
ϕ

=− (∇ϕt) · |dt|2ϕ + 2
〈
[∇ϕt, J∇ϕt], J∇ϕt

〉
ϕ
,

11
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since 〈∇ϕt, J∇ϕt〉ϕ = 0, |J∇ϕt|2ϕ = |∇ϕt|2ϕ = |dt|2ϕ (and of course [J∇ϕt, J∇ϕt] =
0). Now〈

[∇ϕt, J∇ϕt], J∇ϕt
〉
ϕ

=dct
(
[∇ϕt, J∇ϕt]

)
= 2e−tdϑ

(
[∇ϕt, J∇ϕt]

)
=2e−t

[
(∇ϕt) ·

(
(J∇ϕt) · ϑ

)
− (J∇ϕt) ·

(
(∇ϕt) · ϑ

)]
=2e−t

[
(∇ϕt) ·

(1

2
et|dt|2ϕ

)
− 0
]
,

since (J∇ϕt)·ϑ = dϑ(J∇ϕt) = 1
2
etdt(∇ϕt) = 1

2
et|dt|2ϕ, and (∇ϕt)·ϑ = dϑ(∇ϕt) = 0

as already seen. So finally
〈
[∇ϕt, J∇ϕt], J∇ϕt

〉
ϕ

= |dt|4ϕ + (∇ϕt) · |dt|2ϕ, and thus(
∇ϕ
J∇ϕtdt

)
(J∇ϕt) = −

〈
∇ϕt,∇ϕ

J∇ϕt(J∇ϕt)
〉
ϕ

= −|dt|4ϕ − 1
2
(∇ϕt) · |dt|2ϕ. �

We deduce from Lemma 1.5 that:

D(t)(∇ϕt,∇ϕt) =
1

2

[(
∇ϕ
∇ϕtdt

)
(∇ϕt)−

(
∇ϕ
J∇ϕtdt

)
(J∇ϕt)

]
=

1

2
(∇ϕt) · |dt|2ϕ+

1

2
|dt|4ϕ.

This yields
〈
dt2,Dϕ(et)

〉
ϕ

= et

2
(∇ϕt) · |dt|2ϕ + et|dt|4ϕ, and therefore

(9) vϕ
〈
(dt2)−,Dϕ(vϕ)

〉
ϕ

= vϕ|dt|2ϕ + v2
ϕ|dt|4ϕ +

1

2
v2
ϕ(∇ϕt) · |dt|2ϕ.

Do not use (9) with (8) yet; instead, focus on its last summand, and notice that:∫
∆s×Y

etv2
ϕ(∇ϕt) · |dt|2ϕ volϕ =

∫
∆s×Y

v2
ϕd(|dt|2ϕ) ∧ dc(et) ∧

ωm−1
ϕ

(m− 1)!

= −
∫

∆s×Y
|dt|2ϕd(v2

ϕ) ∧ dc(et) ∧
ωm−1
ϕ

(m− 1)!
+O(1)

by Stokes, since ddc(et) = 0 – here again, the boundary terms are bounded inde-
pendently of s. This we rewrite as∫

∆s×Y
etv2

ϕ(∇ϕt) · |dt|2ϕ volϕ = −2

∫
∆s×Y

etvϕ|dt|2ϕdt(∇ϕvϕ) volϕ +O(1),

and as ∇ϕvϕ = ∇ϕ(etuϕ) = et∇ϕuϕ + etuϕ∇ϕt = ∂
∂t

+ vϕ∇ϕt, we get∫
∆s×Y

etv2
ϕ(∇ϕt) · |dt|2ϕ volϕ = −2

∫
∆s×Y

etvϕ|dt|2ϕ
(
1 + vϕ|dt|2ϕ

)
volϕ +O(1).

From this latter equality and (9), we thus exactly end up with∫
∆s×Y

vϕe
t
〈
(dt2)−,Dϕ(vϕ)

〉
ϕ

volϕ

=

∫
∆s×Y

etvϕ|dt|2ϕ
(
1 + vϕ|dt|2ϕ

)
volϕ +

1

2

∫
∆s×Y

etv2
ϕ(∇ϕt) · |dt|2ϕ volϕ = O(1),

12
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that is, coming back now to (8),∫
∆s×Y

et|Dϕ(vϕ)|2ϕ volϕ = O(1).

As the integrand is nonnegative, this implies that the integral converges as s goes
to ∞; in other words,

∫
∆×Y e

t|Dϕ(vϕ)|2ϕ volϕ is finite.
When the divisor E in Y is not a priori empty, the same arguments apply, by

replacing ∆s×Y by ∆s×(Y \E) in the integrals above. One just has to check that
the integrations by parts still provide bounded boundary terms, which is indeed
the case thanks to the Poincaré assumption on ωϕ. �

Vanishing of the weighted L2 norm of Dϕ(vϕ). — We strengthen Lemma 1.4 as:

Lemma 1.6 For ϕ as in Theorem 1.1,
∫

∆∗×(Y \E)
|Dϕ(vϕ)|2ϕ et volϕ = 0, and thus

Dϕ(vϕ) ≡ 0.

Proof of Lemma 1.6. — Denote by Fϕ the function

s 7−→
∫
{t=s}

vϕD
ϕ
s ∧ 2dϑ = 4π

∫
{s}×(Y \E)

vϕD
ϕ
s

(this holds by S1-invariance under the first integral); one moment’s thought – use
the flow along Z = ∂t + ϑ∂ϑ – gives: Fϕ(·+a,·) = Fϕ(· + a) for all a ∈ R. Now
formula (5) – or rather its analogue on ∆s × (Y \E) – can then be rewritten as:

0 =

∫
∆s×(Y \E)

etvϕLϕ(vϕ) volϕ

=

∫
∆s×(Y \E)

〈
d(etvϕ), δϕDϕ(vϕ)

〉
ϕ

volϕ +Fϕ(s)−Fϕ(−s).

Similarly,∫
∆s×(Y \E)

〈
d(etvϕ),δϕDϕ(vϕ)

〉
ϕ

volϕ

=

∫
∆s×(Y \E)

〈
Dϕ(etvϕ),Dϕ(vϕ)

〉
ϕ

volϕ +Gϕ(s)− Gϕ(−s),

if Gϕ denotes on R the function

s 7−→
∫
{t=s}

dϕs ∧ 2dϑ = 4π

∫
{s}×(Y \E)

dϕs ,

13
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where

dϕt :=e−t
[
Dϕ(vϕ)

(
∇ϕ(etvϕ), ∂t

) (ωϕs )m−1

(m− 1)!

−Dϕ(vϕ)
(
∇ϕ(etvϕ), ·

)
|Y ∧ dcY vϕ ∧

(ωϕs )m−2

(m− 2)!

]
=Dϕ(vϕ)

(
(vϕ∇ϕt+∇ϕvϕ), ∂t

) (ωϕs )m−1

(m− 1)!

−Dϕ(vϕ)
(
vϕ∇ϕt+∇ϕvϕ, ·

)
|Y ∧ dcY vϕ ∧

(ωϕs )m−2

(m− 2)!
on Y \E.

This way G satisfies the translation property Gϕ(·+a,·) = Gϕ(· + a), and the exact
formulation of (8) is:∫

∆s×(Y \E)

et|Dϕ(vϕ)|2ϕ volϕ = −1

2

(∫
∆s×(Y \E)

vϕe
t
〈
(dt2)−,Dϕ(vϕ)

〉
ϕ

volϕ

+ Fϕ(s) + Gϕ(s)−Fϕ(−s)− Gϕ(−s)
)
.

Next, in our explicit computation of
∫

∆s×(Y \E)
vϕe

t
〈
(dt2)−,Dϕ(vϕ)

〉
ϕ

volϕ, the only
integration by parts occurs when transforming 1

2

∫
∆s×Y e

tv2
ϕ(∇ϕt) · |dt|2ϕ volϕ into

−
∫

∆s×Y e
tvϕ|dt|2ϕdt(∇ϕvϕ) volϕ; the resulting boundary term is Hϕ(s) −Hϕ(−s),

where Hϕ(s) := −4π
∫
{s}×(Y \E)

v2
ϕ|dt|2ϕ

ωm−1
ϕ,s

(m−1)!
– again, Hϕ(·+a,·) = Hϕ(· + a) –, and

thus ∫
∆s×(Y \E)

et|Dϕ(vϕ)|2ϕ volϕ = Kϕ(s)−Kϕ(−s),

with Kϕ = −1
2
(Fϕ + Gϕ +Hϕ), and more generally

∫
∆a,b×(Y \E)

et|Dϕ(vϕ)|2ϕ volϕ =

Kϕ(a)−Kϕ(b) for all a ≥ b, if ∆a,b := {b ≤ t ≤ a}; Kϕ is thus non-decreasing, and
has limits at ±∞. We will thus be done if we prove that these limits are identical.

Let us consider any increasing sequence (tj)j≥0 going to +∞; we also assume
that (tj+1−tj)j≥0 increases to +∞. Set αj =

tj+1−tj
2

, and denote by ϕj the function
ϕ
(
·+tj+1 − αj

)
. Then s(ωϕj) is constant, equal to s(ωϕ), and thus∫

∆αj×(Y \E)

et|Dϕj(vϕj)|2ϕj volϕj = Kϕj(αj)−Kϕj(−αj) = Kϕ(tj+1)−Kϕ(tj).

Up to considering a subsequence, one can assume that (ϕj), which is uniformly
dominated by uY , and has uniformly bounded derivatives at any positive order on
∆∗ × (Y \E) as ϕ does, converges to some ϕ∞ ∈ K (ω0) in C∞ on every compact
subset of ∆∗×(Y \E). And as for ϕ, as s(ωϕ∞) ≡ s,

∫
∆∗×(Y \E)

et|Dϕ∞(vϕ∞)|2ϕ∞ volϕ∞

14
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is then finite, and given some compact exhaustive sequence (Kj)j≥0 of Y \E, is thus
equal to limj→∞

∫
∆αj×Kj

et|Dϕ∞(vϕ∞)|2ϕ∞ volϕ∞ .
Now,

∫
∆αj×Kj

et|Dϕ∞(vϕ∞)|2ϕ∞ volϕ∞ = limk→∞
∫

∆αj×Kj
et|Dϕk(vϕk)|2ϕk volϕk for

any fixed j. But
∫

∆αj×Kj
et|Dϕk(vϕk)|2ϕk volϕk ≤

∫
∆αk

×(Y \E)
et|Dϕk(vϕk)|2ϕk volϕk =

Kϕ(tk+1) − Kϕ(tk) for k ≥ j, and therefore
∫

∆αj×Kj
et|Dϕ∞(vϕ∞)|2 volϕ∞ = 0, as

Kϕ(tk) tends to lim+∞Kϕ as k goes to ∞.
We can thus conclude that

∫
∆∗×(Y \E)

et|Dϕ∞(vϕ∞)|2 volϕ∞ = 0, which is equiv-
alent to: Dϕ∞(vϕ∞) vanishes identically, or: ∇ϕ∞vϕ∞ is real holomorphic. Since
∇ϕ∞vϕ∞ = ∂

∂t
+∇ϕ∞t, it has shape γ ∂

∂t
+Z with Z tangent to Y \E, as dϑ(∇ϕ∞t) =

〈dt, dϑ〉ϕ∞ = 0. Moreover γ = dt(∇ϕ∞vϕ∞) = 1+vϕ∞|dt|2ϕ∞ ; furthermore, one has:

Lemma 1.7 Let Z be a real holomorphic vector field on ∆∗× (Y \E), bounded up
to order 1 for ω0. Then Z is tangent to Y \E, and constant along ∆∗.

The proof of this lemma is postponed after the current proof. For now we get, as
∇ϕ∞vϕ∞ is bounded at any order with respect to ω0, that γ ≡ 0, i.e. ˙ϕ∞ − 1 =
vϕ∞ = −|dt|−2

ϕ∞ = −
(
1 + ϕ̈∞ − ˙ϕ∞ − |dY ˙ϕ∞|2∞,t

)
, or: ϕ̈∞ = |dY ˙ϕ∞|2∞,t ≥ 0. Since

ϕ∞(·, y) is bounded for all y ∈ Y \E, this implies that ϕ∞ is constant in the ∆∗-
direction, thus ˙ϕ∞ = 0, and in particular ϕ̈∞ = |dY ˙ϕ∞|2∞,t = 0. In other words,
ϕ∞ is a function on (Y \E), ψ∞ say, independent of t.

We interpret this by saying that vϕj converges to −1, and that ωϕj converges
to ωϕ∞ = dt ∧ 2e−tdϑ + ωψ∞Y , ωψ∞Y = ωY \E + ddcY ψ∞, in C∞loc topology. Hence by
dominated convergence, Kϕ

( tj+1+tj
2

)
= Kϕj(0) tends to Kϕ∞(0), and, as vϕ∞ = −1,

Kϕ∞(0) = −2π

∫
{0}×(Y \E)

vϕ∞D
ϕ∞
0 + dϕ∞0 − v2

ϕ∞|dt|
2
ϕ∞

(ωψ∞Y )m−1

(m− 1)!

= −2π

∫
{0}×(Y \E)

0 + 0− (−1)2 · 1 (ωψ∞Y )m−1

(m− 1)!
= 2πVol(Y \E),

as |dt|2ϕ∞ = 1, since ωϕ∞ = dt∧ 2e−tdϑ+ ωψ∞Y . We recall that the volume of Y \E,
even if computed with respect to ωψ∞Y , depends only on [ωY ]. On the other hand,
Kϕ
( tj+1+tj

2

)
converges to lim+∞Kϕ; we hence get: lim+∞Kϕ = 2πVol(Y \E).

These arguments apply symmetrically, and thus lim−∞Kϕ = 2πVol(Y \E).
Therefore lim−∞Kϕ = lim+∞Kϕ, and finally

∫
∆∗×(Y \E)

et|Dϕ(vϕ)|2ϕ volϕ = 0. �

End of proof of Theorem 1.1. — We have: Dϕ(vϕ) ≡ 0; as seen in the above proof
for ϕ∞, this implies that ϕ does not depend on t: Theorem 1.1 is proved. �

Proof of Lemma 1.7. — Any holomorphic function f on ∆∗ which is O(1 − |z|)
near ∂∆, and O

(
|z|
∣∣ log(|z|)

∣∣) near 0, vanishes identically on ∆∗. Indeed, extend
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f through 0, and for r ∈ (0, 1), ε > 0, pick δ ∈ (0, 1− r) so that |f | ≤ ε on ∂∆1−δ.
By the maximum principle, |f | ≤ ε on ∆r; since r and ε are arbitrary, f ≡ 0.

Now given Z as in the statement, take a open subset U of holomorphic coor-
dinates (z2, . . . , zm) on Y \E, and write Z1,0 = f ∂

∂z
+
∑m

j=2 fj
∂

∂zm
. Fix x ∈ U . As

Z is bounded, f(·, x) : ∆∗ → C, which is holomorphic, is O
(
|z|
∣∣ log(|z|)

∣∣) near 0,
and O(1− |z|) near ∂∆, and thus f(·, x) ≡ 0. The same holds for the ∂fj(·,x)

∂z
, and

as ∂fj(·,x)

∂z
≡ 0, the fj are constant along ∆∗. �

2 Parametrisation of Kähler metrics of almost
constant scalar curvature

2.1 Family of Kähler metrics of almost constant scalar cur-
vature

Definition. — We consider a compact Kähler manifold (Y, ωY , JY ) of dimension
n ≥ 1, and define:

Definition 2.1 Let (ωt)t≥0 be a smooth family of Kähler metrics in [ωY ] such that:

1. s(ωt) converges at any order to sY := −4πn c1(KY )·[ωY ]n−1

[ωY ]n
, i.e. for any κ ≥ 0,

s(ωt)→ sY and for any positive `, ∂`ts(ωt)→ 0, in Cκ(Y ), as t goes to ∞;

2. (ωt)t≥0 is bounded in Cκ for any κ, and there is some positive constant c
such that for all t ≥ 0, ωt ≥ cωY ;

we then say that (ωt)t≥0 is a family of Kähler metrics of almost constant scalar
curvature.

We say moreover that such a family has extinguishing variation if for all posi-
tive `, ∂`t (ωt) tends to 0 in all Cκ(Y ) as t goes to ∞.

In this definition, we assume of course that all the metrics are Kähler with
respect to the fixed complex structure JY . Notice moreover the existence of a
family (ωt) of almost constant scalar curvature in [ωY ], implies that of a constant
scalar curvature metric in this class: take any C∞-limit point of (ωt).

Basic example. — Assuming that ωY has constant scalar curvature, and is the
unique such metric in its Kähler class (as is the case when for instance Y has no
non-trivial holomorphic vector fields [CT08]), it is rather straightforward to see
that a family of almost constant scalar curvature tends to ωY in C∞-topology.
When there exist several constant scalar curvature metrics in a same Kähler class,
the situation might be more delicate, even with extinguishing variation, as the
following example illustrates: consider a smooth family of holomorphic vector fields
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(Zt) such that for all ` ≥ 0, ∂`tZt tends to 0 in C∞-topology. Assume moreover
that the family of automorphisms σt of Y such that ∂tσt = Zt for all t is bounded,
in the sense that σ∗tωY stays bounded below, and bounded in Cκ for all κ. Then
(ωt) := (σ∗tωY ) is clearly a family of metrics of (almost) constant scalar curvature,
since for all t, s(ωt) = sY . On the other hand, we arrange easily so that (ωt) does
not converge: take Z a vector field such that LZωY 6= 0 – this exists as soon as
the uniqueness for constant scalar curvature metrics fails –, and set Zt = f(t)Z
with f a smooth function of t tending to 0 at any order, but with

∫ t
s=0

f keeping
oscillating between two fixed values, e.g. f(t) = cos[log(1+t)]

1+t
.

2.2 Parametrisation

The following proposition, which is the technical core of this part, tells us that the
previous example is asymptotically the only possible type of situation for a family
of almost constant scalar curvature with extinguishing variation:

Proposition 2.2 Let (ωt) be a family of almost constant scalar curvature in [ωY ],
with extinguishing variation. Then there exists a smooth family of constant scalar
curvature Kähler metrics ($t) in [ωY ] such that:

• ωt−$t = o(1) in Cκ(Y ) as t goes to ∞, for all κ ≥ 0; in particular, ($t)t≥0

is uniformly bounded below, i.e. $t ≥ c1ωY for some positive c1;

• there exists a smooth family of holomorphic vector fields (Zt) such that if
(σt)t is the associated flow, then $t = σ∗t$0 for all t, and for all ` ≥ 0,
∂`tZt = o(1) in Cκ(Y ) as t goes to ∞, for all κ ≥ 0;

• $0 can be taken as any limit point of (ωt) in C∞(Y ).

In other terms, a family of almost constant scalar curvature with extinguishing
variation can be parametrised, up to a small error in C∞-topology, as the pull-
back of a fixed constant scalar curvature metric by some automorphism flow with
asymptotically vanishing time derivatives of positive order.

Proof of Proposition 2.2. — We consider a family (ωt) as in the statement of the
proposition. The following strategy will guide us:

1. we fix κ ≥ 2 and α ∈ (0, 1), call L the set of limit points of (ωt) in Cκ,α-
topology, show that L is a nonempty set of smooth metrics with constant
scalar curvature, and is actually the set of C∞-limit points of (ωt); in par-
ticular, L does not depend on κ nor on α, hence is bounded at any order;
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2. similarly, we see that L is connected in Cκ,α, hence in C∞, topologies;

3. we use a result due to Calabi to parametrise a well-chosen sequence of met-
rics in L as inductive pull-backs of some arbitrary fixed metric by “small”
reduced automorphisms of Y , interpolate this sequence into a family of con-
stant scalar curvature metrics, and compare it to (ωt).

Points 1 and 2 require very usual arguments, which we include for the sake of
completeness; Point 3, less standard, needs a little more care.

Point 1: Regularity of elements of L , and independence from (κ, α). The family
(ωt) is bounded in, say, Cκ,β with β ∈ (α, 1), and therefore admits a subsequence
converging in Cκ,α: L 6= ∅.

Let us consider some $∞ ∈ L , which is the Cκ,α-limit of a subsequence (ωtj)
where we can assume that (tj) increases to ∞. As ωtj ≥ cωY for all j, $∞ is
positively bounded below, and is therefore a metric; it moreover has constant
scalar curvature, since along our subsequence, the scalar curvatures converge to
s($∞) in Cκ−2,β, while s(ωt) converges to sY as t goes to ∞: s($∞) = sY .

Given moreover any λ ≥ κ + 1, (ωtj) is bounded in Cλ,α, and thus admits a
subsequence (ωtj` ) converging in Cλ, necessarily to $∞, as Cλ-convergence implies
Cκ,α-convergence. Hence $∞, which is thus indeed Cλ, is a Cλ-limit point of
(ωt), and this holds for all λ ≥ κ + 1: $∞ is smooth (this is also deducible from
s($∞) = sY ), and is a C∞-limit point of (ωt). This settles Point 1.

Point 2: Connectedness of L . The connectedness assertion on L endowed with
the induced Cκ,α-topology can be viewed as the analogue of the similar statement
on the set of limit points of a sequence in a compact metric space such that the
distance between two consecutive terms goes to 0. Now the bound on (ωt) in Cκ,α

does not provide compactness in general; we nonetheless bypass this lack thanks
to higher order bounds, and to the (almost) constant scalar curvature property.

Let us thus assume that L = L0 tL1, with the Li non-empty closed subsets
of L , for the Cκ,α-distance dCκ,α ; notice that as a set of limit points, L is closed
for this distance in the set of Cκ,α metrics, hence so are the Li. And as L is
bounded at any higher order, so are the Li. We claim that there exist $i

∞ ∈ Li,
i = 0, 1, such that ε := dCκ,α(L0,L1) = dCκ,α($0

∞, $
1
∞), distance which is thus

> 0. Consider indeed two sequences ($i
j)j≥0 of elements of Li, i = 0, 1, such

that dCκ,α($0
j , $

1
j ) → ε as j → ∞. Then as the ($i

j)j≥0 are bounded in Cκ,β for
any β ∈ (α, 1), they admit subsequences ($i

jk
)k≥0, (jk) independent of i ∈ {0, 1},

converging in Cκ,α to respective limits $i
∞; moreover, $i

∞ ∈ Li closed in Cκ,α

topology, and ε = limk dCκ,α(ω0
jk
, ω1

jk
) = dCκ,α($0

∞, $
1
∞).
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We consider now an increasing sequence of “times” (tj) admitting two disjoint
subsequences (tj0k) and (tj1k) such that ωt

ji
k

→ $i
∞ as k → ∞ in Cκ,α. Up to

adding intermediate times, we can furthermore assume that ‖ωtj+1
− ωtj‖Cκ,α → 0

as j →∞, since ‖∂tωt‖Cκ,α is bounded. Let us show that an infinite number of ωtj
are a distance at least ε/3 from both L0 and L1.

Take J large enough so that ‖ωtj+1
−ωtj‖Cκ,α < ε

3
; take also k, ` large enough so

that, if j0 := j0
k < j1

` =: j1, then ‖ωtj0 −$0,∞‖Cκ,α , ‖ωtj1 −$1,∞‖Cκ,α ≤ ε
3
. Define

j2 to be the smallest integer ≥ j0 so that ωtj2 is at distance ≥ ε
3
from L0; j2 is well-

defined, and j2 ∈ {j0 +1, . . . , j1}, since ωtj1 is at least at distance 2ε
3
from L0. One

also has dCκ,α(ωtj2 ,L1) ≥ dCκ,α(L0,L1)−dCκ,α(ωtj2 , ωtj2−1
)−dCκ,α(ωtj2−1

,L1) ≥ ε
3
.

We can repeat this argument with j0 and j1 as large as wanted, and thus end
up with a sequence (tjk)k≥0 going to ∞ such that for any k, ωtjk is at distance at
least ε

3
from both Li. Now (ωtjk ) is bounded in Cκ,β, hence admits a subsequence

converging in Cκ,α to some $∞, necessarily at distance at least ε
3
from the Li. But

by definition, $∞ ∈ L , hence a contradiction with the assumption L = L0∪L1.
We are left with the connectedness assertion in C∞-topology. We actually

settle this by the more general statement that the induced Cκ,α and C∞-topologies
coincide on L . As the elements of L are smooth constant scalar curvature metrics
with uniform lower bound and bounds at any order (coming from such bounds on
(ωt)), this statement merely comes from the iterated observation that given smooth
$ and $̃, then ‖$−$̃‖Cλ,α is bounded by Cλ,α

(
‖$−$̃‖Cκ,α+‖s($)−s($̃)‖Cλ−2,α

)
,

where Cλ,α depends only on lower bounds and Cλ,α-bounds on $ and $̃. Let us
detail how this goes for λ = κ + 1. Let ψ so that $̃ = $ + ddcψ, normalized by∫
Y
ψ$n = 0; this way ‖ψ‖Cκ+2,α ≤ C‖$̃−$‖Cκ,α with C as announced. Moreover,

in local coordinates, if g is the metric $(·, JY ·) and g̃ is $̃(·, JY ·),

s($̃)− s($) =− gpq̄
(
grs̄∂p∂q̄(g̃rs̄ + ∂r∂s̄ψ) + (∂pg

rs̄)∂q̄(g̃rs̄ + ∂r∂s̄ψ)
)

+ g̃pq̄
(
g̃rs̄∂p∂q̄(g̃rs̄) + (∂pg̃

rs̄)∂q̄(g̃rs̄
)

=− gpq̄grs̄∂pq̄rs̄ψ − gpq̄(∂pgrs̄)∂q̄rs̄ψ
− (∂pq̄g̃rs̄)(g

pq̄grs̄ − g̃pq̄g̃rs̄)− (∂q̄g̃rs̄)(g
pq̄∂pg

rs̄ − g̃pq̄∂pg̃rs̄)

We rewrite the latter equation as:

(10) gpq̄grs̄∂pq̄rs̄ψ = η −
(
s($)− s($̃)

)
with η = −gpq̄(∂pgrs̄)∂q̄rs̄ψ− (∂pq̄g̃rs̄)(g

pq̄grs̄− g̃pq̄g̃rs̄)− (∂q̄g̃rs̄)(g
pq̄∂pg

rs̄− g̃pq̄∂pg̃rs̄).
A local Cκ−1,α-bound on η now easily follows from a Cκ+2,α-bound on ψ, lower

bounds plus Cκ+1,α-bounds on $ and $̃, and a Cκ,α-bound on $ − $̃; more
precisely, ‖η‖Cκ−1,α ≤ C1‖ψ‖Cκ+2,α + C2‖$ − $̃‖Cκ,α with C1, C2 as announced,
hence ‖η‖Cκ−1,α ≤ C‖$− $̃‖Cκ,α with C as announced, by the previous control on
‖ψ‖Cκ+2,α . The conclusion follows from Schauder elliptic estimates applied to (10),
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together with ‖ψ‖C0 ≤ C‖$− $̃‖Cκ,α : as gpq̄grs̄∂pq̄rs̄ is elliptic in the open subset
Ω of work, with lower bounds and Cκ−1,α bounds on (gpq̄grs̄)pqrs coming from such
bounds on $, one has ‖ψ‖Cκ+3,α(Ω′) ≤ C

(
‖$−$̃‖Cκ,α(Ω) +‖s($)−s($̃)‖Cκ−1,α(Ω)

)
,

thus ‖$− $̃‖Cκ+1,α(Ω′) ≤ C
(
‖$− $̃‖Cκ,α(Ω) + ‖s($)− s($̃)‖Cκ−1,α(Ω)

)
, with C as

announced, on a slightly smaller open subset Ω′, hence the desired estimate as Y
is compact.

Point 3: Interpolation of a sample of limit points. We proceed to the sampling
mentioned above according to the following principle: given ε > 0, there exists
J = J(ε) ≥ 0 such that for any j ≥ J , there exists $j ∈ L such that ‖ωt=j −
$j‖Cκ,α < ε. Indeed, assume this does not hold, and pick ε > 0 and a sequence
(jk) of nonnegative integers going to ∞, such that for all k and all $ ∈ L ,
‖ωt=jk − $‖Cκ,α ≥ ε. As (ωjk)k is bounded in Cκ,β (β ∈ (α, 1)), it admits a
subsequence converging in Cκ,α to some ω∞. Hence for all $ ∈ L , ‖ω∞−$‖Cκ,α ≥
ε; this contradicts the assertion ω∞ ∈ L given by the definition of L .

We fix now a positive sequence (εk)k≥0 going to 0, and set jk = J(εk) for k ≥ 0,
according to our principle; we can assume that for all k, J(εk+1) > J(εk). This
enables us, for all k and all j ∈ {jk, . . . , jk+1− 1}, to pick some $j ∈ L such that
‖ωt=j −$j‖ ≤ εk. We thus constitute a sequence ($j) in L which is asymptotic
to (ωt=j) (in Cκ,α, thus in all Cλ, by the estimate of the previous point).

In order to interpolate between the$j, we use the following result due to Calabi
[Cal85], see also [Gau, Prop. 3.3.4]: the space of extremal Kähler metrics among
[ωY ] is a submanifold of the space of Kähler metrics in [ωY ], and each connected
component of this submanifold is an orbit of the reduced automorphism group
Hred(Y, JY ). More precisely, the tangent space of this submanifold at each point
coincides with the tangent space of the orbit. Here extremal metrics are constant
scalar curvature metrics: indeed as seen above, for any $ ∈ L ⊂ [ωY ], s($) =
sY , which makes the Futaki character of [ωY ] vanish, and forces any extremal
metric in [ωY ] to have constant scalar curvature. Moreover L is connected, and is
thus contained in one connected component of the space S[ωY ] of constant scalar
curvature metrics of [ωY ]; its elements can thus all be written as σ∗ωY , up to
choosing ωY in L , say. Here we can be more precise: the above statement tells
us that given any ω of constant scalar curvature, all the constant scalar curvature
metrics of its neighbourhood (for any Cκ,α topology, or even for C∞ topology, as
the submanifold has finite dimension) can be written as σ∗ω with σ a reduced
automorphism close to identity; up to reducing the neighbourhood, these metrics
can thus all be written (ΦZ

1 )∗ω with Z a small (real) holomorphic vector field in
Jk0(ω) where k0(ω) is the set of Hamiltonian Killing fields for ω, as in the constant
scalar curvature case, h0 := Lie

(
Hred(Y, JY )

)
splits as k0(ω)⊕ Jk0(ω).
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Now L is closed and bounded in S[ωY ], hence compact, and therefore there
exists a function η = η(ε) which is o(1) such that any ball of radius ε ∈ (0, ε̄0) and
centre $ ∈ L is covered by the (σZ)∗$ with Z ∈ Jk0($), |Z| < η(ε), where σZ
denotes the flow at time 1 of Z.

Without loss of generality, assume (εk) is decreasing and takes value in (0, ε̄0/3);
Assume likewise that γ(t) := ‖∂tωt‖Cκ,α < ε̄0

3
for all t. Then for all k, and all j ≥ jk,

‖$j+1 −$j‖Cκ,α ≤ ‖$j+1 − ωj+1‖Cκ,α + ‖$j − ωj‖Cκ,α +
∥∥∥∫ j+1

t=j

∂tωt dt
∥∥∥
Cκ,α

≤ 2εk + δj < ε̄0,

where δj =
∫ j+1

t=j
γ(t) dt. Hence for all k, and all j ∈ {jk, . . . , jk+1− 1}, there exists

a holomorphic vector field Zj, |Zj| ≤ η(2εk + δj), such that $j+1 = σ∗Zj$j.
We conclude as follows: let χ be a nonnegative smooth function with compact

support in (0, 1) and with integral 1. We define the time-dependent holomorphic
vector field Zt :=

∑∞
j=j0

χ(t − j)Zj, and the associated flow σ. We set $t :=
σ∗t−j0$j0 for all t; these are metrics of constant scalar curvature, in some fixed
neighbourhood of L . One easily checks that indeed $t=j = $j for all j ≥ j0,
as well as the claimed asymptotic properties of ($t)t. For instance, for t ≥ j0,
∂t$t = LZt$t = χ(t− [t])LZ[t]

$t = χ(t− [t])d
(
$t(Z[t], ·)

)
; since $t is bounded at

any order, ‖∂t$t‖Cκ,α is controlled by |Z[t]|, which is controlled by η(2εk([t]) + δ[t])
(where k(·) is defined by ` ∈ {jk(`), . . . , jk(`)−1}), hence goes to 0 as t goes to ∞.
Finally, as Zt = 0 for t ∈ [0, j0], $0 = $j0 ∈ L ; now $j0 was arbitrarily chosen
in L so that ‖ωt=j0 − $j0‖Cκ,α ≤ ε0. But given $ ∈ L , there exists t0 so that
‖ωt0 − $j0‖Cκ,α ≤ ε0, and for all t ≥ t0, dCκ,α(ωt,L ) < ε0; the assertion on the
geniricity of $0 follows by applying the previous construction to (ωt+t0−j0) for
which one can keep the same j0. �

3 Constant scalar curvature Poincaré type Kähler
metrics on the complement of a divisor

We fix in this part a compact Kähler manifold (X,ωX), and a simple normal
crossing divisor D =

∑N
j=1Dj (the Dj are the smooth irreducible components).

3.1 Basic tools and statements of the results

Reminder: fibration near the divisor, and previous results. — The details concern-
ing following material, necessary for what follows, can be found in [Auv11,Auv13].
To fix ideas, assume first that D is smooth, and even reduced to one component.
One can endow a tubular neighbourhood NA of D with an S1-action and an S1-
invariant projection p : NA → D, and construct an S1-invariant function t such
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that t = log
(
− log(|σ|2)

)
+ O(e−t) at any order for Poincaré type metrics on

X\D, where σ ∈ O([D]) is such that D = {σ = 0}, and | · | any smooth hermitian
metric on [D]. Up to adjusting NA and A ∈ R, we get this way a circle fibration
q = (t, p) : NA\D → [A,+∞)×D, for which we construct a connexion 1-form η,
such that dct = 2e−tη+O(e−t) at any order – notice the analogy with the formula
JCdt = 2e−tdϑ on the model ∆∗. Setting moreover ω := ωX − ddc log

(
− log(|σ|2)

)
with a good choice of | · | – which does not affect what precedes – we have that ω
is of Poincaré type, and near D,

(11) ω = dt ∧ 2e−tη + p∗ωD +O(e−t)

at any order, where ωD = ωX |D. This can be generalised when the divisor has
several components, and the fibrations respect the crossings when they exist; we
simply add j indices to specify the component Dj near which we work.

In [Auv13], it is proven, using these fibrations, that if a metric of Poincaré type
ωϕ = ω+ ddcϕ has constant scalar curvature, then ϕ−

∑N
j=1 ajtj is in C

∞(X\D),
i.e. is bounded at any order with respect to the model Poincaré type metric ω,
where the aj are < 1, and given by 2

1−aj = sDj − s; here s (resp. sDj) denotes
the mean scalar curvature of Poincaré type metrics of class ωX (resp. ωDj) on
X\D (resp. on Dj\

∑
` 6=j D`) – recall the formulae s = −4πm c1(KX [D])·[ωX ]m−1

[ωX ]m
and

sDj = −4πm
c1(Dj)·c1(KX [D])·[ωX ]m−2

c1(Dj)·[ωX ]m−1 , typical of the Poincaré setting.
Considering again a fixed Dj and given (κ, α) ∈ N×[0, 1), one can use the circle

action on its neighbourhood to decompose functions f ∈ Cκ,α(X\D) (“bounded
functions at order (κ, α) for ω on X\D” – see [Auv11, §1.2] for the exact definition)
as an S1-invariant part Π0,jf and a part Π⊥,jf with null mean against ηj. Of
course Π0,jf and Π⊥,jf remain in C∞(X\D) – in particular, seen as a function on
[A,∞)×

(
Dj\

∑
` 6=j D`

)
, Π0,jf is bounded up to order (κ, α) for dt2j +ω|Dj(·, JDj ·);

moreover, as the fibres have length in e−tj near Dj, if Tj denotes the infinitesimal
circle-action vector field, (e−tjTj)

kΠ⊥,jf ∈ Cκ−k,α near Dj for all k ≤ κ. Thus for
instance, if f ∈ C∞(X\D), then

(12) df = ∂tjΠ0f + p∗jd(Π0,jftj) +O(e−tj)

and ∆ωf = (∂tj − ∂2
tj

)Π0,jf + p∗j
(
∆ω|Dj (Π0,jftj)

)
+ O(e−tj) near Dj at any order

with respect to ω, and where Π0,jftj = (Π0,jf)(tj, ·).

Two theorems on Poincaré type Kähler metrics with constant scalar curvature. —
We can now state the main results of this part:

Theorem 3.1 Assume that D is smooth. Let ωϕ be a constant scalar curvature
metric of Poincaré type on X\D, of class [ωX ]. Then at the level of Riemannian
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metrics, one has near all component Dj of D the asymptotics:

gϕ = aj
(
dt2j + (2e−tjηj)

2
)

+ p∗jhj +O(e−δtj)

at any order, with δ > 0, hj a Kähler metric on (Dj, JDj) such that [hj(JDj ·, ·)] =
[ωX |Dj ] and with constant scalar curvature, and where aj = 2(sDj − s)−1 > 0.

and:

Theorem 3.2 Assume that there exists a Poincaré type Kähler metric of class
[ωX ] on X\D. Then for all components Dj of D there exists a (Poincaré type)
Kähler metric on Dj\

∑
6̀=j D`.

The rest of this part is mainly devoted to the proof of Theorem 3.1. The first
step is the construction of a family of almost constant scalar curvature metrics
on a fixed Dj, along which a proof of Theorem 3.2 with D smooth is provided;
this is done in next section, as well as the generalisation of Theorem 3.2 to the
general case. In the analytical subsequent sections, we use the produced family
and Proposition 2.2 to end the proof of Theorem 3.1.

3.2 A family of almost constant scalar curvature on D

Assuming D reduced to one component – hence smooth – and starting with a
constant scalar curvature ωϕ on X\D, we use the results of Part 1 us to identify
a specific family of almost constant scalar curvature as defined in Part 2:

Proposition 3.3 Assume that D is reduced to one component and that s(ωϕ) = s
on X\D, with ωϕ = ω + ddcϕ of Poincaré type of class [ωX ]. Then for T large
enough, (ωϕt )t≥T :=

(
ωD+ddcDΠ0ϕ(t, ·)

)
t≥T , with ωD = ωX |D, is a family of Kähler

metrics on D of almost constant curvature, with extinguishing variation. Moreover,
for any (κ, α), and any positive `, (∂`tΠ0ϕ)t → 0 in Cκ,α(D) as t goes to ∞.

Proof. — Observe first that we can assume ϕ ∈ C∞(X\D); for this, just replace
ωX by 1

a
ωX , with a = (sD− s)−1, which imposes sD = s+ 2 (see previous section).

Now the principle of the proof goes as follows: to check convergences, we pro-
ceed by contradiction: assuming the desired convergences do not hold, we use the
boundedness of ϕ at any order as well as its almost S1-invariance to identify some
subsequence of Π0ϕ on compact subsets of [A,∞)×D converging to a limit fitting
in the framework of Section 1, and use Theorem 1.1 to contradict the assumption.

We thus set on D, for t ≥ A, ωϕt = ωD + ddcD(Π0ϕ)t; up to increasing A, these
are indeed metrics, uniformly bounded below, and uniformly bounded in Cκ,α(D)
for all (κ, α); more precisely, t 7→ ωϕt is bounded in Cκ,α

(
[A,∞)×D

)
for all (κ, α).
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Let us assume that there exist ε > 0, a sequence (tj), limj→∞ tj =∞, and (zj)
in D such that |s(ωϕtj)(zj) − sD| = supw∈D |s(ω

ϕ
tj)(w) − sD| ≥ ε. We consider a

subsequence of (zj), still denoted (zj), converging to some z ∈ D. Similarly, we
pick any (κ, α) ∈ N× (0, 1); as Π0ϕ is bounded in Cκ,α

(
[A,∞)×D

)
, we have for

any N a sequence (Π0ϕ)(·+ tj, ·)j≥j0(N) uniformly bounded in Cκ,α
(
[−N,N ]×D

)
.

A diagonal argument thus gives us ϕ∞ ∈ Cκ,α(R×D) and a fixed subsequence (tj)
such that (Π0ϕ)(· + tj, ·) converges in Cκ,α/2 on every compact subset of R × D
to ϕ∞; an extra diagonal argument gives the C∞loc-convergence (of a subsequence),
hence ϕ∞ ∈ C∞(R×D), i.e. is bounded at any order for dt2 + h for any h on D.
Now we see R × D as a factor of ∆∗ × D, endowed with the complex structure
JC ⊕ JD; we claim:

The (1, 1)-form ωϕ∞ := ωD + ddc(ϕ∞− t) is a Poincaré type metric on ∆∗×D (in
the sense of Part 1), of constant scalar curvature, equal to s.

This claim decomposes into several assertions: one has to check that ωϕ∞ ≥ cω0,
with ω0 := ωD−ddct, that ωϕ∞ is bounded with respect to this model at any order
and that s(ωϕ∞) = s (by construction, ϕ∞ is S1-invariant). We start by the
positivity assertion; it is actually an easy exercise to prove that it is enough to
check it on vectors ξ of type ξD + ∂t, with ξD ∈ TD independent of t and ϑ –
use the J-invariance, and the writing ωϕ∞ = (∂2

t − ∂t)(ϕ∞ − t)dt ∧ 2e−tdϑ + dt ∧
dcD∂tϕ∞ + dD∂tϕ∞ ∧ 2e−tdϑ+ (ωD + ddcDϕ∞).

For ξ as above, consider ζ :=
(
q∗(ξ]ω0 )

)[ω , so that |(Tq)xζ−ξq(x)|ω0 = O(e−t(x)),
and in particular |(Txp)ζx− (ξD)q(x)|ω0 = O(e−t(x)). Then for x close to D in X\D,
as ωϕ = (∂2

t − ∂t)(Π0ϕ − t)dt ∧ 2e−tη + dt ∧ p∗dc(∂tΠ0ϕt) + p∗d∂tϕt ∧ 2e−tdϑ +
p∗ωϕt +O(e−t) (at any order),

|ζ|2ωϕ,x = (∂2
t − ∂t)(Π0ϕ− t)x + 2p∗(d∂tΠ0ϕt)x(ζx) + p∗gt(x)(ζx, ζx) +O

(
e−t(x)

)
with gϕt = ωϕt (·, JD·) on TD, thus:

|ζ|2ωϕ,x = (∂2
t − ∂t)(Π0ϕ− t)x + 2(ξD · ∂tΠ0ϕ)q(x) + gϕt(x)(ξD, ξD)q(x) +O

(
e−t(x)

)
,

whereas for any (t0, ϑ0, w0) ∈ ∆∗ ×D,

|ξ|2ωϕ∞ ,(t0,ϑ0,w0) =(∂2
t − ∂t)(ϕ∞ − t)(t0,w0) + 2(ξD · ∂tϕ∞)(t0,w0) + gϕ∞t0 (ξD, ξD)(t0,w0),

with gϕ∞t0 =
(
ωD + ddcD[ϕ∞(t0, ·)]

)
(·, JD·) on TD. Choosing now xj in q−1(t0 +

tj, w0), as ϕ∞ is the C2-limit of (Π0ϕ)(·+ tj, ·) on every compact subset of R×D,
we have by the latter two formulae that |ζ|2ωϕ,xj tends to |ξ|2ωϕ∞ ,(t0,w0). On the
other hand since ωϕ ≥ cω on X\D for some c > 0, for all x close to D one
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has |ζ|2ωϕ,x ≥ c|ζ|2ω,x; reasoning as above, one sees moreover that |ζ|2ω,xj tends to
|ξ|2ω0,(t0,ϑ0,w0), hence the positivity assertion.

Bounds on ωϕ∞ at any order being an immediate consequence of ϕ∞ ∈ C∞(R×
D), we are therefore left with the constant scalar curvature assertion. For this we
use the asymptotic decomposition ωϕ as above together with that of ω (11), and the
formula s(ωϕ) = 2Λωϕ

[
%(ω)− 1

2
ddc log

(ωmϕ
ωm

)]
of Kähler geometry. All computations

done and dropping the p∗ for simplicity, one has:

s(ωϕ) = e−f
ϕ
[
2(m− 1)

(ωϕt )m−2 ∧ %(ωD)

(ωD)m−1

− (m− 1)(m− 2)
dD∂t(Π0ϕ) ∧ dcD∂t(Π0ϕ) ∧ (ωϕt )m−3 ∧ %(ωD)

(ωD)m−1

−
(
1 + (∂2

t − ∂t)fϕ
) (ωϕt )m−1

(ωD)m−1
+ 2(m− 1)

dD∂t(Π0ϕ) ∧ dcD∂t(Π0ϕ) ∧ (ωϕt )m−2

(ωD)m−1

− (m− 1)
ddcDf

ϕ
t ∧ (ωϕt )m−2

(ωD)m−1

+ (m− 1)(m− 2)
ddcDf

ϕ
t ∧ dD∂t(Π0ϕ) ∧ dcD∂t(Π0ϕ) ∧ (ωϕt )m−3

(p∗ωD)m−1

]
+O(e−t).

near D on X\D, with fϕ = Π0 log
(ωmϕ
ωm

)
= log

(ωmϕ
ωm

)
+O(e−t), as ωmϕ

ωm
∈ C∞(X\D);

more explicitly, fϕ = p∗ log
[(

1 + (∂2
t − ∂t)Π0ϕ − |dDΠ0ϕ|2ωϕt

) (ωϕt )m−1

ωm−1
D

]
+ O(e−t).

Similarly, setting f∞ = log
( ωmϕ∞

(dt∧2e−tdϑ+ωD)m

)
,

s(ωϕ∞) = e−f
∞
[
2(m− 1)

(ωϕ∞t )m−2 ∧ %(ωD)

(ωD)m−1

− (m− 1)(m− 2)
dD∂tϕ∞ ∧ dcD∂tϕ∞ ∧ (ωϕ∞t )m−3 ∧ %(ωD)

(ωD)m−1

−
(
1 + (∂2

t − ∂t)f∞
)(ωϕ∞t )m−1

(ωD)m−1
+ 2(m− 1)

dD∂tϕ∞ ∧ dcD∂tϕ∞ ∧ (ωϕ∞t )m−2

(ωD)m−1

− (m− 1)
ddcDf

∞
t ∧ (ωϕ∞t )m−2

(ωD)m−1

+ (m− 1)(m− 2)
ddcDf

∞
t ∧ dD∂tϕ∞ ∧ dcD∂tϕ∞ ∧ (ωϕ∞t )m−3

(ωD)m−1

]
on ∆∗×D. Hence for (t0, ϑ0, w0) and (xj) as above, s(ωϕ)xj tends to s(ωϕ∞)(t0,ϑ0,w0);
since s(ωϕ)xj = s for all j, s(ωϕ∞)(t0,ϑ0,w0) = s, and this holds for any (t0, ϑ0, w0) ∈
∆∗ ×D: ωϕ∞ has constant scalar curvature, equal to s.

Now Theorem 1.1 says that ϕ∞ does not depend on t, and ωϕ∞ is thus a product
dt ∧ 2e−tdϑ + ωψD, with ω

ψ
D = ωD + ddcDψ, ψ ∈ C∞(D), and with s(ωψD) constant,
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equal to s− 2 = sD. As ωψD is the C2-limit of (ωϕtj), we have a contradiction with
the preliminary assumption supD |s(ω

ϕ
tj)− sD| ≥ ε for all j large enough.

Similarly, starting with an assumption such as supD
∣∣(∇D)κ(∂`tΠ0ϕ)tj

∣∣ ≥ ε > 0
for j ≥ j0, with (tj) tending to∞ and κ ≥ 0, ` ≥ 1, we similarly pass to a diagonal
subsequence of the (Π0ϕ)(· + tj, ·) converging in C∞ on every compact subset of
R×D to a function ϕ∞ ∈ C∞(R×D). As above, ϕ∞ is associated to a Poincaré
type metric with constant scalar curvature on ∆∗ ×D, and by Theorem 1.1, ϕ∞
is independent of t, with contradicts the assumption. �

Proof of Theorem 3.2. — Notice that the construction of the function(s) ϕ∞ in
the above proof does not require any of the contradictory assumptions, hence the
result when the divisor is reduced to one component, which readily generalises
to the smooth divisor case. In the simple normal case, one still works near one
component, but far from the other ones in the sense that the functions ϕj are
considered on sets of type [−N,N ] × Kp, with (Kp) an exhausting sequence of
compact subsets of Dj\

∑
6̀=j D`, before the use of the diagonal arguments. Notice

that in this case, the uniform C0 bound is of type |ϕj| ≤ C(1 +
∑

`6=j |t`|). �

For simplicity, we assume from now on and until the end of this part
that D is reduced to one component , and thus drop the j indexes; we indeed
work around one fixed component in the subsequent sections, so that all what
is done below readily generalizes to the smooth N ≥ 2 case. We also keep
the normalisation sD = s + 2, and fix the Poincaré type Kähler metric
ωϕ = ω+ddcϕ of constant scalar curvature, all along the rest of this part .

3.3 A fifth order equation on the potential ϕ near the divisor

Localisation. — Choose a polydisc (z1, . . . , zm) of holomorphic coordinates near
any point in D, such that z1 is a local equation of D. Set Z := Re

[
z1(log z1) ∂

∂z1

]
locally; notice that Z is bounded with bounded derivatives at any order, with
respect to any Poincaré type metric. Then we claim that for all f in C∞(X\D)
near D,

Z · f =
1

2
∂tΠ0f +O(e−t),

where the O(e−t) is understood at any order in Poincaré type metric. This follows
easily from decomposition (12), and the estimates

p∗dD(Π0f)t(Z) = O(e−t) and dt(Z) =
1

2
+O(e−t)

at any order. For the first one, use that (Π0f)t has bounds at any order on
D, uniform in t, and that in our open subset of work, zj = p∗(zj|D) + O(e−t)
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for j = 2, . . . , N , at any order. Now t = log
(
− log(|σ|2)

)
+ O(e−t) where σ is

some (global) section associated to D; again, the error term is understood at any
order, and since log

(
− log(|σ|2)

)
= log

(
− log(|z1|2)

)
+ O(e−t) with this O(e−t)

understood likewise (see e.g. [Auv11], proof of Prop. 1.2), and Z is bounded at
any order, we are done with the following elementary computation:

Z · log
(
− log(|z1|2)

)
= Re

[
z1(log z1)

∂ log
(
− log(|z1|2)

)
∂z1

]
= Re

[
z1(log z1)

1

z1 log(|z1|2)

]
= Re

[ log z1

log(|z1|2)

]
=

1

2
.

The equation. —Mimicking what is done is Section 1, we differentiate the equation
s(ωϕ) = s with respect to Z, and use ω = ωX −ddct+O(e−t) at any order near D:

0 = Z · s(ωϕ) = ∆ϕ

〈
ωϕ,LZ(ω + ddcϕ)

〉
ϕ
− 2
〈
%ϕ,LZ(ω + ddcϕ)

〉
ϕ

= −2Lϕ
(
Z · (ϕ− t)

)
+ ∆ϕ〈ωϕ,LZωX〉ϕ − 2〈%ϕ,LZωX〉ϕ +O(e−t),

with Lϕ the Lichnerowicz associated to ωϕ (see e.g. [AP06, p.192] – recall that
ωϕ has constant scalar curvature). One checks moreover that in Poincaré type
metrics, LZωX = O(e−t) at any order, and thus ∆ϕ〈ωϕ,LZωX〉ϕ and 〈%ϕ,LZωX〉ϕ
are O(e−t) at any order near D. Furthermore as Z ·(ϕ−t) = 1

2
∂t(Π0ϕ)− 1

2
+O(e−t)

with the O understood at any order, we get:

(13) Lϕ
(
∂t(Π0ϕ)

)
= O(e−t)

near D at any order. Observe that (13) makes sense globally near D, and since
D is compact we can indeed patch together the local equations, and sum them up
into this single equation.

We now analyse the operator Lϕ in more detail, in order to deduce asymptotics
on ∂t(Π0ϕ) from (13).

3.4 Asymptotics of the Lichnerowicz operator of ωϕ
Recall that near the divisor,

ωϕ =
(
1 + (∂2

t−∂t)Π0ϕ
)
dt ∧ 2e−tη

+ dt ∧ dcD∂t(Π0ϕ) + dD∂t(Π0ϕ) ∧ 2e−tη + p∗ωϕt +O(e−t),

where ωϕt = ωD + ddcD(Π0ϕ)t, and with the O(e−t) at any order with respect to ω.
Now according to Proposition 3.3, ∂t(Π0ϕ) = o(1) at any order with respect to ω,
thus if we use less precise asymptotics, we can simplify the previous formula into

(14) ωϕ = dt ∧ 2e−tη + p∗ωϕt + o(1),
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at any order with respect to ω, and with |∂`tω
ϕ
t |ωD = o(1) for all ` ≥ 0. In other

words, though the component of ωϕ which is parallel to D is not constant, its
derivatives in t of positive order tend to 0 near D, and likewise, the mixed terms
and their time derivatives at any order tend to 0 near D. Consequently, at the
level of Ricci forms, one has:

(15) %ϕ = −dt ∧ 2e−tη + p∗%(ωϕt ) + o(1),

with the o(1) understood as above. From these asymptotics we deduce on Lϕ:

Proposition 3.4 Denote by Lωϕt the Lichnerowicz operator associated to ωϕt on
D for all t ≥ A. For any κ, one has on L0

ϕ := Π0 ◦Lϕ ◦ q∗ : Cκ+4,α
(
[A,∞)×R

)
→

Cκ,α
(
[A,∞)× R

)
the asymptotics

(16) L0
ϕ =

1

2

( ∂
∂t
− ∂2

∂t2

)2

+
( ∂
∂t
− ∂2

∂t2

)
+ Lωϕt + ∆ωϕt

◦
( ∂
∂t
− ∂2

∂t2

)
+ o(1).

Here the Hölder spaces are defined with respect to dt2 + h, with h fixed on D.

Proof. — We do it for the map: C4,α → C0,α. Let f ∈ C4,α
(
[A,∞) × D

)
, seen

as q∗f near D. As ωϕ has constant scalar curvature, Lϕf = 1
2
∆2
ϕf + 〈%ϕ, ddcf〉ϕ.

By formula (14) and the identity ∆ϕf = −Λϕdd
cf = −mddcf∧ωm−1

ϕ

ωmϕ
, we can write

∆ϕf = (∂t−∂2
t )f+p∗∆ωϕt

f+ε(f), with |ε(f)|C2,α(p−1([t,∞)×D)) ≤ ‖f‖C4,αε(t), where
ε(t) = o(1) at any order is independent of f . One more application of ∆ϕ yields
∆2
ϕf = (∂t − ∂2

t )
2f + p∗∆2

ωϕt
f + (∂t − ∂2

t )p
∗∆ωϕt

f + p∗∆ωϕt
(∂t − ∂2

t )f + ε(f) where
this time, |ε(f)|C0,α(p−1([t,∞)×D)) ≤ ‖f‖C4,αε(t). Moreover as the time derivatives of
ωϕt are o(1) at any order, we replace (∂t− ∂2

t )p
∗∆ωϕt

f by another p∗∆ωϕt
(∂t− ∂2

t )f ,
for the price of adding to ε(f) a comparable error term.

Likewise, on the curvature term, formulae (14) and (15), the pointwise in-
ner product identity 〈%ϕ, ddcf〉ϕ = (Λϕ%ϕ)(Λϕdd

cf) − m(m − 1)
ωm−2
ϕ ∧%ϕ∧ddcf

ωmϕ
, its

analogues for the ωϕt , and the differentiation formula ddcf = (∂2
t − ∂t)fdt ∧

2e−tη + ddcDf + dt ∧ dcD∂tf + dD∂tf ∧ 2e−tη + O(‖f‖C4,αe−t) give: 〈%ϕ, ddcf〉ϕ =
(∂t − ∂2

t )f +
〈
%(ωϕt ), ddcDft

〉
ωϕt

+ ε(f), with |ε(f)|C0,α([t,∞)×D) ≤ ‖f‖C4,αε(t).
Sum these expansions; as Lωϕt = 1

2
∆2
ωϕt

+
〈
%(ωϕt ), ddcD ·

〉
ωϕt

+ 1
2

〈
dDs(ω

ϕ
t ), dD ·

〉
ωϕt
,

as dDs(ωϕt ) = o(1) onD at any order as well as all its time derivatives, and denoting
by L1 the operator in the right-hand side of (16), one has: Lϕf = L1f + ε(f) with
ε(f) ∈ C0,α([A,∞) × D), and ‖ε(f)‖C0,α([t,∞)×D) ≤ ‖f‖C4,αε(t). Now conclusion
follows by applying Π0 to the latter equality, and from the fact that Π0L1f = L1f ,
as f is S1-invariant. � .

These asymptotics are not sufficient to conclude however, as the ωϕt may vary ;
we hence slightly change our point of view in next section to address this difficulty.
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3.5 Twisting the equation near the divisor

Conjugated Lichnerowicz operator. — By definition, ωD = ωX |D, and ω induces
ωD on D. It is more useful for what follows to choose first ωD as a limit point
of (ωϕt ); there might be no smooth ω̃X in [ωX ] with restriction ωD on D, but we
can still construct a Poincaré-type ω of class [ωX ], and such that ω = dt∧ 2e−tη+
p∗ωD + O(e−t) at any order near D, see [Auv11, §3.2.1]; of course, this does not
affect what precedes. From now on, we keep these ωD and ω.

According to Propositions 2.2 and 3.3, we can write ωϕt = σ∗tωD + o(1) for
t ≥ A, with this o(1) understood at any order in t and D, and ∂`tσt = o(1) in
C∞(D) for all ` > 0. Consider the following diffeomorphism of [A,∞)×D:

σ̃(t, w) :=
(
t, σt(w)

)
,

where w is the variable onD. We let σ̃ act on functions on [A,∞)×D by pull-back,
with inverse action by push-forward. Recall that L0

ϕ = Π0 ◦ Lϕ ◦ q∗, and define:

Lσ̃ϕ := (σ̃−1)∗ ◦ L0
ϕ ◦ σ̃∗, i.e. Lσ̃ϕu := (σ̃)∗

[
Π0Lϕ

(
q∗(σ̃)∗u

)]
,

so that Lσ̃ϕ
(
(σ̃)∗v

)
= (σ̃)∗

(
Π0Lϕv

)
– here we omit q∗. According to (13), we thus

have at any order, as t goes to ∞:

(17) Lσ̃ϕ
(
(σ̃)∗(∂tΠ0ϕ)

)
= O(e−t).

Asymptotic mapping properties of Lσ̃ϕ. — Observe the following, which follows
from the properties of σ̃, and a verification similar to that of Proposition 3.4:

Proposition 3.5 Denote by L0
∆∗×D the operator

L0
∆∗×D =

1

2

( ∂
∂t
− ∂2

∂t2

)2

+
( ∂
∂t
− ∂2

∂t2

)
+ LωD + ∆ωD ◦

( ∂
∂t
− ∂2

∂t2

)
.

on [0,∞)×D. Then
Lσ̃ϕ − L0

∆∗×D = o(1),

that is, the coefficients of this difference tend to 0 in C∞(D) at any order in t, as
t→∞.

Remark 3.6 As notation suggests, L0
∆∗×D is nothing by the Lichnerowicz operator

of dt ∧ 2e−tdϑ+ ωD on ∆∗ ×D, restricted to S1-invariant functions.

The interest of Proposition 3.5 lies in the following technical result, which
results from the study of L0

∆∗×D, and is the analytical key-step in our study of the
asymptotics of ∂t(Π0ϕ), and thus of those of ϕ; let χ be a smooth cut-off function
on R, with χ = 0 on (−∞, 1

3
] and χ = 1 on [2

3
,∞).
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Proposition 3.7 For any κ ≥ 0, α ∈ (0, 1) and δ ∈ R, define

Cκ+4,α
0,δ

(
[A,∞)×D

)
=
{
eδ(t−A)u ∈ Cκ+4,α

(
[A,∞)×D

)∣∣u(0, ·) = ∂tu(0, ·) ≡ 0
}
,

and Cκ,α
δ

(
[A,∞) × D

)
= e−δ(t−A)Cκ,α

(
[A,∞) × D

)
. Then there exist δ0 ∈ (0, 1],

and functions ψ1, . . . , ψr ∈ C∞([A0,∞) ×D), where r = dim(kerLωD), such that
for all δ ∈ (0, δ0) and all A ≥ A0 large enough, the ψj are linearly independent on
[A+ 1,∞)×D, and

(18) Lσ̃ϕ : Cκ+4,α
0,δ

(
[A,∞)×D

)
⊕ span

(
χ(· − A)ψj

)
j=1,...,r

−→ Cκ,α
δ

(
[A,∞)×D

)
is an isomorphism.

Moreover, for any non-trivial r-tuple (λ1, . . . , λr),
∑r

j=1 λjψj does not tend to
0 as t goes to infinity.

One also has an isomorphism

(19) Lσ̃ϕ : L2,κ+4
0

(
[A,∞)×D

)
−→ L2,κ

(
[A,∞)×D

)
,

where L2
(
[A,∞) × D

)
=
{
u ∈ L2

loc

∣∣ ∫∞
A
eA−tdt

∫
D
|u|2 volD < ∞

}
, L2,λ is the

subspace of functions in u ∈ L2,λ
loc with u, . . . ,∇λu ∈ L2, and L2,λ

0 the subspace of
functions u such that u(A, ·) = (∂tu)(A, ·) = 0.

We devote next section to the proof of this result. For now, we use it to
establish the desired asymptotics on ϕ.

Proof of Theorem 3.1 from Proposition 3.7. —As observed above in equation (17),
if one sets v := σ̃∗(∂tΠ0ϕ), then Lσ̃ϕ(v) ∈ Cκ,α

δ for any δ ≤ 1, (κ, α) ∈ N × (0, 1).
Taking now A and δ0 as in the statement of Proposition 3.7, one has Lσ̃ϕ

(
χ(t −

A)v
)
∈ Cκ,α

δ

(
[A,∞)×D

)
⊂ L2,κ

(
[A,∞)×D

)
, and χ(t−A)v ∈ L2,κ+4

0

(
[A,∞)×D

)
.

Pick δ ∈ (0, 1], δ < δ0. According to isomorphisms (18) and (19) in Proposition
3.7, there exist w ∈ Cκ+4,α

0,δ

(
[A,∞)×D

)
, and λ1, . . . , λr, such that

χ(t− A)v = w +
r∑
j=1

λjψj.

But ∂tΠ0ϕ tends to 0 as t goes to ∞ (Proposition 3.5), hence v = σ̃∗(∂tΠ0ϕ)
does so. Since this holds as well for w, we get that

∑r
j=1 λjψj tends to 0 as t

goes to ∞. By Proposition 3.7, this implies λ1 = · · · = λr = 0, that is: v ∈
Cκ+4,α
δ

(
[A,∞) × D

)
. Such a statement is stable by pushing forward with σ̃, so

that ∂t(Π0ϕ) is Cκ+4,α
δ near D. This holds for all κ > 0; after integrating along t,

and adding the Π⊥ component, we get the final statement:

ϕ = p∗ψD +O(e−δt),
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for some ψD ∈ C∞(D), with the O understood at any order near the divisor. We
easily see that the metric gψDD , of Kähler form ωψDD := ωD + ddcDψD, has constant
scalar curvature on D (see [Auv13, §2.2]), and that

gϕ = dt2 + 4e−2tη2 + p∗gψD +O(e−δt)

near D at any order. �

3.6 Proof of Proposition 3.7

We subdivide this proof into three steps. We first prove an analogous statement
(Lemma 3.8) for the model operator L0

∆∗×D. We then come back to Lσ̃ϕ, and ex-
ploit its asymptotic convergence to L0

∆∗×D to deal with its Fredholm properties and
compute its index between relevant spaces (Lemma 3.10). By contrast, its geomet-
ric origin – recall we came to Lσ̃ϕ from the study of the constant scalar curvature
Poincaré type Kähler metric ωϕ – is also used to analyse its kernel in conclusion,
where we exhibit the functions ψ1, . . . , ψr of the statement of Proposition 3.7, and
deal with their asymptotic linear independence (Lemma 3.11).

3.6.1 Mapping properties of L0
∆∗×D

We first state the following, on which Proposition 3.7 is partly modelled:

Lemma 3.8 1. The map L0
∆∗×D : L2,κ+4

0

(
[0,∞) × D

)
→ L2,κ

(
[0,∞) × D

)
is

an isomorphism for any κ ≥ 0.

2. There exists ε > 0 such that

L0
∆∗×D : Cκ+4,α

0,δ

(
[0,∞)×D

)
−→ Cκ,α

δ

(
[0,∞)×D

)
is an isomorphism for all δ ∈ (−1

2
− ε, 0) for any (κ, α) ∈ N× (0, 1, ).

3. δ = 0 is a critical weight for L0
∆∗×D, and if (f1, . . . , fr) denotes a basis of

kerLωD , then there exists δ0 > 0 such that

(20) L0
∆∗×D : Cκ+4,α

0,δ

(
[0,∞)×D

)
⊕ span

(
χ(t)fj

)
−→ Cκ,α

δ

(
[0,∞)×D

)
is an isomorphism for all δ ∈ (0, δ0) and any (κ, α) ∈ N× (0, 1).

Remark 3.9 1. Observe that as L0
∆∗×D is invariant by translation in the t direc-

tion, we can translate these statements on [A,∞)×D for any A.
2. The map (20) is well-defined, as L0

∆∗×D
(
χ(t)fj

)
= LωD(fj) = 0 on {t ≥ 1}

for j = 1, . . . , r.
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Proof of Lemma 3.8. — We start by points 1. and 2. We will use several times
the following inequality: if f(0) = 0 and

∫∞
0
|f |2e2δtdt <∞, then

(21)
∫ ∞

0

|∂tf |2e2δtdt ≥ δ2

∫ ∞
0

|f |2e2δtdt

(see [Biq97, Lemme 6.1]); this follows from Cauchy-Schwarz inequality applied to

0 =
1

2

∫ ∞
0

∂t(f
2e2δt)dt =

∫ ∞
0

(f∂tf)e2δtdt+ δ

∫ ∞
0

f 2e2δtdt

where f is smooth with compact support and vanishes at t = 0, plus a density
argument. Now, to simplify expressions, we denote L0

∆∗×D by L; we recall that
L = 1

2

(
∂t − ∂2

t

)2
+
(
∂t− ∂2

t

)
+ LωD + ∆ωD ◦

(
∂t− ∂2

t

)
, so that∫

[0,∞)×D
uLue2δt dt volD =

1

2

∫
[0,∞)×D

u(∂t − ∂2
t )

2u e2δtdt volD +

∫
[0,∞)×D

u(∂t − ∂2
t )u e

2δtdt volD

+

∫
[0,∞)×D

uLωDu e
2δtdt volD +

∫
[0,∞)×D

u(∂t − ∂2
t )∆Du e

2δtdt volD .

We deal successively with the different summands to estimate the positivity of∫
[0,∞)×D uLu e

2δtdt volD. We assume from now on that u ∈ L2,4
0,δ

(
[0,∞]×D

)
.

First summand:
∫

[0,∞)×D u(∂t − ∂2
t )

2u e2δtdt volD. We claim that:∫
[0,∞)×D

u(∂t − ∂2
t )

2u e2δtdt volD =

∫
[0,∞)×D

e2δt(∂2
t u)2 dt volD

− (1 + 2δ)(1 + 4δ)

∫
[0,∞)×D

e2δt(∂tu)2 dt volD

+ 2δ2(1 + 2δ)2

∫
[0,∞)×D

u2e2δt dt volD

Indeed (we assume u smooth, and vanishing near infinity for convenience), if
we notice that ∂t − 1 = −et ◦ ∂t ◦ e−t, we get:∫ ∞

0

u(∂t − ∂2
t )

2u e2δtdt

=

∫ ∞
0

u
[
∂t(1− ∂t)

]
(∂t − ∂2

t )u e
2δtdt = −

∫ ∞
0

ue(1+2δ)t∂t
[
e−t(∂t − ∂2

t )∂tu
]
dt

=

∫ ∞
0

e2δt(∂tu)
[
(∂t − ∂2

t )∂tu
]
dt+ (1 + 2δ)

∫ ∞
0

e2δtu
[
(∂t − ∂2

t )∂tu
]
dt
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by integration by parts, after using that u(0) = 0 to get rid of the boundary term
at t = 0. Now:∫ ∞

0

e2δt(∂tu)
[
(∂t − ∂2

t )∂tu
]
dt = −

∫ ∞
0

e(1+2δ)t(∂tu)∂t
(
e−t∂2

t u
)
dt

=

∫ ∞
0

e2δt(∂2
t u)2 dt+ (1 + 2δ)

∫ ∞
0

e2δt(∂tu)(∂2
t u) dt

after another integration by parts and using that ∂tu|t=0 = 0 to get rid of the
boundary term at t = 0, hence∫ ∞

0

u(∂t − ∂2
t )

2u e2δtdt

=

∫ ∞
0

e2δt(∂tu)2 dt+ (1 + 2δ)

[ ∫ ∞
0

e2δtu
[
(∂t − ∂2

t )∂tu
]
dt︸ ︷︷ ︸

:=A

+

∫ ∞
0

e2δt(∂tu)(∂2
t u) dt︸ ︷︷ ︸

:=B

]
.

Then

A = −
∫ ∞

0

e1+2δtu∂t
(
e−t∂2

t u
)
dt = B + (1 + 2δ)

∫ ∞
0

e2δtu∂2
t u dt︸ ︷︷ ︸

:=C

(again, no boundary terms in the integration by parts),

B =
1

2

∫ ∞
0

e2δt∂t
(
(∂tu)2

)
dt = −δ

∫ ∞
0

e2δt(∂tu)2 dt

(no boundary term, ∂tu|t=0 = 0), and

C =−
∫ ∞

0

∂t
(
e2δtu

)
∂tu dt = −

∫ ∞
0

e2δt(∂tu)2 dt− 2δ

∫ ∞
0

e2δtu∂tu dt

=−
∫ ∞

0

e2δt(∂tu)2 dt+ 2δ2

∫ ∞
0

e2δtu2 dt,

as 2δ
∫∞

0
e2δtu∂tu dt = δ

∫∞
0
e2δt∂t(u

2) = −2δ2
∫∞

0
e2δtu2 dt. The claim now readily

follows from gathering these expressions for A, B and C, and integrating along D.

Second summand:
∫

[0,∞)×D u(∂t − ∂2
t )u e

2δtdt volD. We now see that∫
[0,∞)×D

u(∂t − ∂2
t )u e

2δtdt volD

=

∫
[0,∞)×D

e2δt(∂tu)2 dt volD−δ(1 + 2δ)

∫
[0,∞)×D

e2δtu2 dt volD .
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We proceed exactly as above; assuming again that u is smooth and vanishes for
large t, we have∫ ∞

0

e2δtu(∂t − ∂2
t )u dt =−

∫ ∞
0

e(1+2δ)tu∂t
(
e−t∂tu

)
dt

=

∫ ∞
0

e2δt(∂tu)2 dt+ (1 + 2δ)

∫ ∞
0

e2δtu∂tu dt

=

∫ ∞
0

e2δt(∂tu)2 dt+
1

2
(1 + 2δ)

∫ ∞
0

e2δt∂t(u
2) dt

=

∫ ∞
0

e2δt(∂tu)2 dt− δ(1 + 2δ)

∫ ∞
0

e2δtu2 dt,

where we only used that u(0, ·) = 0 to get rid of boundary terms. We conclude as
above.

Third summand:
∫

[0,∞)×D uLωDu e
2δtdt volD. We only prove that this summand is

nonnegative, independently of δ. Integrating first along D, as LωD = (DD)∗DDD,
this is straightforward:∫

[0,∞)×D
uLωDu e

2δtdt volD =

∫ ∞
0

e2δtdt volD

(∫
D

u(DD)∗DDDu volD

)
=

∫ ∞
0

e2δtdt volD

(∫
D

∣∣DDu∣∣2D volD

)
.

Last summand:
∫

[0,∞)×D u(∂t − ∂2
t )∆Du e

2δtdt volD. We use now a different ap-
proach to see that, for all δ,∫

[0,∞)×D
u(∂t − ∂2

t )∆Du e
2δtdt volD ≥ −δ(1 + δ)

∫
[0,∞)×D

|dDu|2D e2δtdt volD .

Consider for this an L2 orthonormal basis (ϕj)j≥0 of eigenfunctions of ∆D, and
call µj the nonnegative eigenvalue attached to ϕj, i.e. ∆Dϕj = µjϕj. Set moreover
u =

∑∞
j=0 ujϕj; the uj are thus functions of t, and as u|t=0 = (∂tu)|t=0 = 0, we

have uj(0) = ∂tuj(0) = 0 for all j ≥ 0. This decomposition yields∫
[0,∞)×D

u(∂t − ∂2
t )∆Du e

2δtdt volD =
∞∑
j=0

µj Vol(D)

∫ ∞
0

e2δtuj(∂t − ∂2
t )uj dt

=
∞∑
j=0

µj Vol(D)

(∫ ∞
0

e2δt(∂tuj)
2 dt− δ(1 + 2δ)

∫ ∞
0

e2δtu2
j dt

)
,
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since for all j,
∫∞

0
e2δtuj(∂t − ∂2

t )uj dt =
∫∞

0
e2δt(∂tuj)

2 dt− δ(1 + 2δ)
∫∞

0
e2δtu2

j dt,
see the paragraph “second summand ” above. Now the introductory inequality (21)
gives us

∫∞
0
e2δt(∂tuj)

2 dt ≥ δ2
∫∞

0
e2δtu2

j dt for all j ≥ 0, so that:∫
[0,∞)×D

u(∂t − ∂2
t )∆Du e

2δtdt volD ≥
(
δ2 − δ(1 + 2δ)

) ∞∑
j=0

µj Vol(D)

∫ ∞
0

e2δtu2
j dt

= −δ(1 + δ)

∫
[0,∞)×D

|dDu|2D e2δtdt volD .

Recapitulation. According to the previous four paragraphs, we have for all δ ∈ R∫
[0,∞)×D

e2δtuLu dt volD ≥
1

2

∫
[0,∞)×D

e2δt(∂2
t u)2 dt volD

+
1

2
(1− 6δ − 8δ2)

∫
[0,∞)×D

e2δt(∂tu)2 dt volD

+ δ(1 + 2δ)(2δ − 1)(δ + 1)

∫
[0,∞)×D

u2e2δt dt volD

− δ(1 + δ)

∫
[0,∞)×D

|dDu|2D e2δtdt volD,

hence∫
[0,∞)×D

e2δtuLu dt volD ≥
1

2
(1− 7δ)(1 + δ)

∫
[0,∞)×D

e2δt(∂tu)2 dt volD

+ δ(1 + 2δ)(2δ − 1)(δ + 1)

∫
[0,∞)×D

u2e2δt dt volD

− δ(1 + δ)

∫
[0,∞)×D

|dDu|2D e2δtdt volD,

where we get to the second inequality after applying the version of (21) inte-
grated along D to the summand

∫
[0,∞)×D e

2δt(∂2
t u)2 dt volD; this is justified since

(∂tu)|t=0 = 0. Since (1− 7δ)(1 + δ) > 0 for δ ∈
(
− 1, 1

7

)
, and in particular for δ ∈

(−1, 0), we can apply (21) to the summand 1
2
(1−7δ)(1+δ)

∫
[0,∞)×D e

2δt(∂tu)2 dt volD,
and get for those δ:∫

[0,∞)×D
e2δtuLu dt volD ≥

1

2
δ(1 + δ)(δ − 1)(δ + 2)

∫
[0,∞)×D

u2e2δt dt volD

− δ(1 + δ)

∫
[0,∞)×D

|dDu|2D e2δtdt volD,
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It readily follows that L is an isomorphism L2,4
δ,0 → L2

δ for all δ ∈ (−1, 0). Now
as kerLωD is never trivial (it contains al least constants on D), δ = 0 is clearly a
critical value. To see what its index becomes for small δ > 0, consider functions
uj, j = 0, . . . N on D, such that L

(∑N
j=0 t

juj
)

= 0, with uN 6≡ 0 . The Nth degree
term in L

(∑N
j=0 t

juj
)
is LωDuN , hence LωDuN = 0. Now if N > 0, the (N − 1)th

degree term is N(uN + ∆ωDuN) + LωDuN−1, which thus vanishes; integrating it
against uN volD, we get: 0 = N

∫
D

(u2
N + |duN |2D) volD +

∫
D
uNLωDuN−1 volD =

N
∫
D

(u2
N+|duN |2D) volD +

∫
D
uN−1LωDuN volD = N

∫
D

(u2
N+|duN |2D) volD, so uN ≡

0. Hence N = 0, and Lu0 = LωDu0: u0 ∈ kerLωD . Since L is elliptic and invariant
by translation, its index thus becomes − dim kerLωD for δ > 0 small, δ ∈ (0, δ0)
say (see [LM85, Theorem 1.2]). We hence get an operator

L : L2,4
δ,0

(
[0,∞)×D

)
⊕ χ kerLωD −→ L2

δ

(
[0,∞)×D

)
of 0 index, which is an isomorphism as its domain lies inside L2,4

−1/2,0, for δ ∈ (0, δ0).
The analogous statements with Hölder spaces instead of Sobolev spaces are

deduced from these statements. �

3.6.2 Asymptotic kernel and Fredholm properties of Lσ̃ϕ
We keep the notation L for L0

∆∗×D, and take δ0 as in Lemma 3.8, which we
assume ≤ 1.

Lemma 3.10 For all δ ∈ (−1, δ0), δ 6= 0, and large A, the operator

Lσ̃ϕ : Cκ+4,α
0,δ

(
[A,∞)×D

)
−→ Cκ,α

δ

(
[A,∞)×D

)
is Fredholm, with the same index as L; in particular, it has index − dim kerLωD
for δ ∈ (0, δ0). Moreover, Lσ̃ϕ has zero kernel for δ > −1.

Proof. — Since the coefficients of Lσ̃ϕ and L differ by some o(1) at any order, we
know that Lσ̃ϕ is Fredholm for the same δ as L, and that the difference between
their indices does not depend on δ, see [LM85, Thm. 6.1]. Now, for instance,
L : Cκ+4,α

0,δ

(
[A,∞) × D

)
→ Cκ,α

δ

(
[A,∞) × D

)
is an isomorphism for δ ∈ (−1, 0),

independently of A. Therefore, up to increasing A, the same assertion holds for
Lσ̃ϕ; fixing such an A, Lσ̃ϕ and L have same index, 0, for δ = 1

2
, and hence for all δ.

From this and the Fredholm assertion we deduce that:

• Lσ̃ϕ has no critical weight in (−1, 0), and as a result has constant kernel and
cokernel for δ in this range; it is thus an isomorphism for δ ∈ (0, 1);

• Lσ̃ϕ has index − dim kerLωD for δ ∈ (0, δ0), and this corresponds to (minus)
a cokernel dimension, since Cκ+4,α

0,δ ⊂ Cκ+4,α
0,−1/2 for such δ. �
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3.6.3 Making explicitly Lσ̃ϕ into an isomorphism for small positive weights
According to the latter lemma, if r denotes dim kerLωD , there exist r linearly

independent functions ψ0
1, . . . , ψ

0
r (resp. ψ1, . . . , ψr), which are in

⋂
ε>0C

k+4,α
−ε,0 such

that L (resp. Lσ̃ϕ) is an isomorphism from Cκ+4,α
δ,0 ⊕ span(ψ0

j )j=1,...,r (resp. Cκ+4,α
δ,0 ⊕

span(ψ0
j )j=1,...,r) to Cκ,α

δ , for all δ ∈ (0, δ0).
Now as seen at the end of the proof of Lemma 3.8, the ψ0

j are easy to determine:
one can take ψ0

j = χ(t)fj, j = 1, . . . , r, where (f1, . . . , fr) denotes a basis of kerLωD .
On the other hand, we have to look for other candidates for the ψj, since in

general, Lσ̃ϕ(fj) is only o(1), and not O(e−δt) with δ > 0 – unless one of those fj
is a constant, which only settles the case when kerLωD is reduced to R. The good
candidates involve the fj however:

Lemma 3.11 For j = 1, . . . , r, set Zj := ∇ω(p∗fj). Then

(22) Lσ̃ϕ
[
(σ̃)∗

(
p∗fj + Π0(Zj · ϕ)

)]
= O(e−t)

at any order for j = 1, . . . , r. Moreover, the (σ̃)∗
(
fj + Π0(Zj · ϕ)

)
remain asymp-

totically linearly independent, in the sense that
∑r

j=1 λj
[
(σ̃)∗

(
fj +Π0(Zj ·ϕ)

)]
→ 0

as t goes to ∞ implies λ1 = · · · = λr = 0.

Proof. — Let us settle the linear independence assertion. We chose ωD as a
limit point of ω|D + ddcD(Π0ϕ), and built ω so that ω|D = ωD, which means that
there exists (t`) going to ∞ so that (dDΠ0ϕ)|{t=t`} tends to 0 in C0(D). Moreover
Π0(Zj · ϕ) = Zj · (Π0ϕ) + Zj · (Π⊥ϕ) − Π⊥(Zj · ϕ) = Zj · (Π0ϕ) + O(e−t) at any
order, for j = 1, . . . , r. Consequently, for any (λj)1≤j≤r, as the Zj are tangent to
D, (σ̃)∗

∑r
j=1 λj

[
(σ̃)∗

(
fj + Π0(Zj · ϕ)

)]∣∣
t=t`
→
∑r

j=1 λjfj as ` goes to ∞. Now if∑r
j=1 λj

[
(σ̃)∗

(
fj +Π0(Zj ·ϕ)

)]
→ 0, then

∑r
j=1 λjfj = 0, hence λ1 = · · · = λr = 0.

Notice that (22) is equivalent to Lϕ
(
fj + Π0(Zj · ϕ)

)
= O(e−t). We get these

latter equations in a way similar to the starting point of this part, Lϕ
(
∂t(Π0ϕ)

)
=

O(e−t). Namely, j being fixed, we choose in X a neighbourhood U of coordinates
(z1, . . . , zm) around some point of D where D is given by z1 = 0, we extend
Zj|D = ∇ωDfj in U independently of z1 and denote this holomorphic extension by
Z̃j; we have: Z̃j = Zj +O(e−t) at any order. Since s(ωϕ) is constant,

0 = Z̃j · s(ωϕ) = ∆ϕ

(
ΛϕLZ̃jωϕ

)
− 2
(
LZ̃jωϕ, %(ωϕ)

)
ϕ
.

We will thus be done if we prove that LZ̃jωϕ = ddc
(
p∗fj + Π0(Z̃j · ϕ)

)
on U up to

some O(e−t) at any order, as Lϕ = 1
2
∆2
ϕ + (%ϕ, dd

c·)ϕ, and as replacing Z̃j by Zj
(which is globally defined around D) in the expression Lϕ

(
Π0(Z̃j · ϕ)

)
only gives

rise to an error term which is O(e−t) at any order.
Now ωϕ = ω̃D + ddc(ϕ− t) +O(e−t) near D, where ω̃D extends ωD in U inde-

pendently of z1, and with the O at any order. Thus by Cartan’s formula, LZ̃jωϕ =
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d
(
ω̃D(Z̃j, ·)

)
+LZ̃jdd

c(ϕ− t)+O(e−t). Observe that ωD(Zj, ·) = gD(JD∇ωDfj, ·) =

dcDfj on D by definition of Zj, and that dc(p∗fj) = dcXfj + O(e−t) near D.
Moreover LZ̃jdd

c(ϕ − t) = ddc
(
Z̃j · (ϕ − t)

)
= ddc

(
Π0(Z̃j · ϕ)

)
, as dt(Z̃j) and

Π⊥(Z̃j · ϕ) are O(e−t) at any order. Summing these estimates thus gives LZ̃jωϕ =

ddc
(
p∗fj + Π0(Z̃j · ϕ)

)
+O(e−t) near D on U , as wanted. �

To complete the proof of Proposition 3.7, just set ψj := χ(A − t)(σ̃)∗
(
fj +

Π0(Zj · ϕ)
)
, for j = 1, . . . , r. �

4 The extremal case

4.1 Extremal Kähler metrics on the model ∆∗ × (Y \E)

4.1.1 Potentials of extremal Kähler metrics of Poincaré type on ∆∗ × (Y \E)

We come back in this section to the point of view of Part 1, and recall that
ω∆∗ = −ddct = dt ∧ 2e−tdϑ, that ωY \E is a fixed Kähler metric of Poincaré type
of class [ωY ] on Y \E, and that ω0 = ω∆∗ + ωY \E on ∆∗ × (Y \E).

As we will see below, the following class of potentials on ∆∗ × (Y \E) is useful
when working on extremal metrics: we say that ϕ ∈ K ′(ω0) if ∂ϑϕ ≡ 0, |ϕ| ≤
C(uY + |t|), dϕ is bounded at any order with respect to ω0, and ωϕ = ω0 + ddcϕ ≥
cω0 for some c > 0. We say that ωϕ is extremal if Kϕ := ∇ϕs(ωϕ) is holomorphic
on ∆∗ × (Y \E).

Observe now that if one takes ϕ ∈ K ′(ω0) instead of ϕ ∈ K (ω0), and if
Lϕ(ϕ̇ − 1) = 0, without assuming that ωϕ has constant scalar curvature, as ϕ̇ is
bounded at any order for ω0 and Dϕ[e−t(ϕ̇− 1)] = 0 is automatic as underlined in
the proof of Lemma 1.3, then the proof of Lemma 1.4, which is the major step in
the proof of Theorem 1.1, remains valid. In this regard, the aim of this section is:

Theorem 4.1 Let ϕ ∈ K ′(ω0) such that ωϕ is extremal. Then ϕ = at + ψ, with
a < 1 and ψ ∈ E (Y \E). Therefore, ωϕ = (1−a)ω∆∗+ω

ψ
Y , where ω

ψ
Y = ωY \E+ddcY ψ

is thus extremal on Y \E, of class [ωY ], and of Poincaré type if E 6= ∅.

The assertion “ψ ∈ E (Y \E)” means: ψ ∈ C∞loc(Y \E), |ψ| ≤ C(1 + uY ), and dψ
is bounded at any order with respect to ωY \E.

Next paragraph is devoted to the proof; for now, as evoked above, another
elementary but crucial step in proving Theorem 4.1 similarly to Theorem 1.1 is:

Lemma 4.2 Let ϕ ∈ K ′(ω0) such that ωϕ is extremal. Then Lϕ(ϕ̇− 1) = 0.

Proof. — Let ϕ be a potential as in the statement. Then Kϕ is holomorphic and
bounded at any order, so by Lemma 1.7 is tangent to D and constant along ∆∗:
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Kϕ = KD for a fixed (holomorphic) KD ∈ C∞(TD). As in Part 1, let Z be the
locally defined Re

(
z(log z) ∂

∂z

)
with z the coordinate on ∆∗. Then as ∂ϑs(ωϕ) = 0,

〈Kϕ, Z〉ϕ = Z · s(ωϕ) = 1
2
∂ts(ωϕ). Now LZωϕ = 1

2
ddc(ϕ̇− 1), and the infinitesimal

variation of the scalar curvature along a deformation φ of the potential ϕ is given
by −2Lϕφ+ 〈ds(ωϕ), dφ〉ϕ, hence Z · s(ωϕ) = −Lϕ(ϕ̇− 1) + 1

2

〈
ds(ωϕ), d(ϕ̇− 1)

〉
ϕ
.

Therefore Lϕ(ϕ̇ − 1) = 0 is equivalent to
〈
ds(ωϕ), d(ϕ̇ − 1)

〉
ϕ

= ∂ts(ωϕ), and
this latter follows from

〈
ds(ωϕ), d(ϕ̇ − 1)

〉
ϕ

= et
〈
ds(ωϕ), d[e−t(ϕ̇ − 1)]

〉
ϕ

+ (ϕ̇ −
1)〈ds(ωϕ), dt〉ϕ = et · e−t∂ts(ωϕ) + (ϕ̇− 1)dt(Kϕ), and dt(Kϕ) = 0, as Kϕ is tangent
to D. Here we used identity (3): ∇ϕ

(
e−t(ϕ̇− 1)

)
= e−t∂t, holding in general, see

the proof of Lemma 1.3. �

4.1.2 Proof of the splitting theorem for extremal metrics on ∆∗ × (Y \E)

Fix ϕ ∈ K ′(ω0) such that ωϕ is extremal. So far one has all the required
ingredients to reach the statement :

∫
∆∗×(Y \E)

et|Dϕ(ϕ̇ − 1)|2ϕ volϕ < ∞. To pass
from this to the statement

∫
∆∗×(Y \E)

et|Dϕ(ϕ̇−1)|2ϕ volϕ = 0, we use a subsequence
similar to that of the proof of Lemma 1.6, adapted as follows:

1. to have a subsequence bounded at any order on compact subsets, replace
(ϕj) by

(
ϕj − ϕj(0, ·)

)
(this does not affect the attached metrics); without

loss of generality, we assume it converges at any order on compact subsets;

2. call ϕ∞ the C∞loc-limit; it verifies |ϕ∞| ≤ C(uY + |t|), dϕ∞ is bounded at any
order for ω0, and ω0 + ddcϕ∞ ≥ cω0, as uniform local bounds pass to the
limit. One gets by dominated convergence Dϕ∞( ˙ϕ∞−1) = 0. Again, ϕ̈∞ ≡ 0
follows from this, which in the current situation provides ϕ∞ = ψ2t + ψ1

with ψ1, ψ2 functions on Y \E. As dϕ∞ is bounded, this implies dψ2 ≡ 0,
and finally ϕ∞ = at + ψ∞, with ψ∞ a function on Y \E and a a constant,
necessarily < 1, since then, ωϕ∞ = (1− a)ω∆∗ + (ωY + ddcY ψ∞);

3. compute lim+∞Kϕ = Kϕ∞(0) = 2π
∫
Y \E( ˙ϕ∞ − 1)2|dt|2ϕ∞

(ωϕ∞0 )m−1

(m−1)!
= 2π(1 −

a) Vol(Y \E). Symmetrically, lim−∞Kϕ = 2π(1− b) Vol(Y \E) for some b <
1. Hence we are done if we prove that a = b, since as for ϕ∞, we then deduce
that ϕ = at+ ψ, ψ ∈ E (Y \E), from Dϕ(ϕ̇− 1) = 0.

One proves that a = b as follows. Considering the sequence of times tj along which
ϕ∞ arises, one has ωϕ = (1−a)ω∆∗+ω

ψ∞
Y +εj at t = tj, with εj uniformly bounded

at any order for ω0, and εj → 0 in C∞loc(Y \E) as j →∞. As a result, s(ωϕ)(tj, ·),
which is uniformly bounded along Y \E, tends to 2

1−a + s(ωψ∞Y ) in C0
loc(Y \E);

likewise, ωϕtj , uniformly bounded along Y \E, tends to ωψ∞Y in C0
loc(Y \E). Thus, if
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∆0,s = {0 ≤ t ≤ s} ⊂ ∆∗ for s ≥ 0, as Kϕ is tangent to D:

0 =

∫
∆0,tj

×(Y \E)

etdt(Kϕ) volϕ =

∫
∆0,tj

×(Y \E)

ds(ωϕ) ∧ dcet ∧
ωm−1
ϕ

(m− 1)!

= 2π
(∫
{tj}×(Y \E)

s(ωϕ)
(ωϕtj)

m−1

(m− 1)!
−
∫
{0}×(Y \E)

s(ωϕ)
(ωϕ0 )m−1

(m− 1)!

)
as ddcet = 0

j→∞−−−→ 2π
(

Vol(Y \E)
( 2

1− a
+ sY \E

)
−
∫
{0}×(Y \E)

s(ωϕ)
(ωϕ0 )m−1

(m− 1)!

)
,

by dominated convergence, i.e. 2
1−a = 1

Vol(Y \E)

∫
{0}×(Y \E)

s(ωϕ)
(ωϕ0 )m−1

(m−1)!
− sY \E. The

same holds symmetrically for 2
1−b , and thus a = b, which ends this proof. �

4.2 Applications to extremal Poincaré type metrics on X\D
On a compact Kähler manifold (X,ωX) with a simple normal crossing divisor D =∑N

j=1Dj, we say that a Poincaré type Kähler metric is extremal if the gradient of
its scalar curvature is real holomorphic. As in the compact case, one can check that
this corresponds to being a critical point of the Calabi functional, i.e. the squared
L2 norm of the scalar curvature. We set, for j = 1, . . . , N , Ej =

∑
` 6=j Dj ∩ D`,

and use below the fibrations introduced in Section 3.1.

4.2.1 Existence of extremal metrics on the divisor
We start exploiting Theorem 4.1 with a statement analogous to Theorem 3.2:

Proposition 4.3 Assume that there exists an extremal Poincaré type Kähler met-
ric of class [ωX ] on X\D. Then for any j, there exists an extremal (Poincaré type)
Kähler metric of class [ωX |Dj ] on Dj\Ej.

Proof. — Proceeding as in the proof of Proposition 3.3, after fixing j, we construct
a sequence (tk) going to ∞ such that ϕk :=

(
(Π0,jϕ)(· + tk, ·) − (Π0,jϕ)(tk, x0)

)
,

with x0 ∈ Dj\Ej, converges at any order on compact subsets of R × (Dj\Ej) to
some S1-invariant ϕ∞ ∈ K ′(ω∆∗ + ωDj\Ej) – the normalisation is required for the
C0-bound. As in the constant scalar curvature case, equations pass to the limit
and the resulting ωϕ∞ is extremal on ∆∗ × (Dj\Ej). Then Theorem 4.1 tells us
that ϕ∞ splits as at+ψ, ψ ∈ E (Dj\Ej), and ωψDj = ωDj\Ej +ddcDjψ is an extremal
metric, of Poincaré type if Ej 6= ∅, and of class [ωX |Dj ]. �

Remark 4.4 A by-product of this proof is: under the same assumptions as in
Proposition 4.3, fix j ∈ {1, . . . , N}, and x0 ∈ Dj\Ej. Then for any (tk) going
to ∞, any subsequence of

(
(Π0,jϕ)(· + tk, ·) − (Π0,jϕ)(· + tk, x0)

)
k
converging in
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C∞loc

(
R× (Dj\Ej)

)
has limit of shape at+ψ, with ψ ∈ E (Dj\Ej), |a|, |dψ|ωDj\Ej ≤

supX\D |dϕ|ω, ω
ψ
Dj

= ωDj\Ej + ddcDjψ an extremal Poincaré type metric on Dj\Ej,
and 1 − a ≤ c−1, ωψDj ≥ c, where ωϕ ≥ cω on X\D. Therefore any subsequence
of t 7→ ∂tjΠ0,jϕ(t, ·) converging in C∞loc(Dj\Ej) tends to a constant a as above,
whereas for any all ` ≥ 2, t 7→ ∂`tjΠ0,jϕ(t, ·) tends to 0 in C∞loc(Dj\Ej) as t→∞.

4.2.2 A numerical constraint
Here we use notations of Part 3: for fixed j ∈ {1, . . . , N}, the volume Vol(Dj)

is computed with respect to the (Poincaré) class induced on Dj, as well as the
mean scalar curvature sDj . We use the content of previous paragraph to prove a
constraint on extremal Poincaré type metrics on X\D, generalizing the constraint
“sDj > s” of the constant scalar curvature case [Auv13]. Notice that in this special
case though, the analytical background was less involved; in particular, the analysis
of the model case was not required. The extremal constraint states as:

Proposition 4.5 Assume that ωϕ is an extremal Kähler metric of Poincaré type
of class [ωX ], Then for all j = 1, . . . , N indexing a component of D, one has:

(23) sDj +
1

4πVol(Dj)

(
−
∫
X\D

Kϕ · etj
ωmϕ
m!

+

∫
X\D

sϕ∆ϕe
tj
ωmϕ
m!

)
> 0,

where we set sϕ = s(ωϕ), and recall that Kϕ = ∇ϕsϕ.

Remark 4.6 When sϕ = s, one recovers the obstruction sDj > s in this way: if
sϕ = s, Kϕ ≡ 0, and

∫
X\D sϕ∆ϕe

tj ω
m
ϕ

m!
= s

∫
X\D ∆ϕe

tj ω
m
ϕ

m!
= −4πsVol(Dj). One

can moreover rewrite constraint (23) as:
∫
X\D Lϕ(etj)

ωmϕ
m!

< 0.

Proof of Proposition 4.5. — We first make an easy but crucial observation about
the statement. If indeed ddcetj is bounded for Poincaré type metrics (see [Auv13,
Part 5]), making ∆ϕe

tj integrable for the volume form ωmϕ , the analogue about
Kϕ · etj deserves a slight explanation. Now, as an L2 holomorphic vector field on
X\D, Kϕ extends smoothly through D, and its normal component vanishes along
the divisor ( [Auv11], proof of Lemma 5.2). In other words, in an open set U of
local coordinates (z1, . . . , zm) centred at some point of Dj such that Dj is given by
z1 = 0, Kϕ can be written as Re

(
z1f1

∂
∂z1

+ f2
∂
∂z2

+ · · · + fm
∂
∂zm

)
, with f1, . . . , fm

holomorphic on U . Moreover in U , etj = − log(|z1|2) + fj,U with fj,U a smooth
function by construction, and therefore, Kϕ · etj = −Re(f1) + Kϕ · fj,U . From this
we get that Kϕ · etj is bounded near Dj, hence on X\D, and is thus L1 for ωmϕ .

This being said, let us come to the proof of the proposition itself. By Remark
4.4, on p−1

j

(
{tk} × (Dj\Ej)

)
, one has:

(24) ωϕ = akdtj ∧ 2e−tjηj + p∗jω
ϕ
tk

+ ε(tk, z),
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where: ak ≥ c (c such that ωϕ ≥ 2cω), the ωϕtk := ωDj + ddcDj [Π0,jϕ(tk, ·)] are
uniformly bounded on (Dj\Ej) at any order in the Poincaré sense and positively
bounded below on compact subsets, and all the ∂`tjε, ` ≥ 0, tend to 0 in C∞loc(Dj\Ej)
as k goes to∞. Consequently, a direct computation yields, on p−1

j

(
{tk}×(Dj\Ej)

)
:

(25) sϕ = −2akdtj ∧ 2e−tjηj + p∗j%(ωϕtk) + ε1(tk, z),

with ε1 tending to 0 in the same sense as ε above. We can now write, for s large
and seeing {tj ≤ s} as a subset of X\D:∫

{tj≤s}
sϕdd

cetj ∧
ωm−1
ϕ

(m− 1)!

=

∫
{tj≤s}

d
(
sϕd

cetj ∧
ωm−1
ϕ

(m− 1)!

)
−
∫
{tj≤s}

dsϕ ∧ dcetj ∧
ωm−1
ϕ

(m− 1)!

=

∫
{tj=s}

sϕd
cetj ∧

ωm−1
ϕ

(m− 1)!
−
∫
{tj≤s}

Kϕ · etj
ωmϕ
m!

,

where we used Stokes’ theorem to pass from the integral of shape
∫
{tj≤s} dα in the

second line to the integral of shape
∫
{tj=s} α in the third line (there is no interference

with the other D` here, as the α in play, and its differential, are L1), and applied
a hermitian identity to Kϕ = ∇ϕsϕ to replace dsϕ ∧ dcetj ∧ ωm−1

ϕ

(m−1)!
by Kϕ · etj

ωmϕ
m!

in

the last summand. Now
∫
{tj≤s} sϕdd

cetj ∧ ωm−1
ϕ

(m−1)!
= −

∫
{tj≤s} sϕ∆ϕe

tj volϕ tends to

−
∫
X\D sϕ∆ϕe

tj volϕ as s goes to ∞; likewise,
∫
{tj≤s} Kϕ · e

tj ω
m
ϕ

m!
tends to

∫
X\D Kϕ ·

etj volϕ as s goes to ∞. Finally, taking s = tk and using the asymptotics (24)
and (25) with the evoked uniform bounds, we get that

∫
{tj=tk}

sϕd
cetj ∧ ωm−1

ϕ

(m−1)!
=

4πsDj Vol(Dj)− 4π
∫
Dj\Ej a

−1
k volω

ϕ
tk +o(1) as k goes to ∞, and the last integral is

≥ c−1 Vol(Dj), hence the result. �

Remark 4.7 We also get from this proof that (ak)k tends to the inverse of the
left-hand-side of (23), aj say, that depends only on ωϕ, this for all sequence (tk).
We hence sharpen Remark 4.4 by saying that: t 7→ ∂tjΠ0,jϕ(t, ·) tends to (1− aj)
in C∞loc(Dj\Ej).

4.2.3 Asymptotics of extremal Kähler metrics of Poincaré type (smooth divisor)
When D is smooth, we have a perfect analogue of Theorem 3.1:

Theorem 4.8 Assuming D smooth, let ωϕ be an extremal metric of Poincaré type
on X\D, of class [ωX ]. One has near Dj the asymptotics of Riemannian metrics:

gϕ = aj
(
dt2j + (2e−tjη)2

)
+ p∗gDj +O(e−δtj)
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with gDj an extremal Kähler metric on (Dj, JDj), such that [gDj(JDj ·, ·)] = [ω|Dj ],
and where aj > 0 is the inverse of the left-hand side of (23); this holds for all j.

Proof. — The ingredients are the same as in the constant scalar curvature case.
Namely, 1. starting from an equation analogous to (13), 2. we twist it after
parametrising judiciously the “family of almost extremal metrics” (ωϕt )t, and then
3. lead the appropriate asymptotic analysis of the arising Lichnerowicz-modelled
operator. Before examining those three points, and more precisely why they adapt
to the extremal situation, we assume that the divisor is reduced to one component,
and we proceed to the following normalisation: call aD = aD(ωϕ) the inverse of
the left hand-side of (23); up to working with a−1

D ωϕ, which near D can be written
as a−1

D ω − ddct + ddc
(
a−1
D ϕ − (a−1

D − 1)t
)
– recall that ωϕ = ω + ddc(ϕ − t) –, we

can assume that aD = 1, as aD(λωϕ) = λaD(ωϕ) for all λ > 0, by (23). We then
recover, by Remarks 4.4 and 4.7, the extremal analogue of Proposition 3.3.

The first point goes as follows. Again we work on an open subset U of coordi-
nates (z1, . . . , zm) centred at some point of D, such that z1 is the local equation of
D, and use the holomorphic local vector field Z = Re

(
z1(log z1) ∂

∂z1

)
to differentiate

sϕ. On the one hand, Z · sϕ = dsϕ(Z); on the other hand,

Z · sϕ =− 2
(1

2
∆2
ϕ

(
Z · (ϕ− t)

)
+
〈
%ϕ, dd

c[Z · (ϕ− t)]
〉
ϕ

)
+ ∆ϕ(ΛϕLZωX)− 2〈%ϕ,LZωX〉ϕ +O(e−t)

=− 2Lϕ[Z · (ϕ− t)] +
〈
dsϕ, d(Z · (ϕ− t))

〉
ϕ

+O(e−t),

as Lϕ = 1
2
∆2
ϕ + 〈%ϕ, ddc·〉ϕ + 1

2

〈
dsϕ, d ·

〉
ϕ
, and LZωX = O(e−t) at any order.

Now dsϕ(Z) = dsϕ
(

1
2
ρ1(log ρ1) ∂

∂ρ1

)
+ O(e−t) with z1 = ρ1e

iθ1 , and thus Z =
1
2

(
ρ1(log ρ1) ∂

∂ρ1
+ θ1

∂
∂θ1

)
. Set KD = Kϕ|D. Then Kϕ = KD + O(e−t) in U , and

therefore dsϕ(Z) = 1
2

〈
Kϕ, ρ1(log ρ1) ∂

∂ρ1

〉
ϕ

+ O(e−t) = 1
2
dD∂t(Π0ϕ)(KD) + O(e−t),

as dt
(
ρ1(log ρ1) ∂

∂ρ1

)
= 1 + O(e−t) and η

(
ρ1(log ρ1) ∂

∂ρ1

)
= O(e−t), whereas d

(
Z ·

(ϕ− t)
)

= 1
2
d∂t(Π0ϕ) +O(e−t), hence:〈

dsϕ, d
(
Z · (ϕ− t)

)〉
ϕ

=
1

2
Kϕ · ∂t(Π0ϕ) +O(e−t) =

1

2
dD∂t(Π0ϕ)(KD) +O(e−t)

Conclude that Lϕ[Z·(ϕ−t)] = O(e−t); as above, rewrite the latter as Lϕ[∂t(Π0ϕ)] =
O(e−t), which makes sense globally near D.

For second point, we mostly have to see that the extremal condition can replace
the constant scalar curvature condition in the construction of Part 2. Observe that:

� on a compact manifold, the extremal condition is a non-linear 6th order
elliptic equation on the Kähler potential, with C∞-bounded coefficients as
soon as the metrics are bounded in C∞, and bounded below;
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� Calabi’s theorem is stated on extremal Kähler metrics.

Consequently, one recovers by the same methods the exact analogues of the results
of Part 2, with the vectors Z of this part in the JY k0(ω) ⊕

(⊕
λ>0 h

(λ)
)
for ω

extremal, where Z1 holomorphic is in h(λ) iff LJY∇ωs(ω)Z1 = λJYZ1.
In passing, we fix ωD = gD(JD·, ·) a limit point of (ωϕt ), which is extremal by

Remark 4.4; this way, ∇gDs(ωD) = KD := Kϕ|D. We assume also that ω|D = ωD.
Now for the third and last point, the splitting formula (16) is still valid (since

ωϕ = dt∧2e−tη+p∗ωϕt +o(1), dsϕ = p∗ds(ωϕt )+o(1), which is parallel to D up to an
o(1)). Lemmas 3.8 (dealing with the model operator) and 3.10 (on the conjugated
geometric operator) thus remain valid. To recover the full analogue of Proposition
3.7, we need to identify the non-asymptotically small functions whose image by Lσ̃ϕ
are exponentially small; in other words, we need the analogue of equations (22).
We can actually use the same candidates as those of Lemma 3.11, with the same
notations as in this lemma; similar computations yield:

Zj · sϕ = −2Lϕ[fj + Π0(Zj · ϕ)] +
〈
d(fj + Π0(Zj · ϕ)), dsϕ

〉
ϕ

+O(e−t);

if we prove that dsϕ(Zj) =
〈
d(fj + Π0(Zj · ϕ)), dsϕ

〉
ϕ

+O(e−t), which is somehow
the most delicate point of our argument, we will thus be done in the same way as
in the constant scalar curvature case.

Fix in X an open neighbourhood U of holomorphic coordinates of any point in
D, and extend vector fields on U ∩D, such as Zj|D, to U , in the natural way. Set
also α ∼ β if α = β +O(e−t) at any order for ω in U .

Observe now that on the one hand, dsϕ(Zj) = 〈Kϕ, Zj〉ϕ ∼ 〈KD, Zj|D〉gϕt , as
Kϕ ∼ KD, Zj ∼ Zj|D and gϕ =

(
1 + (∂2

t − ∂t)Π0ϕ)(dt2 + 4e−2tη2) + dt · dDΠ0ϕ +
2e−tη · dcDΠ0ϕ+ p∗gϕt +O(e−t), with gϕt = ωϕt (·, JD·). On the other hand,

〈
d(fj +

Π0(Zj · ϕ)), ds(ωϕ)
〉
ϕ

= Kϕ · (fj + Π0(Zj · ϕ)) ∼ KD · fj + Kϕ · Π0(Zj · ϕ) ∼
〈KD, Zj|D〉ωD +Kϕ ·Π0(Zj ·ϕ). Comparing those two expressions, our next task is
to show that Kϕ · Π0(Zj · ϕ) ∼ ddcD(Π0ϕ)(KD, JDZj|D).

By definition, ddcD(Π0ϕ)(KD, JDZj|D) = KD · [dcDΠ0ϕ(JDZj|D)] − (JDZj|D) ·
[dcDΠ0ϕ(KD)] − dcDΠ0ϕ([KD, JDZj|D]) on D. But as Kϕ ∼ Kϕ and Zj ∼ Zj|D,
KD · [dcDΠ0ϕ(JDZj|D)] = KD · [dDΠ0ϕ(Zj|D)] ∼ Kϕ · (dΠ0ϕ(Zj)); moreover, as
KD = ∇gDs(ωD) and Zj|D ∈ JDk0(ωD), [KD, JDZj|D] = 0. Finally, dcDΠ0ϕ(KD) ∼
−(JKϕ) · ϕ, and on X\D, LJKϕωϕ = 0, whereas near D, ωϕ ∼ p∗ωD + ddc(ϕ− t),
JKϕ ∼ JDKD and LJDKDωD = 0, so that LJKϕωϕ ∼ ddc

(
(JKϕ) · (ϕ − t)

)
, and

ddc
(
(JKϕ) · ϕ

)
∼ ddc

(
(JKϕ) · (ϕ − t)

)
∼ 0. According to the weighted ∂∂-lemma

of [Auv11] (or more precisely to the proof of [Auv11, Lemma 3.10], which is a local
version near the divisor), this implies that (JKϕ) · ϕ ∼ c for some constant c, so
that (JZj) · [(JKϕ) · ϕ] ∼ 0, hence (JDZj|D) · [dcDΠ0ϕ(KD)] ∼ 0. �

44



Asymptotic properties of extremal Kähler metrics of Poincaré type

References
[AH12] Vestislav Apostolov and Hongnian Huang, A splitting theorem for extremal

kaehler metrics, Preprint arXiv:1212.3665[math.DG], 2012.

[AP06] Claudio Arezzo and Frank Pacard, Blowing up and desingularizing constant
scalar curvature Kähler manifolds, Acta Math. 196 (2006), no. 2, 179–228.

[APS11] Claudio Arezzo, Frank Pacard, and Michael Singer, Extremal metrics on
blowups, Duke Math. J. 157 (2011), no. 1, 1–51. MR 2783927 (2012k:32024)

[Auv11] Hugues Auvray, The space of Poincaré type Kähler metrics on the complement
of a divisor, Preprint arXiv:1109.3159 [math.DG], 2011.

[Auv13] , Metrics of Poincaré type with constant scalar curvature: a topological
constraint, J. Lond. Math. Soc. (2) 87 (2013), no. 2, 607–621.

[BDB88] D. Burns and P. De Bartolomeis, Stability of vector bundles and extremal
metrics, Invent. Math. 92 (1988), no. 2, 403–407.

[Biq97] Olivier Biquard, Fibrés de Higgs et connexions intégrables: le cas logarithmique
(diviseur lisse), Ann. Sci. École Norm. Sup. (4) 30 (1997), no. 1, 41–96.

[Cal82] Eugenio Calabi, Extremal Kähler metrics, Seminar on Differential Geometry,
Ann. of Math. Stud., vol. 102, Princeton Univ. Press, Princeton, N.J., 1982,
pp. 259–290.

[Cal85] , Extremal Kähler metrics. II, Differential geometry and complex anal-
ysis, Springer, Berlin, 1985, pp. 95–114.

[CDS12a] X. X. Chen, S. K. Donaldson, and Song Sun, Kahler-Einstein metrics on
Fano manifolds, I: approximation of metrics with cone singularities, Preprint
arXiv:1211.4566[math.DG], 2012.

[CDS12b] , Kahler-Einstein metrics on Fano manifolds, II: limits with cone angle
less than 2π, Preprint arXiv:1212.4714[math.DG], 2012.

[CDS13] , Kahler-Einstein metrics on Fano manifolds, III: limits as
cone angle approaches 2π and completion of the main proof, Preprint
arXiv:1302.0282[math.DG], 2013.

[CT08] X. X. Chen and G. Tian, Geometry of Kähler metrics and foliations by holo-
morphic discs, Publ. Math. Inst. Hautes Études Sci. (2008), no. 107, 1–107.
MR 2434691 (2009g:32048)

[Don01] S. K. Donaldson, Scalar curvature and projective embeddings. I, J. Differential
Geom. 59 (2001), no. 3, 479–522.

45



Asymptotic properties of extremal Kähler metrics of Poincaré type

[Gau] Paul Gauduchon, Calabi’s extremal metrics: an elementary introduction, Lec-
ture notes.

[Hua12] Hongnian Huang, A splitting theorem on toric varieties, Preprint
arXiv:1212.3729 [math.DG], 2012.

[Lev85] Marc Levine, A remark on extremal Kähler metrics, J. Differential Geom. 21
(1985), no. 1, 73–77.

[LM85] Robert B. Lockhart and Robert C. McOwen, Elliptic differential operators on
noncompact manifolds, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 12 (1985),
no. 3, 409–447.

[Mab04] Toshiki Mabuchi, Stability of extremal Kähler manifolds, Osaka J. Math. 41
(2004), no. 3, 563–582.

[Sch02] Georg Schumacher, Asymptotics of complete Kähler-Einstein metrics—
negativity of the holomorphic sectional curvature, Doc. Math. 7 (2002), 653–
658 (electronic).

[Szé06] Gábor Székelyhidi, Extremal metrics and K-stability, Ph.D. thesis, 2006.

[Szé07] , Extremal metrics and K-stability, Bull. Lond. Math. Soc. 39 (2007),
no. 1, 76–84.

[Tia97] Gang Tian, Kähler-Einstein metrics with positive scalar curvature, Invent.
Math. 130 (1997), no. 1, 1–37.

[Tia12] , K-stability and Kähler-Einstein metrics, Preprint arXiv:1211.4669
[math.DG], 2012.

[TY90] Gang Tian and Shing-Tung Yau, Complete Kähler manifolds with zero Ricci
curvature. I, J. Amer. Math. Soc. 3 (1990), no. 3, 579–609.

[Wu06] Damin Wu, Higher canonical asymptotics of Kähler-Einstein metrics on quasi-
projective manifolds, Comm. Anal. Geom. 14 (2006), no. 4, 795–845.

[Yau93] Shing-Tung Yau, Open problems in geometry, Differential geometry: partial
differential equations on manifolds (Los Angeles, CA, 1990), Proc. Sympos.
Pure Math., vol. 54, Amer. Math. Soc., Providence, RI, 1993, pp. 1–28.

CMLA, École Normale Supérieure de Cachan, UMR 8536
61 avenue du Président Wilson, 94230 Cachan, France
hugues.auvray@ens-cachan.fr

46


